
Signal Processing Toolbox™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Signal Processing Toolbox™ Reference
© COPYRIGHT 1988–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
1988 First printing New
November 1997 Second printing Revised
January 1998 Third printing Revised
September 2000 Fourth printing Revised for Version 5.0 (Release 12)
July 2002 Fifth printing Revised for Version 6.0 (Release 13)
December 2002 Online only Revised for Version 6.1 (Release 13+)
June 2004 Online only Revised for Version 6.2 (Release 14)
October 2004 Online only Revised for Version 6.2.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 6.4 (Release 14SP3)
March 2006 Sixth printing Revised for Version 6.5 (Release 2006a)
September 2006 Online only Revised for Version 6.6 (Release 2006b)
March 2007 Online only Revised for Version 6.7 (Release 2007a)
September 2007 Online only Revised for Version 6.8 (Release 2007b)
March 2008 Online only Revised for Version 6.9 (Release 2008a)
October 2008 Online only Revised for Version 6.10 (Release 2008b)
March 2009 Online only Revised for Version 6.11 (Release 2009a)
September 2009 Online only Revised for Version 6.12 (Release 2009b)
March 2010 Online only Revised for Version 6.13 (Release 2010a)
September 2010 Online only Revised for Version 6.14 (Release 2010b)
April 2011 Online only Revised for Version 6.15 (Release 2011a)
September 2011 Online only Revised for Version 6.16 (Release 2011b)
March 2012 Online only Revised for Version 6.17 (Release 2012a)
September 2012 Online only Revised for Version 6.18 (Release 2012b)
March 2013 Online only Revised for Version 6.19 (Release 2013a)
September 2013 Online only Revised for Version 6.20 (Release 2013b)
March 2014 Online only Revised for Version 6.21 (Release 2014a)
October 2014 Online only Revised for Version 6.22 (Release 2014b)
March 2015 Online only Revised for Version 7.0 (Release 2015a)
September 2015 Online only Revised for Version 7.1 (Release 2015b)
March 2016 Online only Revised for Version 7.2 (Release 2016a)
September 2016 Online only Revised for Version 7.3 (Release 2016b)
March 2017 Online only Revised for Version 7.4 (Release 2017a)
September 2017 Online only Revised for Version 7.5 (Release 2017b)
March 2018 Online only Revised for Version 8.0 (Release 2018a)
September 2018 Online only Revised for Version 8.1 (Release 2018b)
March 2019 Online only Revised for Version 8.2 (Release 2019a)
September 2019 Online only Revised for Version 8.3 (Release 2019b)
March 2020 Online only Revised for Version 8.4 (Release 2020a)
September 2020 Online only Revised for Version 8.5 (Release 2020b)
March 2021 Online only Revised for Version 8.6 (Release 2021a)
September 2021 Online only Revised for Version 8.7 (Release 2021b)

Functions
1

v

Contents

Functions

1

ac2poly
Convert autocorrelation sequence to prediction polynomial

Syntax
a = ac2poly(r)
[a,efinal] = ac2poly(r)

Description
a = ac2poly(r) finds the linear prediction FIR filter polynomial, a, corresponding to the
autocorrelation sequence r. a is the same length as r, and a(1) = 1. The polynomial represents the
coefficients of a prediction filter that outputs a signal with autocorrelation sequence approximately
equal to r.

[a,efinal] = ac2poly(r) returns the final prediction error, efinal, determined by running the
filter for length(r) steps.

Examples

Prediction Polynomial from Autocorrelation Sequence

Given an autocorrelation sequence, r, determine the equivalent linear prediction filter polynomial
and the final prediction error.

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];

[a,efinal] = ac2poly(r)

a = 1×6

 1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077

efinal = 0.1791

Tips
You can apply this function to real or complex data.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

See Also
ac2rc | poly2ac | rc2poly

1 Functions

1-2

Introduced before R2006a

 ac2poly

1-3

ac2rc
Convert autocorrelation sequence to reflection coefficients

Syntax
[k,r0] = ac2rc(r)

Description
[k,r0] = ac2rc(r) finds the reflection coefficients, k, corresponding to the autocorrelation
sequence r. r0 contains the zero-lag autocorrelation. If r is a matrix where the columns are separate
channels of autocorrelation sequences, r0 contains the zero-lag autocorrelation coefficient for each
channel. These reflection coefficients can be used to specify the lattice prediction filter that produces
a sequence with approximately the same autocorrelation sequence as the given sequence r.

Tips
You can apply this function to real or complex data.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

See Also
ac2poly | poly2rc | rc2ac

Introduced before R2006a

1 Functions

1-4

alignsignals
Align two signals by delaying earliest signal

Syntax
[Xa,Ya] = alignsignals(X,Y)
[Xa,Ya] = alignsignals(X,Y,maxlag)
[Xa,Ya] = alignsignals(X,Y,maxlag,'truncate')
[Xa,Ya,D] = alignsignals(___)

Description
[Xa,Ya] = alignsignals(X,Y) estimates the delay, D, between the two input signals, X and Y,
and returns the aligned signals, Xa and Ya.

• If Y is delayed with respect to X, then D is positive and X is delayed by D samples.
• If Y is advanced with respect to X, then D is negative and Y is delayed by –D samples.

Delays in X or Y can be introduced by prepending zeros.

[Xa,Ya] = alignsignals(X,Y,maxlag) uses maxlag as the maximum window size to find the
estimated delay, D, between the two input signals, X and Y. It returns the aligned signals, Xa and Ya.

[Xa,Ya] = alignsignals(X,Y,maxlag,'truncate') keeps the lengths of the aligned signals,
Xa and Ya, the same as those of the input signals, X and Y, respectively.

• If the estimated delay, D, is positive, then D zeros are prepended to X and the last D samples of X
are truncated.

• If the estimated delay, D, is negative, then –D zeros are prepended to Y and the last –D samples of
Y are truncated.

Notes X and Y are row or column vectors of length LX and LY, respectively.

• If D ≥ LX, then Xa consists of LX zeros. All samples of X are lost.
• If –D ≥ LY, then Ya consists of LY zeros. All samples of Y are lost.

To avoid assigning a specific value to maxlag when using the 'truncate' option, set maxlag to [].

[Xa,Ya,D] = alignsignals(___) returns the estimated delay, D. This syntax can include any of
the input arguments used in previous syntaxes.

Examples

Align Two Signals Where the First Signal Lags by Three Samples

Align signal Y with respect to X by delaying it three samples.

 alignsignals

1-5

Create two signals, X and Y. X is exactly the same as Y, except X has three leading zeros and one
additional following zero. Align the two signals.

X = [0 0 0 1 2 3 0 0];
Y = [1 2 3 0];

[Xa,Ya] = alignsignals(X,Y)

Xa = 1×8

 0 0 0 1 2 3 0 0

Ya = 1×7

 0 0 0 1 2 3 0

Align Two Signals Where the Second Signal Lags by Two Samples

Align signal X when Y is delayed with respect to X by two samples.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros. Align the two
signals.

X = [1 2 3];
Y = [0 0 1 2 3];
maxlag = 2;

[Xa,Ya,D] = alignsignals(X,Y,maxlag)

Xa = 1×5

 0 0 1 2 3

Ya = 1×5

 0 0 1 2 3

D = 2

Align Two Signals Where the Second Signal Is Noisy

Align signal Y with respect to X, despite the fact that Y is a noisy signal.

Create two signals, X and Y. Y is exactly the same as X with some noise added to it. Align the two
signals.

X = [0 0 1 2 3 0];
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];

[Xa,Ya,D] = alignsignals(X,Y)

1 Functions

1-6

Xa = 1×6

 0 0 1 2 3 0

Ya = 1×6

 0.0200 0.1200 1.0800 2.2100 2.9500 -0.0900

D = 0

You do not need to change the input signals to produce the output signals. The delay D is zero.

Align Two Signals Using the 'truncate' Option

Invoke the 'truncate' option when calling the alignsignals function.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros. Align the two
signals, applying the 'truncate' directive.

X = [1 2 3];
Y = [0 0 1 2 3];

[Xa,Ya,D] = alignsignals(X,Y,[],'truncate')

Xa = 1×3

 0 0 1

Ya = 1×5

 0 0 1 2 3

D = 2

Observe that the output signal Xa has a length of 3, the same length as input signal X.

In the case where using the 'truncate' option ends up truncating all the original data of X, a
warning is issued. To make alignsignals issue such a warning, run the following example.

Y = [0 0 0 0 1 2 3];

[Xa,Ya,D] = alignsignals(X,Y,[],'truncate')

Warning: All original data in the first input X has been truncated because the length of X is smaller than the estimated delay D: to avoid truncating this data do not use the 'truncate' option.

Xa = 1×3

 0 0 0

Ya = 1×7

 alignsignals

1-7

 0 0 0 0 1 2 3

D = 4

Align a Signal and a Periodic Repetition of It

Align signal Y with respect to X, despite the fact that Y is a periodic repetition of X. Return the
smallest possible delay.

Create two signals, X and Y. Y consists of two copies of the nonzero portion of X separated by zeros.
Align the two signals.

X = [0 1 2 3];
Y = [1 2 3 0 0 0 0 1 2 3 0 0];

[Xa,Ya,D] = alignsignals(X,Y)

Xa = 1×4

 0 1 2 3

Ya = 1×13

 0 1 2 3 0 0 0 0 1 2 3 0 0

D = -1

Input Arguments
X — First input signal
vector of numeric values

First input signal, specified as a numeric vector of length LX.
Example: [1 2 3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

Y — Second input signal
vector of numeric values

Second input signal, specified as a numeric vector of length LY.
Example: [0 0 1 2 3]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

maxlag — Maximum window size or lag
scalar integer | []

1 Functions

1-8

Maximum window size, or lag, specified as an integer-valued scalar. By default, maxlag is equal to
max(length(X),length(Y))-1. If maxlag is input as [], it is replaced by the default value. If
maxlag is negative, it is replaced by its absolute value. If maxlag is not integer-valued, or is
complex, Inf, or NaN, then alignsignals returns an error.
Example: 2
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
Xa — Aligned first signal
vector of numeric values

Aligned first signal, returned as a numeric vector that is aligned with the second output argument,
Ya. If input argument X is a row vector, then Xa is also a row vector. If input argument X is a column
vector, then Xa is also a column vector. If you specify the 'truncate' option and the estimated delay
D is positive, then Xa is equivalent to the input signal X with D zeros prepended to it and its last D
samples truncated.

Ya — Aligned second signal
vector of numeric values

Aligned second signal, returned as a numeric vector that is aligned with the first output argument,
Xa. If input argument Y is a row vector, then Ya is also a row vector. If input argument Y is a column
vector, then Ya is also a column vector. If you specify the 'truncate' option and the estimated delay
D is negative, then Ya is equivalent to the input signal Y with –D zeros prepended to it and its last –D
samples truncated.

D — Estimated delay between input signals
scalar integer

Estimated delay between input signals, returned as a scalar integer. This integer represents the
number of samples by which the two input signals, X and Y are offset.

• If Y is delayed with respect to X, then D is positive and X is delayed by D samples.
• If Y is advanced with respect to X, then D is negative and Y is delayed by –D samples.
• If X and Y are already aligned, then D is zero and neither X nor Y are delayed.

If you specify a value for the input argument maxlag, then D must be less than or equal to maxlag.

Algorithms
• You can find the theory on delay estimation in the specification of the finddelay function (see

“Algorithms” on page 1-775).
• The alignsignals function uses the estimated delay D to delay the earliest signal such that the

two signals have the same starting point.
• As specified for the finddelay function, the pair of signals need not be exact delayed copies of

each other. However, the signals can be successfully aligned only if there is sufficient correlation
between them. For more information on estimating covariance and correlation functions, see [1].

• If your signals have features such as pulses or transitions, you can align them more effectively
using measurement functions instead of correlation. For an example, see “Align Two Bilevel
Waveforms” on page 1-1882.

 alignsignals

1-9

References
[1] Orfanidis, Sophocles J. Optimum Signal Processing. An Introduction. 2nd Ed. Englewood Cliffs, NJ:

Prentice-Hall, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dtw | edr | finddelay | findsignal | xcorr

1 Functions

1-10

arburg
Autoregressive all-pole model parameters — Burg’s method

Syntax
a = arburg(x,p)
[a,e,rc] = arburg(x,p)

Description
a = arburg(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x.

[a,e,rc] = arburg(x,p) also returns the estimated variance, e, of the white noise input and the
reflection coefficients, rc.

Examples

Parameter Estimation Using Burg's Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use Burg's method to
estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = arburg(y,4)

arcoeffs = 1×5

 1.0000 -2.7743 3.8408 -2.6843 0.9360

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the Burg-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);
noisevar = zeros(1,nrealiz);

for k = 1:nrealiz
 y = filter(1,A,noisestdz(k) * randnoise(:,k));
 [arcoeffs,noisevar(k)] = arburg(y,4);
end

 arburg

1-11

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Repeat the procedure using the function's multichannel syntax.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = arburg(Y,4);

hold on
plot(noisestdz.^2,variances,'o')
hold off
legend('Single channel loop','Multichannel','Location','best')

1 Functions

1-12

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix.
Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.
Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of x.
Data Types: single | double

Output Arguments
a — Normalized autoregressive parameters
row vector | matrix

 arburg

1-13

Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(z),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

rc — Reflection coefficients
column vector | matrix

Reflection coefficients, returned as a column vector or matrix. If x is a matrix, then each column of rc
corresponds to a column of x. rc has p rows.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input.

The weights on the p past outputs minimize the mean squared prediction error of the autoregression.
If y(n) is the current value of the output and x(n) is a zero mean white noise input, the AR(p) model is:

y(n) + ∑
k = 1

p
a(k)y(n− k) = x(n) .

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients scaled by –1. The reflection
coefficients indicate the time dependence between y(n) and y(n – k) after subtracting the prediction
based on the intervening k – 1 time steps.

Algorithms
Burg's method estimates the reflection coefficients and uses the reflection coefficients to estimate the
AR parameters recursively. You can find the recursion and lattice filter relations describing the
update of the forward and backward prediction errors in [1].

References
[1] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:

Prentice Hall, 1988.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-14

See Also
arcov | armcov | aryule | levinson | lpc

Topics
“Parametric Modeling”

Introduced before R2006a

 arburg

1-15

arcov
Autoregressive all-pole model parameters — covariance method

Syntax
a = arcov(x,p)
[a,e] = arcov(x,p)

Description
a = arcov(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x, where x is assumed to be the output of an AR system driven by white
noise. This method minimizes the forward prediction error in the least-squares sense.

[a,e] = arcov(x,p) also returns the estimated variance, e, of the white noise input.

Examples

Parameter Estimation Using the Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the covariance method
to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = arcov(y,4)

arcoeffs = 1×5

 1.0000 -2.7746 3.8419 -2.6857 0.9367

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the covariance-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);
noisevar = zeros(1,nrealiz);

for k = 1:nrealiz
 y = filter(1,A,noisestdz(k) * randnoise(:,k));
 [arcoeffs,noisevar(k)] = arcov(y,4);
end

1 Functions

1-16

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Repeat the procedure using the function's multichannel syntax.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = arcov(Y,4);

hold on
plot(noisestdz.^2,variances,'o')
hold off
legend('Single channel loop','Multichannel','Location',"best")

 arcov

1-17

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix.
Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.
Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of x.
Data Types: single | double

Output Arguments
a — Normalized autoregressive parameters
row vector | matrix

1 Functions

1-18

Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(z),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input. The weights on the p past outputs minimize the mean squared prediction error of
the autoregression.

Let y(n) be a wide-sense stationary random process obtained by filtering white noise of variance e
with the system function A(z). If Py(ejω) is the power spectral density of y(n), then

Py(e jω) = e
A(e jω) 2 = e

1 + ∑
k = 1

p
a(k)e− jωk

2 .

Because the covariance method characterizes the input data using an all-pole model, the correct
choice of the model order, p, is important.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
arburg | armcov | aryule | lpc | pcov | prony

Introduced before R2006a

 arcov

1-19

armcov
Autoregressive all-pole model parameters — modified covariance method

Syntax
a = armcov(x,p)
[a,e] = armcov(x,p)

Description
a = armcov(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x. x is assumed to be the output of an AR system driven by white noise.
This method minimizes the forward and backward prediction errors in the least-squares sense

[a,e] = armcov(x,p) also returns the estimated variance, e, of the white noise input.

Examples

Parameter Estimation Using the Modified Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the modified
covariance method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = armcov(y,4)

arcoeffs = 1×5

 1.0000 -2.7741 3.8404 -2.6841 0.9360

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the modified-covariance-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);
noisevar = zeros(1,nrealiz);

for k = 1:nrealiz
 y = filter(1,A,noisestdz(k) * randnoise(:,k));
 [arcoeffs,noisevar(k)] = armcov(y,4);
end

1 Functions

1-20

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Repeat the procedure using the function's multichannel syntax.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = armcov(Y,4);

hold on
plot(noisestdz.^2,variances,'o')
hold off
legend('Single channel loop','Multichannel','Location',"best")

 armcov

1-21

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix.
Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.
Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of x.
Data Types: single | double

Output Arguments
a — Normalized autoregressive parameters
row vector | matrix

1 Functions

1-22

Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(z),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input. The weights on the p past outputs minimize the mean squared prediction error of
the autoregression.

Let y(n) be a wide-sense stationary random process obtained by filtering white noise of variance e
with the system function A(z). If Py(ejω) is the power spectral density of y(n), then

Py(e jω) = e
A(e jω) 2 = e

1 + ∑
k = 1

p
a(k)e− jωk

2 .

Because the modified covariance method characterizes the input data using an all-pole model, the
correct choice of the model order, p, is important.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
arburg | arcov | aryule | lpc | pmcov | prony

Introduced before R2006a

 armcov

1-23

aryule
Autoregressive all-pole model parameters — Yule-Walker method

Syntax
a = aryule(x,p)
[a,e,rc] = aryule(x,p)

Description
a = aryule(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x.

[a,e,rc] = aryule(x,p) also returns the estimated variance, e, of the white noise input and the
reflection coefficients, rc.

Examples

Parameter Estimation Using the Yule-Walker Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the Yule-Walker
method to estimate the coefficients.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = aryule(y,4)

arcoeffs = 1×5

 1.0000 -2.7262 3.7296 -2.5753 0.8927

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the Yule-Walker-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);
noisevar = zeros(1,nrealiz);

for k = 1:nrealiz
 y = filter(1,A,noisestdz(k) * randnoise(:,k));
 [arcoeffs,noisevar(k)] = aryule(y,4);
end

1 Functions

1-24

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Repeat the procedure using the function's multichannel syntax.

Y = filter(1,A,noisestdz.*randnoise);

[coeffs,variances] = aryule(Y,4);

hold on
plot(noisestdz.^2,variances,'o')
hold off
legend('Single channel loop','Multichannel','Location','best')

 aryule

1-25

Estimate Model order Using Decay of Reflection Coefficients

Use a vector of polynomial coefficients to generate an AR(2) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results.

rng default

y = filter(1,[1 -0.75 0.5],0.2*randn(1024,1));

Use the Yule-Walker method to fit an AR(10) model to the process. Output and plot the reflection
coefficients. Only the first two coefficients lie outside the 95% confidence bounds, indicating that an
AR(10) model significantly overestimates the time dependence in the data. See “AR Order Selection
with Partial Autocorrelation Sequence” for more details.

[ar,nvar,rc] = aryule(y,10);

stem(rc)
xlim([0 11])
conf95 = sqrt(2)*erfinv(0.95)/sqrt(1024);
[X,Y] = ndgrid(xlim,conf95*[-1 1]);
hold on
plot(X,Y,'--r')
hold off
title('Reflection Coefficients')

1 Functions

1-26

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix.
Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.
Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of x.
Data Types: single | double

Output Arguments
a — Normalized autoregressive parameters
row vector | matrix

 aryule

1-27

Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(z),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

rc — Reflection coefficients
column vector | matrix

Reflection coefficients, returned as a column vector or matrix. If x is a matrix, then each column of rc
corresponds to a column of x. rc has p rows.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input.

The weights on the p past outputs minimize the mean squared prediction error of the autoregression.
If y(n) is the current value of the output and x(n) is a zero-mean white noise input, the AR(p) model is

∑
k = 0

p
a(k)y(n− k) = x(n) .

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients scaled by –1.

The reflection coefficients indicate the time dependence between y(n) and y(n – k) after subtracting
the prediction based on the intervening k – 1 time steps.

Algorithms
aryule uses the Levinson-Durbin recursion on the biased estimate of the sample autocorrelation
sequence to compute the parameters.

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York: John Wiley &

Sons, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-28

See Also
arburg | arcov | armcov | levinson | lpc

Topics
“Parametric Modeling”

Introduced before R2006a

 aryule

1-29

bandpass
Bandpass-filter signals

Syntax
y = bandpass(x,wpass)
y = bandpass(x,fpass,fs)
y = bandpass(xt,fpass)

y = bandpass(___ ,Name,Value)

[y,d] = bandpass(___)

bandpass(___)

Description
y = bandpass(x,wpass) filters the input signal x using a bandpass filter with a passband
frequency range specified by the two-element vector wpass and expressed in normalized units of π
rad/sample. bandpass uses a minimum-order filter with a stopband attenuation of 60 dB and
compensates for the delay introduced by the filter. If x is a matrix, the function filters each column
independently.

y = bandpass(x,fpass,fs) specifies that x has been sampled at a rate of fs hertz. The two-
element vector fpass specifies the passband frequency range of the filter in hertz.

y = bandpass(xt,fpass) bandpass-filters the data in timetable xt using a filter with a passband
frequency range specified in hertz by the two-element vector fpass. The function independently
filters all variables in the timetable and all columns inside each variable.

y = bandpass(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the “Bandpass Filter
Steepness” on page 1-40, and the type of impulse response of the filter.

[y,d] = bandpass(___) also returns the digitalFilter object d used to filter the input.

bandpass(___) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Bandpass Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains three tones, one at 50 Hz, another
at 150 Hz, and a third at 250 Hz. The high-frequency and low-frequency tones both have twice the
amplitude of the intermediate tone. The signal is embedded in Gaussian white noise of variance
1/100.

fs = 1e3;
t = 0:1/fs:1;
x = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;

1 Functions

1-30

Bandpass-filter the signal to remove the low-frequency and high-frequency tones. Specify passband
frequencies of 100 Hz and 200 Hz. Display the original and filtered signals, and also their spectra.

bandpass(x,[100 200],fs)

Bandpass Filtering of Musical Signal

Implement a basic digital music synthesizer and use it to play a traditional song. Specify a sample
rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
 song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end

 bandpass

1-31

song = song/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

Bandpass-filter the signal to separate the middle register from the other two. Specify passband
frequencies of 230 Hz and 450 Hz. Plot the original and filtered signals in the time and frequency
domains.

pong = bandpass(song,[230 450],fs);

% To hear, type sound(pong,fs)

bandpass(song,[230 450],fs)

1 Functions

1-32

Plot the spectrogram of the middle register.

figure
pspectrum(pong,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

 bandpass

1-33

Bandpass Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response bandpass filter with a
passband width of 100 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;
x = randn(20000,1);

[y1,d1] = bandpass(x,[50 150],fs,'ImpulseResponse','iir','Steepness',0.5);
[y2,d2] = bandpass(x,[200 300],fs,'ImpulseResponse','iir','Steepness',0.8);
[y3,d3] = bandpass(x,[350 450],fs,'ImpulseResponse','iir','Steepness',0.95);

pspectrum([y1 y2 y3],fs)
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
 'Location','south')

1 Functions

1-34

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
 'Location','south')
ylim([-100 10])

 bandpass

1-35

Make the filters asymmetric by specifying different values of steepness at the lower and higher
passband frequencies.

[y1,d1] = bandpass(x,[50 150],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y2,d2] = bandpass(x,[200 300],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y3,d3] = bandpass(x,[350 450],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);

pspectrum([y1 y2 y3],fs)

1 Functions

1-36

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
ylim([-100 10])

 bandpass

1-37

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

wpass — Normalized passband frequency range
two-element vector with elements in (0, 1)

Normalized passband frequency range, specified as a two-element vector with elements in the
interval (0, 1).

fpass — Passband frequency range
two-element vector with elements in (0, fs/2)

Passband frequency range, specified as a two-element vector with elements in the interval (0, fs/2).

1 Functions

1-38

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1),randn(5,2)) contains a single-channel
random signal and a two-channel random signal, sampled at 1 Hz for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ImpulseResponse','iir','StopbandAttenuation',30 filters the input using a
minimum-order IIR filter that attenuates by 30 dB the frequencies smaller than fpass(1) and the
frequencies larger than fpass(2).

ImpulseResponse — Type of impulse response
'auto' (default) | 'fir' | 'iir'

Type of impulse response of the filter, specified as the comma-separated pair consisting of
'ImpulseResponse' and 'fir', 'iir', or 'auto'.

• 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

• 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

• 'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

• Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

• If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

• If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.

 bandpass

1-39

• Filter the signal and compensate for the delay.

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1) | two-element vector with elements in the interval [0.5,
1)

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar or two-element vector with elements in the interval [0.5, 1). As the steepness increases, the
filter response approaches the ideal bandpass response, but the resulting filter length and the
computational cost of the filtering operation also increase. See “Bandpass Filter Steepness” on page
1-40 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar in dB.

Output Arguments
y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Bandpass filter
digitalFilter object

Bandpass filter used in the filtering operation, returned as a digitalFilter object.

• Use filter(d,x) to filter a signal x using d.
• Use FVTool to visualize the filter response.
• Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About
Bandpass Filter Steepness

The 'Steepness' argument controls the width of a filter's transition regions. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

• The Nyquist frequency, fNyquist, is the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fNyquist is 1 (×π rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

• The lower and upper stopband frequencies of the filter, fstop
lower and fstop

upper, are the frequencies
below which and above which the attenuation is equal to or greater than the value specified using
'StopbandAttenuation'.

• The lower transition width of the filter, Wlower, is fpasslower – fstop
lower, where the lower passband

frequency fpasslower is the first element of the specified fpass.

1 Functions

1-40

• The upper transition width of the filter, Wupper, is fstop
upper – fpassupper, where the upper passband

frequencyfpassupper is the second element of fpass.
• Most nonideal filters also attenuate the input signal across the passband. The maximum value of

this frequency-dependent attenuation is called the passband ripple. Every filter used by bandpass
has a passband ripple of 0.1 dB.

To control the width of the transition bands, you can specify 'Steepness' as either a two-element
vector, [slower,supper], or a scalar. When you specify 'Steepness' as a vector, the function:

• Computes the lower transition width as
Wlower = (1 – slower) × fpasslower.

• When the first element of 'Steepness' is equal to 0.5, the transition width is 50% of
fpasslower.

• As the first element of 'Steepness' approaches 1, the transition width becomes progressively
narrower until it reaches a minimum value of 1% of fpasslower.

• Computes the upper transition width as
Wupper = (1 – supper) × (fNyquist – fpassupper).

• When the second element of 'Steepness' is equal to 0.5, the transition width is 50% of
(fNyquist – fpassupper).

• As the second element of 'Steepness' approaches 1, the transition width becomes
progressively narrower until it reaches a minimum value of 1% of (fNyquist – fpassupper).

 bandpass

1-41

When you specify 'Steepness' as a scalar, the function designs a filter with equal lower and upper
transition widths. The default value of 'Steepness' is 0.85.

See Also
Apps
Signal Analyzer

Functions
bandstop | designfilt | filter | fir1 | highpass | lowpass

Introduced in R2018a

1 Functions

1-42

bandpower
Band power

Syntax
p = bandpower(x)
p = bandpower(x,fs,freqrange)

p = bandpower(pxx,f,'psd')
p = bandpower(pxx,f,freqrange,'psd')

Description
p = bandpower(x) returns the average power in the input signal, x. If x is a matrix, then
bandpower computes the average power in each column independently.

p = bandpower(x,fs,freqrange) returns the average power in the frequency range,
freqrange, specified as a two-element vector. You must input the sample rate, fs, to return the
power in a specified frequency range. bandpower uses a modified periodogram to determine the
average power in freqrange.

p = bandpower(pxx,f,'psd') returns the average power computed by integrating the power
spectral density (PSD) estimate, pxx. The integral is approximated by the rectangle method. The
input, f, is a vector of frequencies corresponding to the PSD estimates in pxx. The 'psd' option
indicates that the input is a PSD estimate and not time series data.

p = bandpower(pxx,f,freqrange,'psd') returns the average power contained in the frequency
interval, freqrange. If the frequencies in freqrange do not match values in f, the closest values
are used. The average power is computed by integrating the power spectral density (PSD) estimate,
pxx. The integral is approximated by the rectangle method. The 'psd' option indicates the input is a
PSD estimate and not time series data.

Examples

Comparison with Euclidean Norm

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Determine the average power and compare it against the ℓ2 norm.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));

p = bandpower(x)

p = 1.5264

l2norm = norm(x,2)^2/numel(x)

l2norm = 1.5264

 bandpower

1-43

Percentage of Total Power in Frequency Interval

Determine the percentage of the total power in a specified frequency interval.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Determine the percentage of the total power in the frequency interval
between 50 Hz and 150 Hz. Reset the random number generator for reproducible results.

rng('default')

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));

pband = bandpower(x,1000,[50 150]);
ptot = bandpower(x,1000,[0 500]);
per_power = 100*(pband/ptot)

per_power = 51.9591

Periodogram Input

Determine the average power by first computing a PSD estimate using the periodogram. Input the
PSD estimate to bandpower.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Obtain the periodogram and use the 'psd' flag to compute the average
power using the PSD estimate. Compare the result against the average power computed in the time
domain.

t = 0:0.001:1-0.001;
Fs = 1000;
x = cos(2*pi*100*t)+randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
p = bandpower(Pxx,F,'psd')

p = 1.5264

avpow = norm(x,2)^2/numel(x)

avpow = 1.5264

Percentage of Power in Frequency Band (Periodogram)

Determine the percentage of the total power in a specified frequency interval using the periodogram
as the input.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Obtain the periodogram and corresponding frequency vector. Using the
PSD estimate, determine the percentage of the total power in the frequency interval between 50 Hz
and 150 Hz.

1 Functions

1-44

Fs = 1000;
t = 0:1/Fs:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
pBand = bandpower(Pxx,F,[50 150],'psd');
pTot = bandpower(Pxx,F,'psd');
per_power = 100*(pBand/pTot)

per_power = 49.1798

Average Power of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0,1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos(2*pi*f*t)'+randn(length(t),3);

Determine the average power of the signal and compare it to the ℓ2 norm.

p = bandpower(x)

p = 1×3

 1.5264 1.5382 1.4717

l2norm = dot(x,x)/length(x)

l2norm = 1×3

 1.5264 1.5382 1.4717

Input Arguments
x — Time series input
vector | matrix

Input time series data, specified as a row or column vector or as a matrix. If x is a matrix, then its
columns are treated as independent channels.
Example: cos(pi/4*(0:159))'+randn(160,1) is a single-channel column-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel noisy sinusoid.
Data Types: double | single

 bandpower

1-45

Complex Number Support: Yes

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency for the input time series data, specified as a positive scalar.
Data Types: double | single

freqrange — Frequency range for band power computation
two-element real-valued row or column vector

Frequency range for the band power computation, specified as a two-element real-valued row or
column vector. If the input signal, x, contains N samples, freqrange must be within the following
intervals:

• [0, fs/2] if x is real-valued and N is even
• [0, (N – 1)fs/(2N)] if x is real-valued and N is odd
• [–(N – 2)fs/(2N), fs/2] if x is complex-valued and N is even
• [–(N – 1)fs/(2N), (N – 1)fs/(2N)] if x is complex-valued and N is odd

Data Types: double | single

pxx — PSD estimates
column vector | matrix

One- or two-sided PSD estimates, specified as a real-valued column vector or matrix with nonnegative
elements.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: double | single

f — Frequency vector for PSD estimates
column vector with real-valued elements

Frequency vector, specified as a column vector. The frequency vector, f, contains the frequencies
corresponding to the PSD estimates in pxx.
Data Types: double | single

Output Arguments
p — Average band power
nonnegative scalar

Average band power, returned as a nonnegative scalar.
Data Types: double | single

1 Functions

1-46

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York: John Wiley &

Sons, 1996.

[2] Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice
Hall, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Input argument 'psd', when specified, must be a compile time constant.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
periodogram | sfdr

Introduced in R2013a

 bandpower

1-47

bandstop
Bandstop-filter signals

Syntax
y = bandstop(x,wpass)
y = bandstop(x,fpass,fs)
y = bandstop(xt,fpass)

y = bandstop(___ ,Name,Value)

[y,d] = bandstop(___)

bandstop(___)

Description
y = bandstop(x,wpass) filters the input signal x using a bandstop filter with a stopband
frequency range specified by the two-element vector wpass and expressed in normalized units of π
rad/sample. bandstop uses a minimum-order filter with a stopband attenuation of 60 dB and
compensates for the delay introduced by the filter. If x is a matrix, the function filters each column
independently.

y = bandstop(x,fpass,fs) specifies that x has been sampled at a rate of fs hertz. The two-
element vector fpass specifies the stopband frequency range of the filter in hertz.

y = bandstop(xt,fpass) bandstop-filters the data in timetable xt using a filter with a stopband
frequency range specified in hertz by the two-element vector fpass. The function independently
filters all variables in the timetable and all columns inside each variable.

y = bandstop(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the “Bandstop Filter
Steepness” on page 1-58, and the type of impulse response of the filter.

[y,d] = bandstop(___) also returns the digitalFilter object d used to filter the input.

bandstop(___) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Bandstop Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains three tones, one at 50 Hz, another
at 150 Hz, and a third at 250 Hz. The high-frequency and low-frequency tones both have twice the
amplitude of the intermediate tone. The signal is embedded in Gaussian white noise of variance
1/100.

fs = 1e3;
t = 0:1/fs:1;
x = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;

1 Functions

1-48

Bandstop-filter the signal to remove the medium-frequency tone. Specify passband frequencies of 100
Hz and 200 Hz. Display the original and filtered signals, and also their spectra.

bandstop(x,[100 200],fs)

Bandstop Filtering of Musical Signal

Implement a basic digital music synthesizer and use it to play a traditional song. Specify a sample
rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
 song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end

 bandstop

1-49

song = song/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

Bandstop-filter the signal to separate the middle register from the other two. Specify passband
frequencies of 230 Hz and 450 Hz. Plot the original and filtered signals in the time and frequency
domains.

bong = bandstop(song,[230 450],fs);

% To hear, type sound(bong,fs)

bandstop(song,[230 450],fs)

1 Functions

1-50

Plot the spectrogram of the song without the middle register.

figure
pspectrum(bong,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

 bandstop

1-51

Bandstop Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response bandstop filter with a
stopband width of 100 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;
x = randn(20000,1);

[y1,d1] = bandstop(x,[50 150],fs,'ImpulseResponse','iir','Steepness',0.5);
[y2,d2] = bandstop(x,[200 300],fs,'ImpulseResponse','iir','Steepness',0.8);
[y3,d3] = bandstop(x,[350 450],fs,'ImpulseResponse','iir','Steepness',0.95);

pspectrum([y1 y2 y3],fs)
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
 'Location','north')

1 Functions

1-52

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95', ...
 'Location','north')
ylim([-120 20])

 bandstop

1-53

Make the filters asymmetric by specifying different values of steepness at the lower and higher
passband frequencies.

[y1,d1] = bandstop(x,[50 150],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y2,d2] = bandstop(x,[200 300],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);
[y3,d3] = bandstop(x,[350 450],fs,'ImpulseResponse','iir','Steepness',[0.5 0.8]);

pspectrum([y1 y2 y3],fs)

1 Functions

1-54

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
ylim([-120 20])

 bandstop

1-55

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

wpass — Normalized stopband frequency range
two-element vector with elements in (0, 1)

Normalized stopband frequency range, specified as a two-element vector with elements in the
interval (0, 1).

fpass — Stopband frequency range
two-element vector with elements in (0, fs/2)

Stopband frequency range, specified as a two-element vector with elements in the interval (0, fs/2).

1 Functions

1-56

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1),randn(5,2)) contains a single-channel
random signal and a two-channel random signal, sampled at 1 Hz for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ImpulseResponse','iir','StopbandAttenuation',30 filters the input using a
minimum-order IIR filter that attenuates by 30 dB the frequencies from fpass(1) to fpass(2).

ImpulseResponse — Type of impulse response
'auto' (default) | 'fir' | 'iir'

Type of impulse response of the filter, specified as the comma-separated pair consisting of
'ImpulseResponse' and 'fir', 'iir', or 'auto'.

• 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

• 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

• 'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

• Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

• If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

• If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.

 bandstop

1-57

• Filter the signal and compensate for the delay.

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1) | two-element vector with elements in the interval [0.5,
1)

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar or two-element vector with elements in the interval [0.5, 1). As the steepness increases, the
filter response approaches the ideal bandstop response, but the resulting filter length and the
computational cost of the filtering operation also increase. See “Bandstop Filter Steepness” on page
1-58 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar in dB.

Output Arguments
y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Bandstop filter
digitalFilter object

Bandstop filter used in the filtering operation, returned as a digitalFilter object.

• Use filter(d,x) to filter a signal x using d.
• Use FVTool to visualize the filter response.
• Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About
Bandstop Filter Steepness

The 'Steepness' argument controls the width of a filter's transition regions. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

• The Nyquist frequency, fNyquist, is the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fNyquist is 1 (×π rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

• The lower and upper stopband frequencies of the filter, fstop
lower and fstop

upper, are the frequencies
between which the attenuation is equal to or greater than the value specified using
'StopbandAttenuation'.

The center of the stopband region is fcenter = (fstop
lower + fstop

upper)/2.

1 Functions

1-58

• The lower transition width of the filter, Wlower, is fstop
lower – fpasslower, where the lower bandpass

frequency fpasslower is the first element of the specified fpass.
• The upper transition width of the filter, Wupper, is fpassupper – fstop

upper, where the upper bandpass
frequency fpassupper is the second element of fpass.

• Most nonideal filters also attenuate the input signal across the passband. The maximum value of
this frequency-dependent attenuation is called the passband ripple. Every filter used by bandstop
has a passband ripple of 0.1 dB.

To control the width of the transition bands, you can specify 'Steepness' as either a two-element
vector, [slower,supper], or a scalar. When you specify 'Steepness' as a vector, the function:

• Computes the lower transition width as
Wlower = (1 – slower) × (fcenter – fpasslower).

• When the first element of 'Steepness' is equal to 0.5, the transition width is 50% of (fcenter –
fpasslower).

• As the first element of 'Steepness' approaches 1, the transition width becomes progressively
narrower until it reaches a minimum value of 1% of (fcenter – fpasslower).

• Computes the upper transition width as
Wupper = (1 – supper) × (fpassupper – fcenter).

• When the second element of 'Steepness' is equal to 0.5, the transition width is 50% of
(fpassupper – fcenter).

• As the second element of 'Steepness' approaches 1, the transition width becomes
progressively narrower until it reaches a minimum value of 1% of (fpassupper – fcenter).

 bandstop

1-59

When you specify 'Steepness' as a scalar, the function designs a filter with equal lower and upper
transition widths. The default value of 'Steepness' is 0.85.

See Also
Apps
Signal Analyzer

Functions
bandpass | designfilt | filter | fir1 | highpass | lowpass

Introduced in R2018a

1 Functions

1-60

barthannwin
Modified Bartlett-Hann window

Syntax
w = barthannwin(L)

Description
w = barthannwin(L) returns an L-point modified Bartlett-Hann window in the column vector w.
Like Bartlett, Hann, and Hamming windows, this window has a mainlobe at the origin and
asymptotically decaying sidelobes on both sides. It is a linear combination of weighted Bartlett and
Hann windows with near sidelobes lower than both Bartlett and Hann and with far sidelobes lower
than both Bartlett and Hamming windows. The mainlobe width of the modified Bartlett-Hann window
is not increased relative to either Bartlett or Hann window mainlobes.

Note The Hann window is also called the Hanning window.

Examples

Bartlett-Hann Window

Create a 64-point Bartlett-Hann window. Display the result using wvtool.

L = 64;
wvtool(barthannwin(L))

 barthannwin

1-61

Algorithms
The equation for computing the coefficients of a Modified Bartlett-Hanning window is

w n = 0.62 − 0.48 n
N − 0.5 + 0.38cos 2π n

N − 0.5

where 0 ≤ n ≤ N and the window length is L = N + 1.

References

[1] Ha, Y. H., and J. A. Pearce. “A New Window and Comparison to Standard Windows.” IEEE®

Transactions on Acoustics, Speech, and Signal Processing. Vol. 37, Number 2, 1999, pp. 298–
301.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, p. 468.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-62

See Also
Apps
Window Designer

Functions
bartlett | blackmanharris | bohmanwin | nuttallwin | parzenwin | rectwin | triang |
WVTool

Introduced before R2006a

 barthannwin

1-63

bartlett
Bartlett window

Syntax
w = bartlett(L)

Description
w = bartlett(L) returns an L-point symmetric Bartlett window.

Examples

Bartlett Window

Create a 64-point Bartlett window. Display the result using wvtool.

L = 64;
bw = bartlett(L);
wvtool(bw)

1 Functions

1-64

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

Output Arguments
w — Bartlett window
column vector

Bartlett window, returned as a column vector.

Algorithms
The following equation generates the coefficients of a Bartlett window:

w n =

2n
N , 0 ≤ n ≤ N

2 ,

2 − 2n
N , N

2 ≤ n ≤ N .

The window length L = N + 1.

The Bartlett window is very similar to a triangular window as returned by the triang function.
However, the Bartlett window always has zeros at the first and last samples, while the triangular
window is nonzero at those points. For odd values of L, the center L-2 points of bartlett(L) are
equivalent to triang(L-2).

Note If you specify a one-point window (L = 1), the value 1 is returned.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999, pp.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

 bartlett

1-65

Functions
barthannwin | blackmanharris | bohmanwin | nuttallwin | parzenwin | rectwin | triang |
WVTool

Introduced before R2006a

1 Functions

1-66

besselap
Bessel analog lowpass filter prototype

Syntax
[z,p,k] = besselap(n)

Description
[z,p,k] = besselap(n) returns the poles and gain of an order-n Bessel analog lowpass filter
prototype. n must be less than or equal to 25. The function returns the poles in the length n column
vector p and the gain in scalar k. z is an empty matrix because there are no zeros. The transfer
function is

H(s) = k
s− p(1) s− p(2) ⋯ s− p(n)

besselap normalizes the poles and gain so that at low frequency and high frequency the Bessel
prototype is asymptotically equivalent to the Butterworth prototype of the same order [1]. The
magnitude of the filter is less than 1/ 2 at the unity cutoff frequency Ωc = 1.

Analog Bessel filters are characterized by a group delay that is maximally flat at zero frequency and
almost constant throughout the passband. The group delay at zero frequency is

2n !
2nn!

1/n

Examples

Frequency Response of an Analog Bessel Filter

Design a 6th-order Bessel analog lowpass filter. Display its magnitude and phase responses.

[z,p,k] = besselap(6); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs(num,den) % Frequency response of analog filter

 besselap

1-67

Algorithms
besselap finds the filter roots from a lookup table constructed using Symbolic Math Toolbox™
software.

References

[1] Rabiner, L. R., and B. Gold. Theory and Application of Digital Signal Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1975, pp. 228–230.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Filter order must be a constant. Expressions or variables are allowed if their values do not change.

See Also
besself | buttap | cheb1ap | cheb2ap | ellipap

1 Functions

1-68

Introduced before R2006a

 besselap

1-69

besself
Bessel analog filter design

Syntax
[b,a] = besself(n,Wo)
[b,a] = besself(n,Wo,ftype)

[z,p,k] = besself(___)
[A,B,C,D] = besself(___)

Description
[b,a] = besself(n,Wo) returns the transfer function coefficients of an nth-order lowpass analog
Bessel filter, where Wo is the angular frequency up to which the filter's group delay is approximately
constant. Larger values of n produce a group delay that better approximates a constant up to Wo. The
besself function does not support the design of digital Bessel filters.

[b,a] = besself(n,Wo,ftype) designs a lowpass, highpass, bandpass, or bandstop analog
Bessel filter, depending on the value of ftype and the number of elements of Wo. The resulting
bandpass and bandstop designs are of order 2n.

[z,p,k] = besself(___) designs a lowpass, highpass, bandpass, or bandstop analog Bessel filter
and returns its zeros, poles, and gain. This syntax can include any of the input arguments in previous
syntaxes.

[A,B,C,D] = besself(___) designs a lowpass, highpass, bandpass, or bandstop analog Bessel
filter and returns the matrices that specify its state-space representation.

Examples

Frequency Response of Lowpass Bessel Filter

Design a fifth-order analog lowpass Bessel filter with approximately constant group delay up to 104

rad/second. Plot the magnitude and phase responses of the filter using freqs.

[b,a] = besself(5,10000);
freqs(b,a)

1 Functions

1-70

Compute the group delay response of the filter as the derivative of the unwrapped phase response.
Plot the group delay to verify that it is approximately constant up to the cutoff frequency.

[h,w] = freqs(b,a,1000);
grpdel = diff(unwrap(angle(h)))./diff(w);

clf
semilogx(w(2:end),grpdel)
xlabel('Frequency (rad/s)')
ylabel('Group delay (s)')

 besself

1-71

Bandpass Bessel Filter

Design a 12th-order bandpass Bessel filter with the passband ranging from 300 rad/s to 500 rad/s.
Compute the frequency response of the filter.

[b,a] = besself(6,[300 500],'bandpass');

[h,w] = freqs(b,a);

Plot the magnitude and phase responses of the filter. Unwrap the phase response to avoid 180∘ and
360∘ jumps and convert it from radians to degrees. As expected, the phase response is close to linear
over the passband.

subplot(2,1,1)
plot(w,20*log10(abs(h)))
ylabel('Magnitude')
subplot(2,1,2)
plot(w,180*unwrap(angle(h))/pi)
ylabel('Phase (degrees)')
xlabel('Frequency (rad/s)')

1 Functions

1-72

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Wo — Cutoff frequency
scalar | two-element vector

Cutoff frequency, specified as a scalar or a two-element vector. A cutoff frequency is an upper or
lower bound of the frequency range in which the filter's group delay is approximately constant. Cutoff
frequencies must be expressed in radians per second and can take on any positive value.

• If Wo is scalar, then besself designs a lowpass or highpass filter with cutoff frequency Wo.
• If Wo is a two-element vector [w1 w2], where w1 < w2, then besself designs a bandpass or

bandstop filter with lower cutoff frequency w1 and higher cutoff frequency w2.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

 besself

1-73

Filter type, specified as:

• 'low' — a lowpass filter with cutoff frequency Wo. 'low' is the default for scalar Wo.
• 'high' — a highpass filter with cutoff frequency Wo.
• 'bandpass' — a bandpass filter of order 2n if Wo is a two-element vector. 'bandpass' is the

default when Wo has two elements.
• 'stop' — a bandstop filter of order 2n if Wo is a two-element vector.

Output Arguments
b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters. The transfer function is expressed in
terms of b and a as

H(s) = B(s)
A(s) = b(1) sn + b(2) sn− 1 +⋯+ b(n+1)

a(1) sn + a(2) sn− 1 +⋯+ a(n+1)
.

Data Types: double

z, p, k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar. The transfer function is expressed in terms of z, p, and k as

H(s) = k (s− z(1)) (s− z(2))⋯(s− z(n))
(s− p(1)) (s− p(2))⋯(s− p(n)) .

Data Types: double

A, B, C, D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then A is m × m, B is m × 1, C is 1 × m, and D
is 1 × 1.

The state-space matrices relate the state vector x, the input u, and the output y through

ẋ = A x + B u
y = C x + D u .

Data Types: double

Algorithms
besself designs analog Bessel filters, which are characterized by an almost constant group delay
across the entire passband, thus preserving the wave shape of filtered signals in the passband.

1 Functions

1-74

Lowpass Bessel filters have a monotonically decreasing magnitude response, as do lowpass
Butterworth filters. Compared to the Butterworth, Chebyshev, and elliptic filters, the Bessel filter has
the slowest rolloff and requires the highest order to meet an attenuation specification.

For high-order filters, the state-space form is the most numerically accurate, followed by the zero-
pole-gain form. The transfer function coefficient form is the least accurate; numerical problems can
arise for filter orders as low as 15.

besself uses a four-step algorithm:

1 Find lowpass analog prototype poles, zeros, and gain using the besselap function.
2 Convert the poles, zeros, and gain into state-space form.
3 If required, use a state-space transformation to convert the lowpass filter into a bandpass,

highpass, or bandstop filter with the desired frequency constraints.
4 Convert the state-space filter back to transfer function or zero-pole-gain form, as required.

References
[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,

1987.

See Also
besselap | butter | cheby1 | cheby2 | ellip

Introduced before R2006a

 besself

1-75

bilinear
Bilinear transformation method for analog-to-digital filter conversion

Syntax
[zd,pd,kd] = bilinear(z,p,k,fs)
[numd,dend] = bilinear(num,den,fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs)
[___] = bilinear(___ ,fp)

Description
[zd,pd,kd] = bilinear(z,p,k,fs) converts the s-domain transfer function in pole-zero form
specified by z, p, k and sample rate fs to a discrete equivalent.

[numd,dend] = bilinear(num,den,fs) converts the s-domain transfer function specified by
numerator num and denominator den to a discrete equivalent.

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs) converts the continuous-time state-space system in
matrices A, B, C, and D to a discrete-time system.

[___] = bilinear(___ ,fp)uses parameter fp as "match" frequency to specify prewarping.

Examples

Bandpass IIR Filter Design Using Chebyshev Type I Analog Filter

Design the prototype for a 10th-order Chebyshev type I bandpass filter with 3 dB of ripple in the
passband. Convert it to state-space form.

[z,p,k] = cheb1ap(10,3);
[A,B,C,D] = zp2ss(z,p,k);

Create an analog filter with sample rate fs = 2 kHz, prewarped band edges u1 and u2 in rad/s,
bandwidth Bw = u2− u1 and center frequency Wo = u1u2 for use with lp2bp. Specify the passband
edge frequencies as 100 Hz and 500 Hz.

Fs = 2e3;
u1 = 2*Fs*tan(100*(2*pi/Fs)/2);
u2 = 2*Fs*tan(500*(2*pi/Fs)/2);
Bw = u2 - u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);
[b,a] = ss2tf(At,Bt,Ct,Dt);

Calculate the frequency response of the analog filter using freqs. Plot the magnitude response and
the prewarped frequency band edges.

[h,w] = freqs(b,a);
plot(w,mag2db(abs(h)))

1 Functions

1-76

hold on
ylim([-165 5])
[U1,U2] = meshgrid([u1 u2],ylim);
plot(U1,U2)
legend('Magnitude response','Lower Passband Edge','Upper Passband Edge')
hold off
xlabel('Angular Frequency (rad/s)')
ylabel('Magnitude (dB)')
grid

Use bilinear to create a digital bandpass filter with sample rate fs and lower band edge 100 Hz.
Convert the digital filter from state-space form to transfer function form using ss2tf.

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,Fs);

[bz,az] = ss2tf(Ad,Bd,Cd,Dd);

Use fvtool to plot the magnitude response of the digital filter.

fvtool(bz,az,'Fs',Fs)

 bilinear

1-77

Discrete-Time Representation of an Elliptic Filter

Design a 6th-order elliptic analog lowpass filter with 3 dB of ripple in the passband and a stopband 90
dB down. Set cutoff frequency fc = 20 Hz and sample rate fs = 200 Hz.

clear
Fc = 20;
Fs = 200;
[z,p,k] = ellip(6,3,90,2*pi*Fc,'s');
[num,den] = zp2tf(z,p,k);

Calculate the magnitude response of the analog elliptic filter. Visualize the analog filter.

[h,w] = freqs(num,den);
plot(w/(2*pi),mag2db(abs(h)))
hold on
xlim([0 50])
[l1,l2] = meshgrid(Fc,[-120 0]);
plot(l1,l2)
grid
legend('Magnitude response','Passband Edge')
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')

1 Functions

1-78

Use bilinear to transform it to a discrete-time IIR filter. Set the match frequency as fp = 20 Hz.

[numd,dend] = bilinear(num,den,Fs,20);

Visualize the filter using fvtool.

fvtool(numd,dend,'Fs',Fs)

 bilinear

1-79

Input Arguments
z — Zeros
column vector

Zeros of the s-domain transfer function, specified as a column vector.

p — Poles
column vector

Poles of the s-domain transfer function, specified as a column vector.

k — Gain
scalar

Gain of the s-domain transfer function, specified as a scalar.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar.

num — Numerator coefficients
row vector

1 Functions

1-80

Numerator coefficients of the analog transfer function, specified as a row vector.

den — Denominator coefficients
row vector

Denominator coefficients of the analog transfer function, specified as a row vector.

A — State matrix
matrix

State matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs and is
described by n state variables, then A is n-by-n.
Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs
and is described by n state variables, then B is n-by-p.
Data Types: single | double

C — State-to-output matrix
matrix

State-to-output matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs
and is described by n state variables, then C is q-by-n.
Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs
and is described by n state variables, then D is q-by-p.
Data Types: single | double

fp — match frequency
positive scalar

Match frequency, specified as a positive scalar.

Output Arguments
zd — Zeros
column vector

Zeros of the z-domain transfer function, specified as a column vector.

pd — Poles
column vector

Poles of the z-domain transfer function, specified as a column vector.

 bilinear

1-81

kd — Gain
scalar

Gain of the z-domain transfer function, specified as a scalar.

numd — Numerator coefficients
row vector

Numerator coefficients of the digital transfer function, specified as a row vector.

dend — Denominator coefficients
row vector

Denominator coefficients of the digital transfer function, specified as a row vector.

Ad — State matrix
matrix

State matrix in the z-domain, returned as a matrix. If the system is described by n state variables,
then Ad is n-by-n.
Data Types: single | double

Bd — Input-to-state matrix
matrix

Input-to-state matrix in the z-domain, returned as a matrix. If the system is described by n state
variables, then Bd is n-by-1.
Data Types: single | double

Cd — State-to-output matrix
matrix

State-to-output matrix in the z-domain, returned as a matrix. If the system has q outputs and is
described by n state variables, then Cd is q-by-n.
Data Types: single | double

Dd — Feedthrough matrix
matrix

Feedthrough matrix in the z-domain, returned as a matrix. If the system has q outputs, then Dd is q-
by-1.
Data Types: single | double

Diagnostics
bilinear requires that the numerator order be no greater than the denominator order. If this is not
the case, bilinear displays

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function linear system formats,
the first two input parameters must be vectors with the same orientation in these cases. If this is not
the case, bilinear displays

1 Functions

1-82

First two arguments must have the same orientation.

Algorithms
The bilinear transformation is a mathematical mapping of variables. In digital filtering, it is a
standard method of mapping the s or analog plane into the z or digital plane. It transforms analog
filters, designed using classical filter design techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

H(z) = H(s) s = 2fs
z − 1
z + 1

.

This transformation maps the jΩ axis (from Ω = –∞ to +∞) repeatedly around the unit circle (ejw, from
ω = –π to π) by

ω = 2tan−1 Ω
2fs

.

bilinear can accept an optional parameter Fp that specifies prewarping. fp, in hertz, indicates a
“match” frequency, that is, a frequency for which the frequency responses before and after mapping
match exactly. In prewarped mode, the bilinear transformation maps the s-plane into the z-plane with

H(z) = H(s) s =
2πfp

tan π
fp
fs

z − 1
z + 1

.

With the prewarping option, bilinear maps the jΩ axis (from Ω = –∞ to +∞) repeatedly around the
unit circle (ejω, from ω = –π to π) by

ω = 2tan−1
Ωtan π

fp
fs

2πfp
.

In prewarped mode, bilinear matches the frequency 2πfp (in radians per second) in the s-plane to
the normalized frequency 2πfp/fs (in radians per second) in the z-plane.

The bilinear function works with three different linear system representations: zero-pole-gain,
transfer function, and state-space form.

bilinear uses one of two algorithms depending on the format of the input linear system you supply.
One algorithm works on the zero-pole-gain format and the other on the state-space format. For
transfer function representations, bilinear converts to state-space form, performs the
transformation, and converts the resulting state-space system back to transfer function form.

Zero-Pole-Gain Algorithm

For a system in zero-pole-gain form, bilinear performs four steps:

1 If fp is present, it prewarps:

fp = 2*pi*fp;
fs = fp/tan(fp/fs/2)

otherwise, fs = 2*fs.

 bilinear

1-83

2 It strips any zeros at ±∞ using

z = z(finite(z));
3 It transforms the zeros, poles, and gain using

pd = (1+p/fs)./(1-p/fs); % Do bilinear transformation
zd = (1+z/fs)./(1-z/fs);
kd = real(k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator and denominator
order.

State-Space Algorithm

An analog system in state space form is given by

ẋ = Ax + Bu
y = Cx + Du

. This system is converted to the discrete form using state-space equations as follows:

x[n + 1] = Adx[n] + Bdu[n],
y[n] = Cdx[n] + Ddu[n] .

To convert an analog system in state-space form, bilinear performs two steps:

1 If fp is present, let

λ =
πfp

tan(πfp/ fs)
.

If fp is not present, let λ=fs.
2 Compute Ad, Bd, Cd, and Dd in terms of A, B, C, and D using

Ad = (I(I + A 1
2λ),

Bd = 1
λ(IB,

Cd = 1
λC(I,

Dd = 1
2λC(IB + D .

Transfer Function

For a system in transfer function form, bilinear converts an s-domain transfer function given by
num and den to a discrete equivalent. Row vectors num and den specify the coefficients of the
numerator and denominator, respectively, in descending powers of s. Let B(s) be the numerator
polynomial and A(s) be the denominator polynomial. The transfer function is:

B(s)
A(s) = B(1)sn +⋯+ B(n)s + B(n + 1)

A(1)sm +⋯+ A(m)s + A(m + 1)

fs is the sample rate in hertz. bilinear returns the discrete equivalent in row vectors numd and
dend in descending powers of z (ascending powers of z–1). fp is the optional match frequency, in
hertz, for prewarping.

1 Functions

1-84

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

[2] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
impinvar | lp2bp | lp2bs | lp2hp | lp2lp

Introduced before R2006a

 bilinear

1-85

bitrevorder
Permute data into bit-reversed order

Syntax
y = bitrevorder(x)
[y,i] = bitrevorder(x)

Description
y = bitrevorder(x) returns the input data in bit-reversed order.

[y,i] = bitrevorder(x) also returns the bit-reversed indices, i, such that y = x(i).

Examples

Vector in Bit-Reversed Order

Create a column vector and obtain its bit-reversed version. Verify by displaying the binary
representation explicitly.

x = (0:15)';
v = bitrevorder(x);

x_bin = dec2bin(x);
v_bin = dec2bin(v);

T = table(x,x_bin,v,v_bin)

T=16×4 table
 x x_bin v v_bin
 __ _____ __ _____

 0 0000 0 0000
 1 0001 8 1000
 2 0010 4 0100
 3 0011 12 1100
 4 0100 2 0010
 5 0101 10 1010
 6 0110 6 0110
 7 0111 14 1110
 8 1000 1 0001
 9 1001 9 1001
 10 1010 5 0101
 11 1011 13 1101
 12 1100 3 0011
 13 1101 11 1011
 14 1110 7 0111
 15 1111 15 1111

1 Functions

1-86

Input Arguments
x — Input data
vector | matrix

Input data, specified as a vector or matrix. The length or number of rows of x must be an integer
power of 2. If x is a matrix, the bit-reversal occurs on the first dimension of x with size greater than
1.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
y — Bit-reversed data
vector | matrix

Bit-reversed data, returned as a vector or matrix. y is the same size as x.

i — Bit-reversed indices
vector | matrix

Bit-reversed indices, returned as a vector or matrix such that y = x(i). MATLAB® matrices use 1-
based indexing, so the first index of y is 1, not 0.

More About
Bit-Reversed Ordering

bitrevorder is useful for prearranging filter coefficients so that bit-reversed ordering does not have
to be performed as part of an fft or ifft computation.

Bit-reversed ordering can improve run-time efficiency for external applications or for Simulink®

blockset models. Both MATLAB fft and ifft functions process linear input and output.

Note Using bitrevorder is equivalent to using digitrevorder with radix base 2.

This table shows the numbers 0 through 7, the corresponding bits, and the bit-reversed numbers.

Linear Index Bits Bit-Reversed Bit-Reversed Index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

 bitrevorder

1-87

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fft | digitrevorder | ifft

Introduced before R2006a

1 Functions

1-88

blackman
Blackman window

Syntax
w = blackman(L)
w = blackman(L,sflag)

Description
w = blackman(L) returns an L-point symmetric Blackman window.

w = blackman(L,sflag) returns a Blackman window using the window sampling method specified
by sflag.

Examples

Blackman Window

Create a 64-point Blackman window. Display the result using wvtool.

L = 64;
wvtool(blackman(L))

 blackman

1-89

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

sflag — Window sampling
'symmetric' (default) | 'periodic'

Window sampling method, specified as:

• 'symmetric' — Use this option when using windows for filter design.
• 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to

have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic'
is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments
w — Blackman window
column vector

1 Functions

1-90

Blackman window, returned as a column vector.

Algorithms
The following equation defines the Blackman window of length N:

w(n) = 0.42 − 0.5cos 2πn
L− 1 + 0.08cos 4πn

L− 1 , 0 ≤ n ≤ M − 1

where M is N/2 when N is even and (N + 1)/2 when N is odd.

In the symmetric case, the second half of the Blackman window, M ≤ n ≤ N – 1, is obtained by
reflecting the first half around the midpoint. The symmetric option is the preferred method when
using a Blackman window in FIR filter design.

The periodic Blackman window is constructed by extending the desired window length by one sample
to N + 1, constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a Blackman window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999, pp. 468–471.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
flattopwin | hamming | hann | WVTool

Introduced before R2006a

 blackman

1-91

blackmanharris
Minimum four-term Blackman-Harris window

Syntax
w = blackmanharris(N)
w = blackmanharris(N,sflag)

Description
w = blackmanharris(N) returns an N-point symmetric four-term Blackman-Harris window.

w = blackmanharris(N,sflag) returns a Blackman-Harris window using the window sampling
method specified by sflag.

Examples

Blackman-Harris Window

Create a 32-point symmetric Blackman-Harris window. Display the result using wvtool.

N = 32;
wvtool(blackmanharris(N))

1 Functions

1-92

Input Arguments
N — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

sflag — Window sampling
'symmetric' (default) | 'periodic'

Window sampling method, specified as:

• 'symmetric' — Use this option when using windows for filter design.
• 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to

have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic'
is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments
w — Blackman-Harris window
column vector

 blackmanharris

1-93

Blackman-Harris window, returned as a column vector.

Algorithms
The equation for the symmetric four-term Blackman-Harris window of length N is

w(n) = a0− a1cos 2πn
N − 1 + a2cos 4πn

N − 1 − a3cos 6πn
N − 1 , 0 ≤ n ≤ N − 1

The equation for the periodic four-term Blackman-Harris window of length N is

w(n) = a0− a1cos2πn
N + a2cos4πn

N − a3cos6πn
N , 0 ≤ n ≤ N − 1

The periodic window is N-periodic.

Coefficient Value
a0 0.35875
a1 0.48829
a2 0.14128
a3 0.01168

References
[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
barthannwin | bartlett | bohmanwin | nuttallwin | parzenwin | rectwin | triang | WVTool

Introduced before R2006a

1 Functions

1-94

bohmanwin
Bohman window

Syntax
w = bohmanwin(L)

Description
w = bohmanwin(L) returns an L-point Bohman window in w.

Examples

Bohman Window

Compute a 64-point Bohman window. Display the result using wvtool.

L = 64;
bw = bohmanwin(L);
wvtool(bw)

 bohmanwin

1-95

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

Output Arguments
w — Bohman window
column vector

Bohman window, returned as a column vector.

Algorithms
A Bohman window is the convolution of two half-duration cosine lobes. In the time domain, it is the
product of a triangular window and a single cycle of a cosine with a term added to set the first
derivative to zero at the boundary. Bohman windows fall off as 1/w4.The equation for computing the
coefficients of a Bohman window is

w(x) = (1 − x)cos(π x) + 1
πsin(π x), − 1 ≤ x ≤ 1

where x is a length-L vector of linearly spaced values generated using linspace. The first and last
elements of the Bohman window are forced to be identically zero.

References
[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
barthannwin | bartlett | blackmanharris | nuttallwin | parzenwin | rectwin | triang |
WVTool

Introduced before R2006a

1 Functions

1-96

buffer
Buffer signal vector into matrix of data frames

Syntax
y = buffer(x,n)
y = buffer(x,n,p)
y = buffer(x,n,p,opt)
[y,z] = buffer(___)
[y,z,opt] = buffer(___)

Description
y = buffer(x,n) partitions a length-L signal vector x into nonoverlapping data segments (frames)
of length n.

y = buffer(x,n,p) overlaps or underlaps successive frames in the output matrix by p samples.

y = buffer(x,n,p,opt) specifies a vector of samples to precede x(1) in an overlapping buffer, or
the number of initial samples to skip in an underlapping buffer.

[y,z] = buffer(___) partitions the length-L signal vector x into frames of length n, and outputs
only the full frames in y. The vector z contains the remaining samples. This syntax can include any
combination of input arguments from the previous syntaxes.

[y,z,opt] = buffer(___) returns the last p samples of an overlapping buffer in output opt.

Examples

Continuous Overlapping Buffers

Create a buffer containing 100 frames, each with 11 samples.

data = buffer(1:1100,11);

Take the frames (columns) in the matrix data to be the sequential outputs of a data acquisition board
sampling a physical signal: data(:,1) is the first A/D output, containing the first 11 signal samples,
data(:,2) is the second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4 with an
overlap of 1. Call buffer to operate on each successive input frame, using the opt parameter to
maintain consistency in the overlap from one buffer to the next.

Set the buffer parameters. Specify a value of –5 for y(1). The carryover vector is empty initially.

n = 4;
p = 1;
opt = -5;
z = [];

 buffer

1-97

Now repeatedly call buffer, each time passing in a new signal frame (column) from data. Overflow
samples (returned in z) are carried over and prepended to the input in the subsequent call to
buffer.

For the first four iterations, show the input frame [z;x]', the input and output values of opt, the
output buffer y, and the overflow z. The size of the output matrix, y, can vary by a single column from
one iteration to the next. This is typical for buffering operations with overlap or underlap.

for i = 1:size(data,2)
 x = data(:,i);
 [y,z,oppt] = buffer([z;x],n,p,opt);
 if i <= 4
 disp(' '), i, ifrm = [z;x]', opts = [opt oppt], y, z, disp(' ')
 end
 opt = oppt;
end

i = 1

ifrm = 1×13

 10 11 1 2 3 4 5 6 7 8 9 10 11

opts = 1×2

 -5 9

y = 4×3

 -5 3 6
 1 4 7
 2 5 8
 3 6 9

z = 2×1

 10
 11

i = 2

ifrm = 1×12

 22 12 13 14 15 16 17 18 19 20 21 22

opts = 1×2

 9 21

1 Functions

1-98

y = 4×4

 9 12 15 18
 10 13 16 19
 11 14 17 20
 12 15 18 21

z = 22

i = 3

ifrm = 1×11

 23 24 25 26 27 28 29 30 31 32 33

opts = 1×2

 21 33

y = 4×4

 21 24 27 30
 22 25 28 31
 23 26 29 32
 24 27 30 33

z =

 0x1 empty double column vector

i = 4

ifrm = 1×13

 43 44 34 35 36 37 38 39 40 41 42 43 44

opts = 1×2

 33 42

y = 4×3

 33 36 39
 34 37 40
 35 38 41
 36 39 42

 buffer

1-99

z = 2×1

 43
 44

Continuous Underlapping Buffers

Create a buffer containing 100 frames, each with 11 samples.

data = buffer(1:1100,11);

Take data(:,1) as the first A/D output, containing the first 11 signal samples, data(:,2) as the
second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4 with an
underlap of 2. To do this, you will repeatedly call buffer to operate on each successive input frame,
using the opt parameter to maintain consistency in the underlap from one buffer to the next.

Set the buffer parameters. Specify a new frame size of 4 and an underlap of –2. Skip the first input
element, x(1), by setting opt to 1. The carryover vector is empty initially.

n = 4;
p = -2;
opt = 1;
z = [];

Now repeatedly call buffer, each time passing in a new signal frame (column) from data. Overflow
samples (returned in z) are carried over and prepended to the input in the subsequent call to
buffer.

For the first three iterations, show the input frame [z';x]', the input and output values of opt, the
output buffer y, and the overflow z. The size of the output matrix, y, can vary by a single column from
one iteration to the next. This is typical for buffering operations with overlap or underlap.

for i = 1:size(data,2)
 x = data(:,i);
 [y,z,oppt] = buffer([z';x],n,p,opt);
 if i <= 3
 disp(' '), i, ifrm = [z';x]', opts = [opt oppt], y, z, disp(' ')
 end
 opt = oppt;
end

i = 1

ifrm = 1×11

 1 2 3 4 5 6 7 8 9 10 11

1 Functions

1-100

opts = 1×2

 1 2

y = 4×2

 2 8
 3 9
 4 10
 5 11

z =

 1x0 empty double row vector

i = 2

ifrm = 1×14

 20 21 22 12 13 14 15 16 17 18 19 20 21 22

opts = 1×2

 2 0

y = 4×1

 14
 15
 16
 17

z = 1×3

 20 21 22

i = 3

ifrm = 1×13

 32 33 23 24 25 26 27 28 29 30 31 32 33

opts = 1×2

 0 0

 buffer

1-101

y = 4×2

 20 26
 21 27
 22 28
 23 29

z = 1×2

 32 33

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.

n — Frame length
positive real scalar

Frame length, specified as a positive real scalar.

p — Number of samples
positive real scalar

Number of samples, specified as a real positive scalar.

• For 0 < p < n (overlap), buffer repeats the final p samples of each frame at the beginning of the
following frame. For example, if x = 1:30 and n = 7, an overlap of p = 3 looks like this.

The first frame starts with p zeros (the default initial condition), and the number of columns in y is
ceil(L/(n-p)).

• For p < 0 (underlap), buffer skips p samples between consecutive frames. For example, if
x = 1:30 and n = 7, a buffer with underlap of p = -3 looks like this.

1 Functions

1-102

The number of columns in y is ceil(L/(n-p)).

opt — Option
zeros(p,1) (default) | 'nodelay' | vector | integer

Option, specified as a vector or integer.

• For 0 < p < n (overlap), opt specifies a length-p vector to insert before x(1) in the buffer. This
vector can be considered an initial condition, which is needed when the current buffering
operation is one in a sequence of consecutive buffering operations. To maintain the desired frame
overlap from one buffer to the next, opt should contain the final p samples of the previous buffer
in the sequence. See “Continuous Buffering” on page 1-105 below.

By default, opt is zeros(p,1) for an overlapping buffer. Set opt to 'nodelay' to skip the initial
condition and begin filling the buffer immediately with x(1). In this case, L must be length(p)
or longer. For example, if x = 1:30 and n = 7, a buffer with overlap of p = 3 looks like this.

• For p < 0 (underlap), opt is an integer value in the range [0,-p] specifying the number of initial
input samples, x(1:opt), to skip before adding samples to the buffer. The first value in the buffer
is therefore x(opt+1). By default, opt is zero for an underlapping buffer.

This option is especially useful when the current buffering operation is one in a sequence of
consecutive buffering operations. To maintain the desired frame underlap from one buffer to the
next, opt should equal the difference between the total number of points to skip between frames
(p) and the number of points that were available to be skipped in the previous input to buffer. If
the previous input had fewer than p points that could be skipped after filling the final frame of
that buffer, the remaining opt points need to be removed from the first frame of the current
buffer. See “Continuous Buffering” on page 1-105 for an example of how this works in practice.

Output Arguments
y — Data frame
matrix

Data frame, returned as a matrix. Each data frame occupies one column of y, which has n rows and
ceil(L/n) columns. If L is not evenly divisible by n, the last column is zero-padded to length n.

• If y is an overlapping buffer, it has n rows and m columns, where m = floor(L/(n-p)) when
length(opt) = p or m = ceil((L-p)/(n-p)) when opt = 'nodelay'.

• If y is an underlapping buffer, it has n rows and m columns, where m = floor((L-opt)/(n-p))
+ (rem((L-opt),(n-p)) >= n).

z — Remaining samples
vector

Remaining samples, returned as a vector. If the number of samples in the input vector (after the
appropriate overlapping or underlapping operations) exceeds the number of places available in the n-

 buffer

1-103

by-m buffer, the remaining samples in x are output in vector z, which for an overlapping buffer has
length L - m*(n-p) when length(opt) = p or L - ((m-1)*(n-p)+n) when opt =
'nodelay', and for an underlapping buffer has length (L-opt) - m*(n-p).

• If y is an overlapping buffer or a nonoverlapping buffer, then z has the same orientation (row or
column) as x.

• If y is an underlapping buffer, then z is returned as a row vector.

If there are no remaining samples in the input after the buffer with the specified overlap or underlap
is filled, z is an empty vector.

opt — Last p samples
vector

Last p samples, returned as a vector. In an underlapping buffer, opt is the difference between the
total number of points to skip between frames (-p) and the number of points in x that were available
to be skipped after filling the last frame. In a sequence of buffering operations, the opt output from
each operation should be used as the opt input to the subsequent buffering operation. This ensures
that the desired frame overlap or underlap is maintained from buffer to buffer, as well as from frame
to frame within the same buffer. See “Continuous Buffering” on page 1-105 for an example of how
this works in practice.

• For 0 < p < n (overlap), opt (as an output) contains the final p samples in the last frame of the
buffer. This vector can be used as the initial condition for a subsequent buffering operation in a
sequence of consecutive buffering operations. This allows the desired frame overlap to be
maintained from one buffer to the next.

• For p < 0 (underlap), opt (as an output) is the difference between the total number of points to
skip between frames (p) and the number of points in x that were available to be skipped after
filling the last frame: opt = m*(n-p) + opt - L, where opt on the right is the input argument
to buffer, and opt on the left is the output argument. z is the empty vector. Here m is the
number of columns in the buffer, with m = floor((L-opt)/(n-p)) + (rem((L-opt),(n-
p))>=n).

Note that for an underlapping buffer output, opt is always zero when output z contains data.

The opt output for an underlapping buffer is especially useful when the current buffering
operation is one in a sequence of consecutive buffering operations. The opt output from each
buffering operation specifies the number of samples that need to be skipped at the start of the
next buffering operation to maintain the desired frame underlap from one buffer to the next. If
fewer than p points were available to be skipped after filling the final frame of the current buffer,
the remaining opt points need to be removed from the first frame of the next buffer.

Diagnostics
Error messages are displayed when p ≥n or length(opt)≠length(p) in an overlapping buffer
case:

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

1 Functions

1-104

More About
Continuous Buffering

In a continuous buffering operation, the vector input to the buffer function represents one frame in
a sequence of frames that make up a discrete signal. These signal frames can originate in a frame-
based data acquisition process, or within a frame-based algorithm like the FFT.

For example, you might acquire data from an A/D card in frames of 64 samples. In the simplest case,
you could rebuffer the data into frames of 16 samples; buffer with n = 16 creates a buffer of four
frames from each 64-element input frame. The result is that the signal of frame size 64 has been
converted to a signal of frame size 16; no samples were added or removed.

In the general case where the original signal frame size, L, is not equally divisible by the new frame
size, n, the overflow from the last frame needs to be captured and recycled into the following buffer.
You can do this by iteratively calling buffer on input x with the two-output-argument syntax:

[y,z] = buffer([z;x],n) % x is a column vector.
[y,z] = buffer([z,x],n) % x is a row vector.

This simply captures any buffer overflow in z, and prepends the data to the subsequent input in the
next call to buffer. Again, the input signal, x, of frame size L, has been converted to a signal of
frame size n without any insertion or deletion of samples.

Note that continuous buffering cannot be done with the single-output syntax y = buffer(...),
because the last frame of y in this case is zero padded, which adds new samples to the signal.

Continuous buffering in the presence of overlap and underlap is handled with the opt parameter,
which is used as both an input and output to buffer. The two examples on this page demonstrate
how the opt parameter should be used.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
reshape

Introduced before R2006a

 buffer

1-105

buttap
Butterworth filter prototype

Syntax
[z,p,k] = buttap(n)

Description
[z,p,k] = buttap(n) returns the poles and gain of an order n Butterworth analog lowpass filter
prototype.

Examples

Frequency Response of a Butterworth Analog Filter

Design a 9th-order Butterworth analog lowpass filter. Display its magnitude and phase responses.

[z,p,k] = buttap(9); % Butterworth filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs(num,den) % Frequency response of analog filter

1 Functions

1-106

Input Arguments
n — Order of Butterworth filter
positive integer scalar

Order of Butterworth filter, specified as a positive integer scalar.

Output Arguments
z — Zeros
matrix

Zeros of the system, returned as a matrix. z contains the numerator zeros in its columns. z is an
empty matrix because there are no zeros.

p — Poles
column vector

Poles of the system, returned as a column vector. p contains the pole locations of the denominator
coefficients of the transfer function.

k — Gains
scalar

Gains of the system, returned as a scalar. k contains the gains for each numerator transfer function.

Algorithms
The function buttap returns the poles in the length n column vector p and the gain in scalar k. z is
an empty matrix because there are no zeros. The transfer function is

H(s) = z(s)
p(s) = k

s− p(1) s− p(2) ⋯ s− p(n)

z = [];
p = exp(sqrt(-1)*(pi*(1:2:2*n-1)/(2*n)+pi/2)).';
k = real(prod(-p));

Note The function buttap returns zeros, poles, and gain (z, p, and k) in MATLAB. However, the
generated C/C++ code for buttap returns only poles p and gain k since zeros z is always an empty
matrix.

Butterworth filters are characterized by a magnitude response that is maximally flat in the passband
and monotonic overall. In the lowpass case, the first 2n-1 derivatives of the squared magnitude
response are zero at ω = 0. The squared magnitude response function is

H(ω) 2 = 1
1 + (ω/ω0)2n

 buttap

1-107

corresponding to a transfer function with poles equally spaced around a circle in the left half plane.
The magnitude response at the cutoff angular frequency ω0 is always 1/ 2 regardless of the filter
order. buttap sets ω0 to 1 for a normalized result.

References
[1] Parks, T. W., and C. S. Burrus. Digital Filter Design. New York: John Wiley & Sons, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
besselap | butter | cheb1ap | cheb2ap | ellipap

Introduced before R2006a

1 Functions

1-108

butter
Butterworth filter design

Syntax
[b,a] = butter(n,Wn)
[b,a] = butter(n,Wn,ftype)

[z,p,k] = butter(___)
[A,B,C,D] = butter(___)

[___] = butter(___ ,'s')

Description
[b,a] = butter(n,Wn) returns the transfer function coefficients of an nth-order lowpass digital
Butterworth filter with normalized cutoff frequency Wn.

[b,a] = butter(n,Wn,ftype) designs a lowpass, highpass, bandpass, or bandstop Butterworth
filter, depending on the value of ftype and the number of elements of Wn. The resulting bandpass
and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-116 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = butter(___) designs a lowpass, highpass, bandpass, or bandstop digital Butterworth
filter and returns its zeros, poles, and gain. This syntax can include any of the input arguments in
previous syntaxes.

[A,B,C,D] = butter(___) designs a lowpass, highpass, bandpass, or bandstop digital
Butterworth filter and returns the matrices that specify its state-space representation.

[___] = butter(___ ,'s') designs a lowpass, highpass, bandpass, or bandstop analog
Butterworth filter with cutoff angular frequency Wn.

Examples

Lowpass Butterworth Transfer Function

Design a 6th-order lowpass Butterworth filter with a cutoff frequency of 300 Hz, which, for data
sampled at 1000 Hz, corresponds to 0 . 6π rad/sample. Plot its magnitude and phase responses. Use it
to filter a 1000-sample random signal.

fc = 300;
fs = 1000;

[b,a] = butter(6,fc/(fs/2));
freqz(b,a)

 butter

1-109

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Bandstop Butterworth Filter

Design a 6th-order Butterworth bandstop filter with normalized edge frequencies of 0 . 2π and 0 . 6π
rad/sample. Plot its magnitude and phase responses. Use it to filter random data.

[b,a] = butter(3,[0.2 0.6],'stop');
freqz(b,a)

1 Functions

1-110

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Highpass Butterworth Filter

Design a 9th-order highpass Butterworth filter. Specify a cutoff frequency of 300 Hz, which, for data
sampled at 1000 Hz, corresponds to 0 . 6π rad/sample. Plot the magnitude and phase responses.
Convert the zeros, poles, and gain to second-order sections for use by fvtool.

[z,p,k] = butter(9,300/500,'high');
sos = zp2sos(z,p,k);
fvtool(sos,'Analysis','freq')

 butter

1-111

Bandpass Butterworth Filter

Design a 20th-order Butterworth bandpass filter with a lower cutoff frequency of 500 Hz and a higher
cutoff frequency of 560 Hz. Specify a sample rate of 1500 Hz. Use the state-space representation.
Design an identical filter using designfilt.

[A,B,C,D] = butter(10,[500 560]/750);
d = designfilt('bandpassiir','FilterOrder',20, ...
 'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ...
 'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool(sos,d,'Fs',1500);
legend(fvt,'butter','designfilt')

1 Functions

1-112

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

 butter

1-113

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.

1 Functions

1-114

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Wn — Cutoff frequency
scalar | two-element vector

Cutoff frequency, specified as a scalar or a two-element vector. The cutoff frequency is the frequency
at which the magnitude response of the filter is 1 / √2.

• If Wn is scalar, then butter designs a lowpass or highpass filter with cutoff frequency Wn.

If Wn is the two-element vector [w1 w2], where w1 < w2, then butter designs a bandpass or
bandstop filter with lower cutoff frequency w1 and higher cutoff frequency w2.

• For digital filters, the cutoff frequencies must lie between 0 and 1, where 1 corresponds to the
Nyquist rate—half the sample rate or π rad/sample.

For analog filters, the cutoff frequencies must be expressed in radians per second and can take on
any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

Filter type, specified as one of the following:

• 'low' specifies a lowpass filter with cutoff frequency Wn. 'low' is the default for scalar Wn.
• 'high' specifies a highpass filter with cutoff frequency Wn.
• 'bandpass' specifies a bandpass filter of order 2n if Wn is a two-element vector. 'bandpass' is

the default when Wn has two elements.
• 'stop' specifies a bandstop filter of order 2n if Wn is a two-element vector.

Output Arguments
b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

• For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B(z)
A(z) = b(1)+b(2) z−1 +⋯+ b(n+1) z−n

a(1)+a(2) z−1 +⋯+ a(n+1) z−n .

 butter

1-115

• For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B(s)
A(s) = b(1) sn + b(2) sn− 1 +⋯+ b(n+1)

a(1) sn + a(2) sn− 1 +⋯+ a(n+1)
.

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

• For digital filters, the transfer function is expressed in terms of z, p, and k as

H(z) = k (1 − z(1) z−1) (1 − z(2) z−1)⋯(1 − z(n) z−1)
(1 − p(1) z−1) (1 − p(2) z−1)⋯(1 − p(n) z−1)

.

• For analog filters, the transfer function is expressed in terms of z, p, and k as

H(s) = k (s− z(1)) (s− z(2))⋯(s− z(n))
(s− p(1)) (s− p(2))⋯(s− p(n)) .

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then A is m × m, B is m × 1, C is 1 × m, and D
is 1 × 1.

• For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) .

• For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

ẋ = A x + B u
y = C x + D u .

Data Types: double

More About
Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z,p,k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z,p,k] output with zp2sos. If you design the filter using the [b,a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

1 Functions

1-116

n = 6;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = butter(n,Wn,ftype); % This is an unstable filter

% Zero-Pole-Gain design
[z,p,k] = butter(n,Wn,ftype);
sos = zp2sos(z,p,k);

% Display and compare results
hfvt = fvtool(b,a,sos,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

Algorithms
Butterworth filters have a magnitude response that is maximally flat in the passband and monotonic
overall. This smoothness comes at the price of decreased rolloff steepness. Elliptic and Chebyshev
filters generally provide steeper rolloff for a given filter order.

butter uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the function buttap.
2 It converts the poles, zeros, and gain into state-space form.

 butter

1-117

3 If required, it uses a state-space transformation to convert the lowpass filter into a bandpass,
highpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital filter through
a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the
analog filters and the digital filters to have the same frequency response magnitude at Wn or at
w1 and w2.

5 It converts the state-space filter back to its transfer function or zero-pole-gain form, as required.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
besself | buttap | buttord | cheby1 | cheby2 | designfilt | ellip | filter | maxflat |
sosfilt

Introduced before R2006a

1 Functions

1-118

buttord
Butterworth filter order and cutoff frequency

Syntax
[n,Wn] = buttord(Wp,Ws,Rp,Rs)

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')

Description
[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital Butterworth filter
with no more than Rp dB of passband ripple and at least Rs dB of attenuation in the stopband. Wp and
Ws are respectively the passband and stopband edge frequencies of the filter, normalized from 0 to 1,
where 1 corresponds to π rad/sample. The scalar (or vector) of corresponding cutoff frequencies, Wn,
is also returned. To design a Butterworth filter, use the output arguments n and Wn as inputs to
butter.

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff frequencies Wn for
an analog Butterworth filter. Specify the frequencies Wp and Ws in radians per second. The passband
or the stopband can be infinite.

Examples

Lowpass Butterworth Filter

For data sampled at 1000 Hz, design a lowpass filter with no more than 3 dB of ripple in a passband
from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband. Find the filter order and cutoff
frequency.

Wp = 40/500;
Ws = 150/500;

[n,Wn] = buttord(Wp,Ws,3,60)

n = 5

Wn = 0.0810

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = butter(n,Wn);
sos = zp2sos(z,p,k);

freqz(sos,512,1000)
title(sprintf('n = %d Butterworth Lowpass Filter',n))

 buttord

1-119

Bandpass Butterworth Filter

Design a bandpass filter with a passband from 100 to 200 Hz with at most 3 dB of passband ripple
and at least 40 dB attenuation in the stopbands. Specify a sample rate of 1 kHz. Set the stopband
width to 50 Hz on both sides of the passband. Find the filter order and cutoff frequencies.

Wp = [100 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 40;
[n,Wn] = buttord(Wp,Ws,Rp,Rs)

n = 8

Wn = 1×2

 0.1951 0.4080

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = butter(n,Wn);
sos = zp2sos(z,p,k);

freqz(sos,128,1000)
title(sprintf('n = %d Butterworth Bandpass Filter',n))

1 Functions

1-120

Input Arguments
Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1, with 1 corresponding to the normalized Nyquist frequency, π rad/sample.

• If Wp and Ws are both scalars and Wp < Ws, then buttord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1 and the passband ranges from 0
to Wp.

• If Wp and Ws are both scalars and Wp > Ws, then buttord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws and the passband ranges from
Wp to 1.

• If Wp and Ws are both vectors and the interval specified by Ws contains the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)), then buttord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws(1) and from Ws(2) to 1. The
passband ranges from Wp(1) to Wp(2).

• If Wp and Ws are both vectors and the interval specified by Wp contains the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)), then buttord returns the order and cutoff frequencies of a
bandstop filter. The stopband of the filter ranges from Ws(1) to Ws(2). The passband ranges from
0 to Wp(1) and from Wp(2) to 1.

 buttord

1-121

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripple in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and
1, with 1 corresponding to the normalized Nyquist frequency, π rad/sample.
Data Types: single | double

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar expressed in dB.
Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar expressed in dB.
Data Types: single | double

Output Arguments
n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Wn — Cutoff frequencies
scalar | vector

Cutoff frequencies, returned as a scalar or vector.

Algorithms
buttord’s order prediction formula operates in the analog domain for both analog and digital cases.
For the digital case, it converts the frequency parameters to the s-domain before estimating the order
and natural frequency. The function then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming the passband frequencies of the
desired filter to 1 rad/second (for lowpass and highpass filters) and to –1 and 1 rad/second (for
bandpass and bandstop filters). It then computes the minimum order required for a lowpass filter to
meet the stopband specification.

1 Functions

1-122

References
[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
butter | cheb1ord | cheb2ord | ellipord | kaiserord

Introduced before R2006a

 buttord

1-123

cceps
Complex cepstral analysis

Syntax
xhat = cceps(x)
[xhat,nd] = cceps(x)
[xhat,nd,xhat1] = cceps(x)
[___] = cceps(x,n)

Description
xhat = cceps(x) returns the complex cepstrum xhat of the real data sequence x using the Fourier
transform.

Note cceps only works on real data.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular) delay added to x prior to
finding the complex cepstrum.

[xhat,nd,xhat1] = cceps(x) returns a second complex cepstrum, xhat1.

[___] = cceps(x,n) zero pads x to length n and returns the length n.

Examples

Using cceps to show an echo

This example uses cceps to show an echo. Generate a sine of frequency 45 Hz, sampled at 100 Hz.
Add an echo with half the amplitude and 0.2 s later. Compute the complex cepstrum of the signal.
Notice the echo at 0.2 s.

Fs = 100;
t = 0:1/Fs:1.27;

s1 = sin(2*pi*45*t);
s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

c = cceps(s2);

plot(t,c)
xlabel('Time (s)')
title('Complex cepstrum')

1 Functions

1-124

Input Arguments
x — Input signal
real vector

Input signal, specified as a real vector. By the application of a linear phase term, the input is altered
to have no phase discontinuity at ±π radians. That is, it is circularly shifted (after zero padding) by
some samples, if necessary, to have zero phase at π radians.

n — Length of zero-padded signal
positive real integer

Length of zero-padded signal, specified as a positive real integer.

Output Arguments
xhat — Complex cepstrum
vector

Complex cepstrum, returned as a vector.

nd — Number of samples
real positive scalar

 cceps

1-125

Number of samples of circular delay added to x, returned as a positive real scalar.

xhat1 — Second complex cepstrum
vector

Second complex cepstrum, returned as a vector. xhat1 is computed using an alternative factorization
algorithm specified in the references [1] and [2]. This method can be applied only to finite-duration
signals. See the Algorithm section below for a comparison of the Fourier and factorization methods of
computing the complex cepstrum.

Algorithms
Cepstral analysis is a nonlinear signal processing technique that is applied most commonly in speech
processing and homomorphic filtering [1]. cceps is an implementation of algorithm 7.1 in [3]. A
lengthy Fortran program reduces to these three lines of MATLAB code, which compose the core of
cceps:

h = fft(x);
logh = log(abs(h)) + sqrt(-1)*rcunwrap(angle(h));
y = real(ifft(logh));

Note rcunwrap in the above code segment is a special version of unwrap that subtracts a straight
line from the phase. rcunwrap is a local function within cceps and is not available for use from the
MATLAB command line.

The following table lists the pros and cons of the Fourier and factorization algorithms.

Algorithm Pros Cons
Fourier Can be used for any signal. Requires phase unwrapping. Output is

aliased.
Factorization Does not require phase

unwrapping. No aliasing
Can be used only for short duration
signals. Input signal must have an all-
zero Z-transform with no zeros on the
unit circle.

In general, you cannot use the results of these two algorithms to verify each other. You can use them
to verify each other only when the first element of the input data is positive, the Z-transform of the
data sequence has only zeros, all of these zeros are inside the unit circle, and the input data sequence
is long (or padded with zeros).

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999, pp. 788–789.

[2] Steiglitz, K., and B. Dickinson. “Computation of the Complex Cepstrum by Factorization of the Z-
transform.” Proceedings of the 1977 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 723–726.

[3] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing
Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979.

1 Functions

1-126

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
icceps | hilbert | rceps | unwrap

Introduced before R2006a

 cceps

1-127

cconv
Modulo-n circular convolution

Syntax
c = cconv(a,b)
c = cconv(a,b,n)

Description
c = cconv(a,b) convolves vectors a and b.

c = cconv(a,b,n) circularly convolves vectors a and b. n is the length of the resulting vector. You
can also use cconv to compute the circular cross-correlation of two sequences.

Examples

Circular Convolution and Linear Convolution

Generate two signals of different lengths. Compare their circular convolution and their linear
convolution. Use the default value for n.

a = [1 2 -1 1];
b = [1 1 2 1 2 2 1 1];

c = cconv(a,b); % Circular convolution
cref = conv(a,b); % Linear convolution

dif = norm(c-cref)

dif = 9.7422e-16

The resulting norm is virtually zero, which shows that the two convolutions produce the same result
to machine precision.

Circular Convolution

Generate two vectors and compute their modulo-4 circular convolution.

a = [2 1 2 1];
b = [1 2 3 4];
c = cconv(a,b,4)

c = 1×4

 14 16 14 16

1 Functions

1-128

Circular Cross-Correlation

Generate two complex sequences. Use cconv to compute their circular cross-correlation. Flip and
conjugate the second operand to comply with the definition of cross-correlation. Specify an output
vector length of 7.

a = [1 2 2 1]+1i;
b = [1 3 4 1]-2*1i;
c = cconv(a,conj(fliplr(b)),7);

Compare the result to the cross-correlation computed using xcorr.

cref = xcorr(a,b);
dif = norm(c-cref)

dif = 3.3565e-15

Circular Convolution with Varying Output Length

Generate two signals: a five-sample triangular waveform and a first-order FIR filter with response
H(z) = 1 − z−1.

x1 = conv([1 1 1],[1 1 1])

x1 = 1×5

 1 2 3 2 1

x2 = [-1 1]

x2 = 1×2

 -1 1

Compute their circular convolution with the default output length. The result is equivalent to the
linear convolution of the two signals.

ccnv = cconv(x1,x2)

ccnv = 1×6

 -1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000

lcnv = conv(x1,x2)

lcnv = 1×6

 -1 -1 -1 1 1 1

 cconv

1-129

The modulo-2 circular convolution is equivalent to splitting the linear convolution into two-element
arrays and summing the arrays.

ccn2 = cconv(x1,x2,2)

ccn2 = 1×2

 -1 1

nl = numel(lcnv);
mod2 = sum(reshape(lcnv,2,nl/2)')

mod2 = 1×2

 -1 1

Compute the modulo-3 circular convolution and compare it to the aliased linear convolution.

ccn3 = cconv(x1,x2,3)

ccn3 = 1×3

 0 0 0

mod3 = sum(reshape(lcnv,3,nl/3)')

mod3 = 1×3

 0 0 0

If the output length is smaller than the convolution length and does not divide it exactly, pad the
convolution with zeros before adding.

c = 5;
z = zeros(c*ceil(nl/c),1);
z(1:nl) = lcnv;

ccnc = cconv(x1,x2,c)

ccnc = 1×5

 0.0000 -1.0000 -1.0000 1.0000 1.0000

modc = sum(reshape(z,c,numel(z)/c)')

modc = 1×5

 0 -1 -1 1 1

If the output length is equal to or larger than the convolution length, pad the convolution and do not
add.

1 Functions

1-130

d = 13;
z = zeros(d*ceil(nl/d),1);
z(1:nl) = lcnv;

ccnd = cconv(x1,x2,d)

ccnd = 1×13

 -1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000

modd = z'

modd = 1×13

 -1 -1 -1 1 1 1 0 0 0 0 0 0 0

Circular Convolution Using the GPU

The following example requires Parallel Computing Toolbox™ software. Refer to “GPU Support by
Release” (Parallel Computing Toolbox) to see what GPUs are supported.

Create two signals consisting of a 1 kHz sine wave in additive white Gaussian noise. The sample rate
is 10 kHz

Fs = 1e4;
t = 0:1/Fs:10-(1/Fs);
x = cos(2*pi*1e3*t)+randn(size(t));
y = sin(2*pi*1e3*t)+randn(size(t));

Put x and y on the GPU using gpuArray. Obtain the circular convolution using the GPU.

x = gpuArray(x);
y = gpuArray(y);
cirC = cconv(x,y,length(x)+length(y)-1);

Compare the result to the linear convolution of x and y.

linC = conv(x,y);
norm(linC-cirC,2)

ans =

 1.4047e-08

Return the circular convolution, cirC, to the MATLAB® workspace using gather.

cirC = gather(cirC);

Input Arguments
a, b — Input arrays
vector | gpuArray object

 cconv

1-131

Input array, specified as vectors or gpuArray objects. See “Run MATLAB Functions on a GPU”
(Parallel Computing Toolbox) for details on gpuArray objects. Using cconv with gpuArray objects
requires Parallel Computing Toolbox™ software. Refer to “GPU Support by Release” (Parallel
Computing Toolbox) to see what GPUs are supported.
Example: sin(2*pi*(0:9)/10) + randn([1 10])/10 specifies a noisy sinusoid as a row vector.
Example: gpuArray(sin(2*pi*(0:9)/10) + randn([1 10])/10) specifies a noisy sinusoid as a
gpuArray object.
Data Types: single | double
Complex Number Support: Yes

n — Convolution length
positive integer

Convolution length, specified as a positive integer. If you do not specify n, then the convolution has
length length(a)+length(b)-1.

Output Arguments
c — Circular convolution
vector | gpuArray object

Circular convolution of input vectors, returned as a vector or gpuArray.

Tips
For long sequences, circular convolution can be faster than linear convolution.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,

1996, pp. 524–529.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
conv | xcorr

Introduced in R2007a

1 Functions

1-132

cell2sos
Convert second-order sections cell array to matrix

Syntax
m = cell2sos(c)

Description
m = cell2sos(c) changes a 1-by-L cell array c consisting of 1-by-2 cell arrays into an L-by-6
second-order section matrix m. Matrix m takes the same form as the matrix generated by tf2sos. You
can use m = cell2sos(c) to invert the results of c = sos2cell(m).

c must be a cell array of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

where both bi and ai are row vectors of at most length 3, and i = 1, 2, ..., L. The resulting matrix m
is given by

m = [b1 a1;b2 a2; ... ;bL aL]

Examples

Second-Order Sections from Cell Array Input

Generate a cell array of 1-by-2 cell arrays of 1-by-3 row vectors. Convert it to a matrix of second-
order sections.

cll = {{[3 6 7] [1 1 2]}
 {[1 4 5] [1 9 3]}
 {[2 7 1] [1 7 8]}};
sos = cell2sos(cll)

sos = 3×6

 3 6 7 1 1 2
 1 4 5 1 9 3
 2 7 1 1 7 8

See Also
sos2cell | tf2sos

Introduced before R2006a

 cell2sos

1-133

cfirpm
Complex and nonlinear-phase equiripple FIR filter design

Syntax
b = cfirpm(n,f,fresp)
b = cfirpm(n,f,fresp,w)
b = cfirpm(n,f,a)
b = cfirpm(n,f,a,w)
b = cfirpm(___ ,sym)
b = cfirpm(___ ,debug)
b = cfirpm(___ ,lgrid)
b = cfirpm(___ ,'skip_stage2')
[b,delta] = cfirpm(___)
[b,delta,opt] = cfirpm(___)

Description
b = cfirpm(n,f,fresp) returns a length n+1 FIR filter with the best approximation to the desired
frequency response as returned by the fresp function, which is called by its function handle
(@fresp).

b = cfirpm(n,f,fresp,w) uses the weights specified by w to weight the fit in each frequency
band.

b = cfirpm(n,f,a) specifies amplitudes a at the band edges in f. This syntax returns the same
result as b = cfirpm(n,f,{@multiband,a}).

b = cfirpm(n,f,a,w) applies an optional set of positive weights, one per band, for use during
optimization. If you do not specify w, the function sets the weights to unity.

b = cfirpm(___ ,sym) imposes a symmetry constraint on the impulse response of the design. In
addition to specifying sym, specify an input combination from any of the previous syntaxes.

b = cfirpm(___ ,debug) displays or hides the intermediate results during the filter design.

b = cfirpm(___ ,lgrid) controls the density of the frequency grid.

b = cfirpm(___ ,'skip_stage2') disables the second-stage optimization algorithm, which
executes only when the cfirpm function determines that an optimal solution has not been reached by
the standard firpm error-exchange. Disabling this algorithm can increase the speed of computation
but incur a reduction in accuracy. By default, the second-stage optimization is enabled.

[b,delta] = cfirpm(___) returns the maximum ripple height delta.

[b,delta,opt] = cfirpm(___) returns optional results computed by the cfirpm function.

Examples

1 Functions

1-134

Equiripple Lowpass Filter

Design a 31-tap linear-phase lowpass filter. Display its magnitude and phase responses.

b = cfirpm(30,[-1 -0.5 -0.4 0.7 0.8 1],@lowpass);
fvtool(b,1,'OverlayedAnalysis','phase')

FIR Approximation to Allpass Response

Design a nonlinear-phase allpass FIR filter of order 22 with frequency response given approximately
by exp(− jπf N/2 + j4πf | f |), where f ∈ [− 1, 1].

n = 22; % Filter order
f = [-1 1]; % Frequency band edges
w = [1 1]; % Weights for optimization
gf = linspace(-1,1,256); % Grid of frequency points
d = exp(-1i*pi*gf*n/2 + 1i*pi*pi*sign(gf).*gf.*gf*(4/pi));
 % Desired frequency response

Use cfirpm to compute the FIR filter. Plot the actual and approximate magnitude responses in dB
and the phase responses in degrees.

b = cfirpm(n,f,'allpass',w,'real'); % Approximation
freqz(b,1,256,'whole')

 cfirpm

1-135

subplot(2,1,1) % Overlay response
hold on
plot(pi*(gf+1),20*log10(abs(fftshift(d))),'r--')

subplot(2,1,2)
hold on
plot(pi*(gf+1),unwrap(angle(fftshift(d)))*180/pi,'r--')
legend('Approximation','Desired','Location','SouthWest')

Lowpass Filter using Custom Frequency Response Function

Design a lowpass filter of order 30 using a custom frequency response function fresp. The code for
the fresp function is available at the end of the example.

[b,delta]= cfirpm(30,linspace(-1,1,32),@fresp);

Use FVTool to visualize the magnitude response of the filter.

fvtool(b,1)

1 Functions

1-136

User-Defined fresp Function: Design a lowpass filter

The fresp function lets you choose to design a lowpass filter, a highpass filter, or a differentiator. The
filter order N and frequency array F must be specified. If the frequency grid GF and weights W are
unspecified, the function determines those values automatically.

function [dh,dw] = fresp(N,F,GF,W)

W = [1;1]*(W(:).'); W = W(:);

type = 'lowpass';

mags = zeros(size(W));

switch type
 case 'lowpass'
 mags(10:end-10) = 1;
 case 'highpass'
 mags(1:10) = 1;
 mags(end-10:end) = 1;
 case 'differentiator'
 mags = abs(linspace(-pi,pi,length(mags)));
end

dh = interp1(F(:),mags,GF).*exp(-1j*pi*GF*N/2);
dw = interp1(F(:),W,GF);

 cfirpm

1-137

end

Input Arguments
n — Filter order
real positive scalar

Filter order, specified as a real positive scalar.

f — Normalized frequency points
real-valued vector with elements in the range [–1, 1]

Normalized frequency points, specified as a real-valued vector with elements in the range [–1, 1],
where 1 corresponds to the normalized Nyquist frequency. The frequencies must be in increasing
order, and f must have even length. The frequency bands span f(k) to f(k+1) for k odd. The
intervals f(k+1) to f(k+2) for k odd are transition bands or don't care regions during optimization.

fresp — Frequency response
function handle

Frequency response, specified as a function handle. For more information, see “Predefined Frequency
Response Functions” on page 1-139 and “User-Defined Frequency Response Functions” on page 1-
140.

a — Desired amplitude
vector

Desired amplitudes at the points specified in f, specified as a vector. The desired amplitude at
frequencies between pairs of points f(k) and f(k+1) for k odd is the line segment connecting the
points (f(k),a(k)) and (f(k+1),a(k+1)).

w — Weights
real-valued vector

Weights used to adjust the fit in each frequency band, specified as a real-valued vector. The length of
w is half the length of f, so exactly one weight exists per band. If you do not specify w, the function
sets the weights to unity.

sym — Symmetry constraint
'none' (default) | 'even' | 'odd' | 'real'

Symmetry constraint imposed on the impulse response of the filter design, specified as one of these
values:

• 'none' — Impose no symmetry constraint. This option is the default if you pass any negative band
frequencies to the function or if fresp does not supply a default value.

• 'even' — Impose a real and even impulse response. This option is the default for highpass,
lowpass, allpass, bandpass, bandstop, inverse-sinc, and multiband designs.

• 'odd' — Impose a real and odd impulse response. This option is the default for Hilbert and
differentiator designs.

• 'real' — Impose conjugate symmetry for the frequency response.

1 Functions

1-138

If you specify a value other than 'none', you must specify the band edges over only positive
frequencies (the negative frequency region is filled in from symmetry). If you do not specify sym, the
function queries fresp for a default setting. Any user-supplied fresp function must return a valid
sym option when it is passed 'defaults' as the filter order n.

debug — Display of intermediate results
'off' (default) | 'trace' | 'plots' | 'both'

Display of intermediate results during the filter design, specified as 'off', 'trace', 'plots', or
'both'.

lgrid — Density of frequency grid
25 (default) | cell array of an integer

Density of frequency grid, specified as a cell array of an integer. The frequency grid has roughly
2^nextpow2(lgrid*n) frequency points.

Output Arguments
b — Filter coefficients
row vector

Filter coefficients, returned as a row vector of length n+1.

delta — Maximum ripple height
scalar

Maximum ripple height, returned as a scalar.

opt — Optional results
structure

Optional results computed by the cfirpm function, returned as a structure containing these fields.

Field Description
opt.fgrid Frequency grid vector used for the filter design optimization
opt.des Desired frequency response for each point in opt.fgrid
opt.wt Weighting for each point in opt.fgrid
opt.H Actual frequency response for each point in opt.fgrid
opt.error Error at each point in opt.fgrid
opt.iextr Vector of indices into opt.fgrid for extremal frequencies
opt.fextr Vector of extremal frequencies

More About
Predefined Frequency Response Functions

Predefined fresp frequency response functions are included for a number of common filter designs
in this section. For more information on how to create a custom fresp function, see “Create Function
Handle”.

 cfirpm

1-139

For all of the predefined frequency response functions, the symmetry option sym defaults to 'even'
if f contains no negative frequencies and d = 0. Otherwise sym defaults to 'none'. For details, see
sym. For all of the predefined frequency response functions, d specifies a group-delay offset such that
the filter response has a group delay of n/2+d in units of the sample interval. Negative values create
less delay, and positive values create more delay. By default, d = 0.

• @lowpass, @highpass, @allpass, @bandpass, @bandstop

These functions share a common syntax, exemplified by @lowpass.

b = cfirpm(n,f,@lowpass,...) and

b = cfirpm(n,f,{@lowpass,d},...) design a linear-phase (n/2+d delay) filter.

Note For @bandpass filters, the first element in the frequency vector must be less than or equal
to zero and the last element must be greater than or equal to zero.

• @multiband designs a linear-phase frequency response filter with arbitrary band amplitudes.

b = cfirpm(n,f,{@multiband,a},...) and

b = cfirpm(n,f,{@multiband,a,d},...) specify vector a containing the desired amplitudes
at the band edges in f. The desired amplitude at frequencies between pairs of points f(k) and f(k
+1) for k odd is the line segment connecting the points (f(k),a(k)) and (f(k+1),a(k+1)).

• @differentiator designs a linear-phase differentiator. For these designs, zero-frequency must
be in a transition band, and band weighting is set to be inversely proportional to frequency.

b = cfirpm(n,f,{@differentiator,fs},...) and

b = cfirpm(n,f,{@differentiator,fs,d},...) specify the sample rate fs used to
determine the slope of the differentiator response. If omitted, fs defaults to 1.

• @hilbfilt designs a linear-phase Hilbert transform filter response. For Hilbert designs, zero-
frequency must be in a transition band.

b = cfirpm(n,f,@hilbfilt,...) and

b = cfirpm(N,F,{@hilbfilt,d},...) design a linear-phase (n/2+d delay) Hilbert transform
filter.

• @invsinc designs a linear-phase inverse-sinc filter response.

b = cfirpm(n,f,{@invsinc,a},...) and

b = cfirpm(n,f,{@invsinc,a,d},...) specify gain a for the sinc function, computed as
sinc(a*g), where g contains the optimization grid frequencies normalized to the range [–1, 1]. By
default, a = 1. The group-delay offset is d such that the filter response has a group delay of n/2+d
in units of the sample interval, where n is the filter order. Negative values create less delay, and
positive values create more delay. By default, d = 0.

User-Defined Frequency Response Functions

Instead of the predefined frequency response functions for fresp, you can use a user-defined
function.

The cfirpm function calls this user-defined function using this syntax.

1 Functions

1-140

[dh,dw] = fresp(n,f,gf,w,p1,p2,...)

• n is the filter order.
• f is the vector of frequency band edges that appear monotonically between –1 and 1, where 1

corresponds to the Nyquist frequency.
• gf is a vector of grid points that have been linearly interpolated over each specified frequency

band by cfirpm. The input gf determines the frequency grid at which the response function must
be evaluated. The cfirpm function returns this data in the fgrid field of the opt structure.

• w is a vector of real, positive weights, one per band, used during optimization. w is optional in the
call to cfirpm. If you do not specify this input, cfirpm sets it to unity weighting before passing it
to fresp.

• dh and dw are the desired complex frequency response and band weight vectors, respectively, that
are evaluated at each frequency in grid gf.

• p1,p2,... are optional parameters that can be passed to fresp.

Additionally, the cfirpm function makes a preliminary call to fresp to determine the default
symmetry sym. cfirpm makes this call using this syntax.

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments can be used in determining an appropriate symmetry default as necessary. You can
use the local function lowpass as a template for generating new frequency response functions. To
find the lowpass function, enter edit cfirpm at the command line and search for lowpass in the
cfirpm function code. You can copy the function, modify it, rename it, and save it in your path.

Algorithms
The cfirpm function enables you to specify arbitrary frequency-domain constraints for the design of
a possibly complex FIR filter. The Chebyshev (or minimax) filter error is optimized, producing
equiripple FIR filter designs.

An extended version of the Remez exchange method is implemented for the complex case. This
exchange method obtains the optimal filter when the equiripple nature of the filter is restricted to
have n+2 extremals. When the filter does not converge, the algorithm switches to an ascent-descent
algorithm that takes over to finish the convergence to the optimal solution. For further details, see
the references.

References
[1] Demjanjov, V. F., and V. N. Malozemov. Introduction to Minimax. New York: John Wiley & Sons,

1974.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense. Ph.D. Thesis, Georgia
Institute of Technology, March 1995.

[3] Karam, L.J., and J. H. McClellan. "Complex Chebyshev Approximation for FIR Filter Design." IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing 42, no. 3
(March 1995): 207–216.

 cfirpm

1-141

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
fir1 | fir2 | firls | firpm

Introduced before R2006a

1 Functions

1-142

cheb1ap
Chebyshev Type I analog lowpass filter prototype

Syntax
[z,p,k] = cheb1ap(n,Rp)

Description
[z,p,k] = cheb1ap(n,Rp) returns the poles and gain of an order n Chebyshev Type I analog
lowpass filter prototype with Rp dB of ripple in the passband.

Examples

Frequency Response of an Analog Chebyshev Type I Filter

Design a 6th-order Chebyshev Type I analog lowpass filter with 3 dB of ripple in the passband.
Display its magnitude and phase responses.

[z,p,k] = cheb1ap(6,3); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs(num,den) % Frequency response of analog filter

 cheb1ap

1-143

Input Arguments
n — Filter order
integer

Filter order, specified as an integer.
Data Types: single | double

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar in decibels.
Data Types: single | double

Output Arguments
z — Zeros
matrix

Zeros of the filter, returned as a matrix.

p — Poles
n-length column vector

Poles of the filter, returned as an n-length column vector.

k — Gain
scalar

Gain of the filter, returned as a scalar. z is an empty matrix because no zeros exist for this filter
design.

Algorithms
Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. The poles are
evenly spaced about an ellipse in the left half plane. The Chebyshev Type I passband edge angular
frequency ω0 is set to 1.0 for a normalized result. This value is the frequency at which the passband
ends. The filter has a magnitude response of 10–Rp/20.

The transfer function is given by

H(s) = z(s)
p(s) = k

(s− p(1))(s− p(2))…(s− p(n)) .

References
[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,

1987.

1 Functions

1-144

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besselap | buttap | cheby1 | cheb2ap | ellipap

Introduced before R2006a

 cheb1ap

1-145

cheb1ord
Chebyshev Type I filter order

Syntax
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs,'s')

Description
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev Type I filter that
loses no more than Rp dB in the passband and has at least Rs dB of attenuation in the stopband. The
scalar (or vector) of corresponding cutoff frequencies Wp is also returned.

[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs,'s') designs a lowpass, highpass, bandpass, or bandstop
analog Chebyshev Type I filter with cutoff angular frequencies Wp.

Examples

Chebyshev Type I Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the passband
defined from 0 to 40 Hz and at least 60 dB of ripple in the stopband defined from 150 Hz to the
Nyquist frequency.

Wp = 40/500;
Ws = 150/500;
Rp = 3;
Rs = 60;
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)

n = 4

Wp = 0.0800

[b,a] = cheby1(n,Rp,Wp);
freqz(b,a,512,1000)
title('n = 4 Chebyshev Type I Lowpass Filter')

1 Functions

1-146

Chebyshev Type I Bandpass Filter Design

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of ripple in the
passband and 40 dB attenuation in the stopbands that are 50 Hz wide on both sides of the passband.

Wp = [60 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 40;
[n,Wp] = cheb1ord(Wp,Ws,Rp,Rs)

n = 7

Wp = 1×2

 0.1200 0.4000

[b,a] = cheby1(n,Rp,Wp);
freqz(b,a,512,1000)
title('n = 7 Chebyshev Type I Bandpass Filter')

 cheb1ord

1-147

Input Arguments
Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1 inclusive, with 1 corresponding to the normalized Nyquist frequency, π rad/sample. For
digital filters, the unit of passband corner frequency is in radians per sample. For analog filters,
passband corner frequency is in radians per second, and the passband can be infinite. The values of
Wp and Ws determine the type of filter cheb1ord returns:

• If Wp and Ws are both scalars and Wp < Ws, then cheb1ord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1, and the passband ranges from 0
to Wp.

• If Wp and Ws are both scalars and Wp > Ws, then cheb1ord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws, and the passband ranges from
Wp to 1.

• If Wp and Ws are both vectors and the interval specified by Ws contains the interval specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)), then cheb1ord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws(1) and from Ws(2) to 1. The
passband ranges from Wp(1) to Wp(2).

• If Wp and Ws are both vectors and the interval specified by Wp contains the interval specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)), then cheb1ord returns the order and cutoff frequencies of a

1 Functions

1-148

bandstop filter. The stopband of the filter ranges from Ws(1) to Ws(2). The passband ranges from
0 to Wp(1) and from Wp(2) to 1.

Use the following guide to specify filters of different types.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband
Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)
Bandpass The interval specified by Ws contains

the one specified by Wp (Ws(1) <
Wp(1) < Wp(2) < Ws(2)).

(0,Ws(1)) and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains
the one specified by Ws (Wp(1) <
Ws(1) < Ws(2) < Wp(2)).

(0,Wp(1)) and
(Wp(2),1)

(Ws(1),Ws(2))

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripples in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and 1
inclusive, with 1 corresponding to the normalized Nyquist frequency.

• For digital filters, stopband corner frequency is in radians per sample.
• For analog filters, stopband corner frequency is in radians per second and the stopband can be
infinite.

Note The values of Wp and Ws determine the filter type.

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar in dB.
Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar in dB.
Data Types: single | double

 cheb1ord

1-149

Output Arguments
n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Wp — Passband corner frequency
scalar | two-element vector

Passband corner frequency, returned as a scalar or a two-element vector. Use the output arguments n
and Wp with the cheby1 function.

Algorithms
cheb1ord uses the Chebyshev lowpass filter order prediction formula described in [1]. The function
performs its calculations in the analog domain for both analog and digital cases. For the digital case,
it converts the frequency parameters to the s-domain before the order and natural frequency
estimation process, and then converts them back to the z-domain.

cheb1ord initially develops a lowpass filter prototype by transforming the passband frequencies of
the desired filter to 1 rad/s (for lowpass or highpass filters) or to -1 and 1 rad/s (for bandpass or
bandstop filters). It then computes the order and natural frequency required for a lowpass filter to
match the passband specification exactly when using the values in the cheby1 function.

References
[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheby1 | cheb2ord | ellipord | kaiserord

Introduced before R2006a

1 Functions

1-150

cheb2ap
Chebyshev Type II analog lowpass filter prototype

Syntax
[z,p,k] = cheb2ap(n,Rs)

Description
[z,p,k] = cheb2ap(n,Rs) returns the zeros, poles, and gain of an order n Chebyshev Type II
analog lowpass filter prototype with Rs dB of ripple down from the passband peak value in the
stopband.

Examples

Frequency Response of an Analog Chebyshev Type II Filter

Design a 6th-order Chebyshev Type II analog lowpass filter with 70 dB of ripple in the stopband.
Display its magnitude and phase responses.

[z,p,k] = cheb2ap(6,70); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs(num,den) % Frequency response of analog filter

 cheb2ap

1-151

Input Arguments
n — Filter order
integer

Filter order, specified as an integer.
Data Types: single | double

Rs — Stopband ripple
scalar

Stopband ripple, specified as a scalar in decibels.
Data Types: single | double

Output Arguments
z — Zeros
n-length column vector

Zeros of the filter, returned as an n-length column vector. If n is odd, z has length n–1.

p — Poles
n-length column vector

1 Functions

1-152

Poles of the filter, returned as an n-length column vector.

k — Gain
scalar

Gain of the filter, returned as a scalar.

Algorithms
Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband. The pole
locations are the inverse of the pole locations of the cheb1ap function, whose poles are evenly
spaced about an ellipse in the left half plane. The Chebyshev Type II stopband edge angular
frequency ω0 is set to 1 for a normalized result. This value is the frequency at which the stopband
begins. The filter has a magnitude response of 10–Rs/20.

Chebyshev Type II filters are sometimes called inverse Chebyshev filters because of their relationship
to Chebyshev Type I filters. The cheb2ap function is a modification of the Chebyshev Type I
prototype algorithm:

1 cheb2ap replaces the frequency variable ω with 1/ω, turning the lowpass filter into a highpass
filter while preserving the performance at ω = 1.

2 cheb2ap subtracts the filter transfer function from unity.

The transfer function is given by

H(s) = z(s)
p(s) = k (s− z(1))(s− z(2))...(s− z(n))

(s− p(1))(s− p(2))...(s− p(n)) .

References
[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,

1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besselap | buttap | cheb1ap | cheby2 | ellipap

Introduced before R2006a

 cheb2ap

1-153

cheb2ord
Chebyshev Type II filter order

Syntax
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s')

Description
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev Type II filter
that loses no more than Rp dB in the passband and has at least Rs dB of attenuation in the stopband.
The scalar (or vector) of corresponding cutoff frequencies Ws is also returned.

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s') designs a lowpass, highpass, bandpass, or bandstop
analog Chebyshev Type II filter with cutoff angular frequencies Ws.

Examples

Chebyshev Type II Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the passband
defined from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband defined from 150 Hz to the
Nyquist frequency.

Wp = 40/500;
Ws = 150/500;
Rp = 3;
Rs = 60;

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)

n = 4

Ws = 0.3000

[b,a] = cheby2(n,Rs,Ws);

freqz(b,a,512,1000)
title('n = 4 Chebyshev Type II Lowpass Filter')

1 Functions

1-154

Chebyshev Type II Bandpass Filter Design

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of ripple in the
passband, and 40 dB attenuation in the stopbands that are 50 Hz wide on both sides of the passband:

Wp = [60 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 40;

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)

n = 7

Ws = 1×2

 0.1000 0.5000

[b,a] = cheby2(n,Rs,Ws);

freqz(b,a,512,1000)
title('n = 7 Chebyshev Type II Bandpass Filter')

 cheb2ord

1-155

Input Arguments
Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1 inclusive, with 1 corresponding to the normalized Nyquist frequency, π rad/sample. For
digital filters, the unit of passband corner frequency is in radians per sample. For analog filters,
passband corner frequency is in radians per second, and the passband can be infinite. The values of
Wp and Ws determine the type of filter cheb2ord returns:

• If Wp and Ws are both scalars and Wp < Ws, then cheb2ord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1, and the passband ranges from 0
to Wp.

• If Wp and Ws are both scalars and Wp > Ws, then cheb2ord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws, and the passband ranges from
Wp to 1.

• If Wp and Ws are both vectors and the interval specified by Ws contains the interval specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)), then cheb2ord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws(1) and from Ws(2) to 1. The
passband ranges from Wp(1) to Wp(2).

• If Wp and Ws are both vectors and the interval specified by Wp contains the interval specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)), then cheb2ord returns the order and cutoff frequencies of a

1 Functions

1-156

bandstop filter. The stopband of the filter ranges from Ws(1) to Ws(2). The passband ranges from
0 to Wp(1) and from Wp(2) to 1.

Use the following guide to specify filters of different types.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband
Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)
Bandpass The interval specified by Ws contains the

one specified by Wp (Ws(1) < Wp(1) <
Wp(2) < Ws(2)).

(0,Ws(1)) and
(Ws(2),1)

(Wp(1),Wp(2))

Bandstop The interval specified by Wp contains the
one specified by Ws (Wp(1) < Ws(1) <
Ws(2) < Wp(2)).

(0,Wp(1)) and
(Wp(2),1)

(Ws(1),Ws(2))

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripple in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and 1
inclusive, with 1 corresponding to the normalized Nyquist frequency.

• For digital filters, stopband corner frequency is in radians per sample.
• For analog filters, stopband corner frequency is in radians per second and the stopband can be
infinite.

Note The values of Wp and Ws determine the filter type.

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar in dB.
Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar in dB.
Data Types: single | double

 cheb2ord

1-157

Output Arguments
n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, returned as a scalar or a two-element vector. Use the output arguments n
and Ws with the cheby2 function.

Algorithms
cheb2ord uses the Chebyshev lowpass filter order prediction formula described in [1]. The function
performs its calculations in the analog domain for both analog and digital cases. For the digital case,
it converts the frequency parameters to the s-domain before the order and natural frequency
estimation process, and then converts them back to the z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming the stopband frequencies of
the desired filter to 1 rad/s (for low- and highpass filters) and to -1 and 1 rad/s (for bandpass and
bandstop filters). It then computes the minimum order and natural frequency required for a lowpass
filter to match the stopband specification exactly when using the values in the cheby2 function.

References
[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheb1ord | cheby2 | ellipord | kaiserord

Introduced before R2006a

1 Functions

1-158

chebwin
Chebyshev window

Syntax
w = chebwin(L)
w = chebwin(L,r)

Description
w = chebwin(L) returns an L-point Chebyshev window.

w = chebwin(L,r) returns an L-point Chebyshev window using sidelobe magnitude factor r dB.

Examples

Chebyshev Window

Create a 64-point Chebyshev window with 100 dB of sidelobe attenuation. Display the result using
wvtool.

L = 64;
bw = chebwin(L);
wvtool(bw)

 chebwin

1-159

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

r — Sidelobe attenuation
100 dB (default) | positive real scalar

Sidelobe attenuation in dB, specified as a positive integer. The Chebyshev window has a Fourier
transform magnitude r dB below the mainlobe magnitude.
Data Types: single | double

Output Arguments
w — Chebyshev window
column vector

Chebyshev window, returned as a column vector.

1 Functions

1-160

Note If you specify a one-point window (L = 1), the value 1 is returned.

More About
An artifact of the equiripple design method used in chebwin is the presence of impulses at the
endpoints of the time-domain response. The impulses are due to the constant-level sidelobes in the
frequency domain. The magnitude of the impulses are on the order of the size of the spectral
sidelobes. If the sidelobes are large, the effect at the endpoints may be significant. For more
information on this effect, see [2].

The equivalent noise bandwidth of a Chebyshev window does not grow monotonically with increasing
sidelobe attenuation when the attenuation is smaller than about 45 dB. For spectral analysis, use
larger sidelobe attenuation values, or, if you need to work with small attenuations, use a Kaiser
window.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979, program
5.2.

[2] harris, fredric j. Multirate Signal Processing for Communication Systems. Upper Saddle River, NJ:
Prentice Hall PTR, 2004, pp. 60–64.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
gausswin | kaiser | tukeywin | WVTool

Introduced before R2006a

 chebwin

1-161

cheby1
Chebyshev Type I filter design

Syntax
[b,a] = cheby1(n,Rp,Wp)
[b,a] = cheby1(n,Rp,Wp,ftype)

[z,p,k] = cheby1(___)
[A,B,C,D] = cheby1(___)

[___] = cheby1(___ ,'s')

Description
[b,a] = cheby1(n,Rp,Wp) returns the transfer function coefficients of an nth-order lowpass
digital Chebyshev Type I filter with normalized passband edge frequency Wp and Rp decibels of peak-
to-peak passband ripple.

[b,a] = cheby1(n,Rp,Wp,ftype) designs a lowpass, highpass, bandpass, or bandstop Chebyshev
Type I filter, depending on the value of ftype and the number of elements of Wp. The resulting
bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-170 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = cheby1(___) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type I filter and returns its zeros, poles, and gain. This syntax can include any of the input arguments
in previous syntaxes.

[A,B,C,D] = cheby1(___) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type I filter and returns the matrices that specify its state-space representation.

[___] = cheby1(___ ,'s') designs a lowpass, highpass, bandpass, or bandstop analog
Chebyshev Type I filter with passband edge angular frequency Wp and Rp decibels of passband ripple.

Examples

Lowpass Chebyshev Type I Transfer Function

Design a 6th-order lowpass Chebyshev Type I filter with 10 dB of passband ripple and a passband
edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 . 6π rad/sample. Plot
its magnitude and phase responses. Use it to filter a 1000-sample random signal.

[b,a] = cheby1(6,10,0.6);
freqz(b,a)

1 Functions

1-162

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Bandstop Chebyshev Type I Filter

Design a 6th-order Chebyshev Type I bandstop filter with normalized edge frequencies of 0 . 2π and
0 . 6π rad/sample and 5 dB of passband ripple. Plot its magnitude and phase responses. Use it to filter
random data.

[b,a] = cheby1(3,5,[0.2 0.6],'stop');
freqz(b,a)

 cheby1

1-163

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Highpass Chebyshev Type I Filter

Design a 9th-order highpass Chebyshev Type I filter with 0.5 dB of passband ripple and a passband
edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 . 6π rad/sample. Plot
the magnitude and phase responses. Convert the zeros, poles, and gain to second-order sections for
use by fvtool.

[z,p,k] = cheby1(9,0.5,300/500,'high');
sos = zp2sos(z,p,k);
fvtool(sos,'Analysis','freq')

1 Functions

1-164

Bandpass Chebyshev Type I Filter

Design a 20th-order Chebyshev Type I bandpass filter with a lower passband frequency of 500 Hz and
a higher passband frequency of 560 Hz. Specify a passband ripple of 3 dB and a sample rate of 1500
Hz. Use the state-space representation. Design an identical filter using designfilt.

[A,B,C,D] = cheby1(10,3,[500 560]/750);
d = designfilt('bandpassiir','FilterOrder',20, ...
 'PassbandFrequency1',500,'PassbandFrequency2',560, ...
 'PassbandRipple',3,'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool(sos,d,'Fs',1500);
legend(fvt,'cheby1','designfilt')

 cheby1

1-165

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

1 Functions

1-166

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.

 cheby1

1-167

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Rp — Peak-to-peak passband ripple
positive scalar

Peak-to-peak passband ripple, specified as a positive scalar expressed in decibels.

If your specification, ℓ, is in linear units, you can convert it to decibels using Rp = 40 log10((1+ℓ)/(1–
ℓ)).
Data Types: double

Wp — Passband edge frequency
scalar | two-element vector

Passband edge frequency, specified as a scalar or a two-element vector. The passband edge frequency
is the frequency at which the magnitude response of the filter is –Rp decibels. Smaller values of
passband ripple, Rp, result in wider transition bands.

• If Wp is a scalar, then cheby1 designs a lowpass or highpass filter with edge frequency Wp.

If Wp is the two-element vector [w1 w2], where w1 < w2, then cheby1 designs a bandpass or
bandstop filter with lower edge frequency w1 and higher edge frequency w2.

• For digital filters, the passband edge frequencies must lie between 0 and 1, where 1 corresponds
to the Nyquist rate—half the sample rate or π rad/sample.

For analog filters, the passband edge frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

Filter type, specified as one of the following:

• 'low' specifies a lowpass filter with passband edge frequency Wp. 'low' is the default for scalar
Wp.

• 'high' specifies a highpass filter with passband edge frequency Wp.
• 'bandpass' specifies a bandpass filter of order 2n if Wp is a two-element vector. 'bandpass' is

the default when Wp has two elements.
• 'stop' specifies a bandstop filter of order 2n if Wp is a two-element vector.

1 Functions

1-168

Output Arguments
b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

• For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B(z)
A(z) = b(1)+b(2) z−1 +⋯+ b(n+1) z−n

a(1)+a(2) z−1 +⋯+ a(n+1) z−n .

• For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B(s)
A(s) = b(1) sn + b(2) sn− 1 +⋯+ b(n+1)

a(1) sn + a(2) sn− 1 +⋯+ a(n+1)
.

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

• For digital filters, the transfer function is expressed in terms of z, p, and k as

H(z) = k (1 − z(1) z−1) (1 − z(2) z−1)⋯(1 − z(n) z−1)
(1 − p(1) z−1) (1 − p(2) z−1)⋯(1 − p(n) z−1)

.

• For analog filters, the transfer function is expressed in terms of z, p, and k as

H(s) = k (s− z(1)) (s− z(2))⋯(s− z(n))
(s− p(1)) (s− p(2))⋯(s− p(n)) .

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then A is m × m, B is m × 1, C is 1 × m, and D
is 1 × 1.

• For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) .

• For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

ẋ = A x + B u
y = C x + D u .

 cheby1

1-169

Data Types: double

More About
Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z,p,k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z,p,k] output with zp2sos. If you design the filter using the [b,a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

n = 6;
Rp = 0.1;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer function design
[b,a] = cheby1(n,Rp,Wn,ftype); % This filter is unstable

% Zero-pole-gain design
[z,p,k] = cheby1(n,Rp,Wn,ftype);
sos = zp2sos(z,p,k);

% Plot and compare the results
hfvt = fvtool(b,a,sos,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

1 Functions

1-170

Algorithms
Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. Type I filters
roll off faster than Type II filters, but at the expense of greater deviation from unity in the passband.

cheby1 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the function cheb1ap.
2 It converts the poles, zeros, and gain into state-space form.
3 If required, it uses a state-space transformation to convert the lowpass filter to a highpass,

bandpass, or bandstop filter with the desired frequency constraints.
4 For digital filter design, it uses bilinear to convert the analog filter into a digital filter through

a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the
analog filters and the digital filters to have the same frequency response magnitude at Wp or w1
and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 cheby1

1-171

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besself | butter | cheb1ap | cheb1ord | cheby2 | designfilt | ellip | filter | sosfilt

Introduced before R2006a

1 Functions

1-172

cheby2
Chebyshev Type II filter design

Syntax
[b,a] = cheby2(n,Rs,Ws)
[b,a] = cheby2(n,Rs,Ws,ftype)

[z,p,k] = cheby2(___)
[A,B,C,D] = cheby2(___)

[___] = cheby2(___ ,'s')

Description
[b,a] = cheby2(n,Rs,Ws) returns the transfer function coefficients of an nth-order lowpass
digital Chebyshev Type II filter with normalized stopband edge frequency Ws and Rs decibels of
stopband attenuation down from the peak passband value.

[b,a] = cheby2(n,Rs,Ws,ftype) designs a lowpass, highpass, bandpass, or bandstop Chebyshev
Type II filter, depending on the value of ftype and the number of elements of Ws. The resulting
bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-181 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = cheby2(___) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type II filter and returns its zeros, poles, and gain. This syntax can include any of the input
arguments in previous syntaxes.

[A,B,C,D] = cheby2(___) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type II filter and returns the matrices that specify its state-space representation.

[___] = cheby2(___ ,'s') designs a lowpass, highpass, bandpass, or bandstop analog
Chebyshev Type II filter with stopband edge angular frequency Ws and Rs decibels of stopband
attenuation.

Examples

Lowpass Chebyshev Type II Transfer Function

Design a 6th-order lowpass Chebyshev Type II filter with 40 dB of stopband attenuation and a
stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 . 6π rad/
sample. Plot its magnitude and phase responses. Use it to filter a 1000-sample random signal.

[b,a] = cheby2(6,40,0.6);
freqz(b,a)

 cheby2

1-173

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Bandstop Chebyshev Type II Filter

Design a 6th-order Chebyshev Type II bandstop filter with normalized edge frequencies of 0 . 2π and
0 . 6π rad/sample and 50 dB of stopband attenuation. Plot its magnitude and phase responses. Use it
to filter random data.

[b,a] = cheby2(3,50,[0.2 0.6],'stop');
freqz(b,a)

1 Functions

1-174

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Highpass Chebyshev Type II Filter

Design a 9th-order highpass Chebyshev Type II filter with 20 dB of stopband attenuation and a
stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 . 6π rad/
sample. Plot the magnitude and phase responses. Convert the zeros, poles, and gain to second-order
sections for use by fvtool.

[z,p,k] = cheby2(9,20,300/500,'high');
sos = zp2sos(z,p,k);
fvtool(sos,'Analysis','freq')

 cheby2

1-175

Bandpass Chebyshev Type II Filter

Design a 20th-order Chebyshev Type II bandpass filter with a lower stopband frequency of 500 Hz
and a higher stopband frequency of 560 Hz. Specify a stopband attenuation of 40 dB and a sample
rate of 1500 Hz. Use the state-space representation. Design an identical filter using designfilt.

[A,B,C,D] = cheby2(10,40,[500 560]/750);
d = designfilt('bandpassiir','FilterOrder',20, ...
 'StopbandFrequency1',500,'StopbandFrequency2',560, ...
 'StopbandAttenuation',40,'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool(sos,d,'Fs',1500);
legend(fvt,'cheby2','designfilt')

1 Functions

1-176

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

 cheby2

1-177

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.

1 Functions

1-178

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Rs — Stopband attenuation
positive scalar

Stopband attenuation down from the peak passband value, specified as a positive scalar expressed in
decibels.

If your specification, ℓ, is in linear units, you can convert it to decibels using Rs = –20 log10ℓ.
Data Types: double

Ws — Stopband edge frequency
scalar | two-element vector

Stopband edge frequency, specified as a scalar or a two-element vector. The stopband edge frequency
is the frequency at which the magnitude response of the filter is –Rs decibels. Larger values of
stopband attenuation, Rs, result in wider transition bands.

• If Ws is a scalar, then cheby2 designs a lowpass or highpass filter with edge frequency Ws.

If Ws is the two-element vector [w1 w2], where w1 < w2, then cheby2 designs a bandpass or
bandstop filter with lower edge frequency w1 and higher edge frequency w2.

• For digital filters, the stopband edge frequencies must lie between 0 and 1, where 1 corresponds
to the Nyquist rate—half the sample rate or π rad/sample.

For analog filters, the stopband edge frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

Filter type, specified as one of the following:

• 'low' specifies a lowpass filter with stopband edge frequency Ws. 'low' is the default for scalar
Ws.

• 'high' specifies a highpass filter with stopband edge frequency Ws.
• 'bandpass' specifies a bandpass filter of order 2n if Ws is a two-element vector. 'bandpass' is

the default when Ws has two elements.
• 'stop' specifies a bandstop filter of order 2n if Ws is a two-element vector.

 cheby2

1-179

Output Arguments
b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

• For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B(z)
A(z) = b(1)+b(2) z−1 +⋯+ b(n+1) z−n

a(1)+a(2) z−1 +⋯+ a(n+1) z−n .

• For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B(s)
A(s) = b(1) sn + b(2) sn− 1 +⋯+ b(n+1)

a(1) sn + a(2) sn− 1 +⋯+ a(n+1)
.

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

• For digital filters, the transfer function is expressed in terms of z, p, and k as

H(z) = k (1 − z(1) z−1) (1 − z(2) z−1)⋯(1 − z(n) z−1)
(1 − p(1) z−1) (1 − p(2) z−1)⋯(1 − p(n) z−1)

.

• For analog filters, the transfer function is expressed in terms of z, p, and k as

H(s) = k (s− z(1)) (s− z(2))⋯(s− z(n))
(s− p(1)) (s− p(2))⋯(s− p(n)) .

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then A is m × m, B is m × 1, C is 1 × m, and D
is 1 × 1.

• For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) .

• For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

ẋ = A x + B u
y = C x + D u .

1 Functions

1-180

Data Types: double

More About
Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z,p,k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z,p,k] output with zp2sos. If you design the filter using the [b,a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

n = 6;
Rs = 80;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer function design
[b,a] = cheby2(n,Rs,Wn,ftype); % This filter is unstable

% Zero-pole-gain design
[z,p,k] = cheby2(n,Rs,Wn,ftype);
sos = zp2sos(z,p,k);

% Plot and compare the results
hfvt = fvtool(b,a,sos,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

 cheby2

1-181

Algorithms
Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband. Type II
filters do not roll off as fast as Type I filters, but are free of passband ripple.

cheby2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the function cheb2ap.
2 It converts poles, zeros, and gain into state-space form.
3 If required, it uses a state-space transformation to convert the lowpass filter into a bandpass,

highpass, or bandstop filter with the desired frequency constraints.
4 For digital filter design, it uses bilinear to convert the analog filter into a digital filter through

a bilinear transformation with frequency prewarping. Careful frequency adjustment the analog
filters and the digital filters to have the same frequency response magnitude at Ws or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-182

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besself | butter | cheb2ap | cheb1ord | cheby1 | designfilt | ellip | filter | sosfilt

Introduced before R2006a

 cheby2

1-183

chirp
Swept-frequency cosine

Syntax
y = chirp(t,f0,t1,f1)
y = chirp(t,f0,t1,f1,method)
y = chirp(t,f0,t1,f1,method,phi)
y = chirp(t,f0,t1,f1,'quadratic',phi,shape)

y = chirp(___ ,cplx)

Description
y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency cosine signal at the time
instances defined in array t. The instantaneous frequency at time 0 is f0 and the instantaneous
frequency at time t1 is f1.

y = chirp(t,f0,t1,f1,method) specifies an alternative sweep method option.

y = chirp(t,f0,t1,f1,method,phi) specifies the initial phase.

y = chirp(t,f0,t1,f1,'quadratic',phi,shape) specifies the shape of the spectrogram of a
quadratic swept-frequency signal.

y = chirp(___ ,cplx) returns a real chirp if cplx is specified as 'real' and returns a complex
chirp if cplx is specified as 'complex'.

Examples

Linear Chirp

Generate a chirp with linear instantaneous frequency deviation. The chirp is sampled at 1 kHz for 2
seconds. The instantaneous frequency is 0 at t = 0 and crosses 250 Hz at t = 1 second.

t = 0:1/1e3:2;
y = chirp(t,0,1,250);

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,1e3,'spectrogram','TimeResolution',0.1, ...
 'OverlapPercent',99,'Leakage',0.85)

1 Functions

1-184

Quadratic Chirp

Generate a chirp with quadratic instantaneous frequency deviation. The chirp is sampled at 1 kHz for
2 seconds. The instantaneous frequency is 100 Hz at t = 0 and crosses 200 Hz at t = 1 second.

t = 0:1/1e3:2;
y = chirp(t,100,1,200,'quadratic');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,1e3,'spectrogram','TimeResolution',0.1, ...
 'OverlapPercent',99,'Leakage',0.85)

 chirp

1-185

Convex Quadratic Chirp

Generate a convex quadratic chirp sampled at 1 kHz for 2 seconds. The instantaneous frequency is
400 Hz at t = 0 and crosses 300 Hz at t = 1 second.

t = 0:1/1e3:2;
fo = 400;
f1 = 300;
y = chirp(t,fo,1,f1,'quadratic',[],'convex');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,1e3,'spectrogram','TimeResolution',0.1, ...
 'OverlapPercent',99,'Leakage',0.85)

1 Functions

1-186

Symmetric Concave Quadratic Chirp

Generate a concave quadratic chirp sampled at 1 kHz for 4 seconds. Specify the time vector so that
the instantaneous frequency is symmetric about the halfway point of the sampling interval, with a
minimum frequency of 100 Hz and a maximum frequency of 500 Hz.

t = -2:1/1e3:2;
fo = 100;
f1 = 200;
y = chirp(t,fo,1,f1,'quadratic',[],'concave');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,t,'spectrogram','TimeResolution',0.1, ...
 'OverlapPercent',99,'Leakage',0.85)

 chirp

1-187

Logarithmic Chirp

Generate a logarithmic chirp sampled at 1 kHz for 10 seconds. The instantaneous frequency is 10 Hz
initially and 400 Hz at the end.

t = 0:1/1e3:10;
fo = 10;
f1 = 400;
y = chirp(t,fo,10,f1,'logarithmic');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.2 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,t,'spectrogram','TimeResolution',0.2, ...
 'OverlapPercent',99,'Leakage',0.85)

1 Functions

1-188

Use a logarithmic scale for the frequency axis. The spectrogram becomes a line, with high
uncertainty at low frequencies.

ax = gca;
ax.YScale = 'log';

 chirp

1-189

Complex Chirp

Generate a complex linear chirp sampled at 1 kHz for 10 seconds. The instantaneous frequency is –
200 Hz initially and 300 Hz at the end. The initial phase is zero.

t = 0:1/1e3:10;
fo = -200;
f1 = 300;

y = chirp(t,fo,t(end),f1,'linear',0,'complex');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.2 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,t,'spectrogram','TimeResolution',0.2, ...
 'OverlapPercent',99,'Leakage',0.85)

1 Functions

1-190

Verify that a complex chirp has real and imaginary parts that are equal but with 90∘ phase difference.

x = chirp(t,fo,t(end),f1,'linear',0) + 1j*chirp(t,fo,t(end),f1,'linear',-90);

pspectrum(x,t,'spectrogram','TimeResolution',0.2, ...
 'OverlapPercent',99,'Leakage',0.85)

 chirp

1-191

Input Arguments
t — Time array
vector

Time array, specified as a vector.
Data Types: single | double

f0 — Instantaneous frequency at time 0
0 (default) | real scalar in Hz

Initial instantaneous frequency at time 0, specified as a real scalar expressed in Hz.
Data Types: single | double

t1 — Reference time
1 (default) | positive scalar in seconds

Reference time, specified as a positive scalar expressed in seconds.
Data Types: single | double

f1 — Instantaneous frequency at time t1
100 (default) | real scalar in Hz

Instantaneous frequency at time t1, specified as a real scalar expressed in Hz.

1 Functions

1-192

Data Types: single | double

method — Sweep method
'linear' (default) | 'quadratic' | 'logarithmic'

Sweep method, specified as 'linear', 'quadratic', or 'logarithmic'.

• 'linear' — Specifies an instantaneous frequency sweep fi(t) given by

f i(t) = f0 + βt,

where

β = (f1− f0)/t1

and the default value for f0 is 0. The coefficient β ensures that the desired frequency breakpoint f1
at time t1 is maintained.

• 'quadratic' — Specifies an instantaneous frequency sweep fi(t) given by

f i(t) = f0 + βt2,

where

β = (f1− f0)/t12

and the default value for f0 is 0. If f0 > f1 (downsweep), the default shape is convex. If f0 < f1
(upsweep), the default shape is concave.

• 'logarithmic' — Specifies an instantaneous frequency sweep fi(t) given by

f i(t) = f0 × βt,

where

β =
f1
f0

1
t1

and the default value for f0 is 10–6.

phi — Initial phase
0 (default) | positive scalar in degrees

Initial phase, specified as a positive scalar expressed in degrees.
Data Types: single | double

shape — Spectrogram shape of quadratic chirp
'convex' | 'concave'

Spectrogram shape of quadratic chirp, specified as 'convex' or 'concave'. shape describes the
shape of the parabola with respect to the positive frequency axis. If not specified, shape is 'convex'
for the downsweep case with f0 > f1, and 'concave' for the upsweep case with f0 < f1.

 chirp

1-193

cplx — Output complexity
'real' (default) | 'complex'

Output complexity, specified as 'real' or 'complex'.

Output Arguments
y — Swept-frequency cosine signal
vector

Swept-frequency cosine signal, returned as a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc | square | tripuls

Introduced before R2006a

1 Functions

1-194

convmtx
Convolution matrix

Syntax
A = convmtx(h,n)

Description
A = convmtx(h,n) returns the convolution matrix, A, such that the product of A and an n-element
vector, x, is the convolution of h and x.

Examples

Efficient Computation of Convolution

Computing a convolution using conv when the signals are vectors is generally more efficient than
using convmtx. For multichannel signals, convmtx might be more efficient.

Compute the convolution of two random vectors, a and b, using both conv and convmtx. The signals
have 1000 samples each. Compare the times spent by the two functions. Eliminate random
fluctuations by repeating the calculation 30 times and averaging.

Nt = 30;
Na = 1000;
Nb = 1000;

tcnv = 0;
tmtx = 0;

for kj = 1:Nt
 a = randn(Na,1);
 b = randn(Nb,1);

 tic
 n = conv(a,b);
 tcnv = tcnv+toc;

 tic
 c = convmtx(b,Na);
 d = c*a;
 tmtx = tmtx+toc;
end

t1col = [tcnv tmtx]/Nt

t1col = 1×2

 0.0009 0.0163

 convmtx

1-195

t1rat = tcnv\tmtx

t1rat = 17.5167

conv is about two orders of magnitude more efficient.

Repeat the exercise for the case where a is a multichannel signal with 1000 channels. Optimize
conv's performance by preallocating.

Nchan = 1000;

tcnv = 0;
tmtx = 0;

n = zeros(Na+Nb-1,Nchan);

for kj = 1:Nt
 a = randn(Na,Nchan);
 b = randn(Nb,1);

 tic
 for k = 1:Nchan
 n(:,k) = conv(a(:,k),b);
 end
 tcnv = tcnv+toc;

 tic
 c = convmtx(b,Na);
 d = c*a;
 tmtx = tmtx+toc;
end

tmcol = [tcnv tmtx]/Nt

tmcol = 1×2

 0.4282 0.0548

tmrat = tcnv/tmtx

tmrat = 7.8090

convmtx is about three times as efficient as conv.

Input Arguments
h — Input vector
vector

Input vector, specified as a row or column.
Data Types: single | double

n — Length of vector to convolve
positive integer

1 Functions

1-196

Length of vector to convolve, specified as a positive integer.

• If h is a column vector of length m, A is (m+n-1)-by-n, and the product of A and a column vector,
x, of length n is the convolution of h and x.

• If h is a row vector of length m, A is n-by-(m+n-1), and the product of a row vector, x, of length n
with A is the convolution of h and x.

Output Arguments
A — Convolution matrix
matrix

Convolution matrix of input h and the vector x, returned as a matrix.

Algorithms
• convmtx uses the function toeplitz to generate the convolution matrix.
• convmtx handles edge conditions by zero padding.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
conv | convn | conv2 | corrmtx | dftmtx

Introduced before R2006a

 convmtx

1-197

corrmtx
Data matrix for autocorrelation matrix estimation

Syntax
H = corrmtx(x,m)
H = corrmtx(x,m,method)
[H,r] = corrmtx(___)

Description
H = corrmtx(x,m) returns an (n+m)-by-(m+1) rectangular Toeplitz matrix H = H such that H†H is a
biased estimate of the autocorrelation matrix for the input vector x. n is the length of x, m is the
prediction model order, and H† is the conjugate transpose of H.

H = corrmtx(x,m,method) computes the matrix H according to the method specified by method.

[H,r] = corrmtx(___) also returns the (m + 1)-by-(m + 1) autocorrelation matrix estimate r,
computed as H†H, for any of the previous syntaxes.

Examples

Modified Data and Autocorrelation Matrices

Generate a signal composed of three complex exponentials embedded in white Gaussian noise.
Compute the data and autocorrelation matrices using the 'modified' method.

n = 0:99;
s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
m = 12;
[X,R] = corrmtx(s,m,'modified');

Plot the real and imaginary parts of the autocorrelation matrix.

[A,B] = ndgrid(1:m+1);
subplot(2,1,1)
plot3(A,B,real(R))
title('Re(R)')
subplot(2,1,2)
plot3(A,B,imag(R))
title('Im(R)')

1 Functions

1-198

Input Arguments
x — Input data
vector

Input data, specified as a vector.

m — Prediction model order
positive real integer

Prediction model order, specified as a positive real integer.

method — Matrix computation method
'autocorrelation' (default) | 'prewindowed' | 'postwindowed' | 'covariance' |
'modified'

Matrix computation method, specified as 'autocorrelation', 'prewindowed',
'postwindowed', 'covariance' or 'modified'.

• 'autocorrelation': (default) H is the (n + m)-by-(m + 1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length-n data vector x, derived using prewindowed
and postwindowed data, based on an mth-order prediction model. The matrix can be used to
perform autoregressive parameter estimation using the Yule-Walker method. For more details, see
aryule.

 corrmtx

1-199

• 'prewindowed': H is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using prewindowed data, based on
an mth-order prediction model.

• 'postwindowed': H is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using postwindowed data, based
on an mth-order prediction model.

• 'covariance': H is the (n – m)-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using nonwindowed data, based
on an mth-order prediction model. The matrix can be used to perform autoregressive parameter
estimation using the covariance method. For more details, see arcov.

• 'modified': H is the 2(n – m)-by-(m + 1) modified rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using forward and backward
prediction error estimates, based on an mth-order prediction model. The matrix can be used to
perform autoregressive parameter estimation using the modified covariance method. For more
details, see armcov.

Output Arguments
H — Data matrix
matrix

Data matrix, returned for autocorrelation matrix estimation. The size of H depends on the matrix
computation method specified in method.

r — Biased autocorrelation matrix
matrix

Biased autocorrelation matrix, returned as a (m + 1)-by-(m + 1) rectangular Toeplitz matrix.

Algorithms
The Toeplitz data matrix computed by corrmtx depends on the method you select. The matrix
determined by the autocorrelation (default) method is:

1 Functions

1-200

H = 1
n

x 1 0 ⋯ 0 0
x 2 x 1 ⋯ 0 0
x 3 x 2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

x m x m− 1 ⋯ x 1 0
x m + 1 x m ⋯ x 2 x 1
x m + 2 x m + 1 ⋯ x 3 x 2
⋮ ⋮ ⋱ ⋮ ⋮

x n− 1 x n− 2 ⋯ x n−m x n−m− 1
x n x n− 1 ⋯ x n−m + 1 x n−m

0 x n ⋯ x n−m + 2 x n−m + 1
⋮ ⋮ ⋰ ⋮ ⋮
0 0 ⋯ x n− 1 x n− 2
0 0 ⋯ x n x n− 1
0 0 ⋯ 0 x n

.

In the matrix, m is the same as the input argument m to corrmtx and n is length(x). Variations of
this matrix are used to return the output H of corrmtx for each method:

• 'autocorrelation' — (default) H = H.
• 'prewindowed' — H is the n-by-(m + 1) submatrix of H whose first row is [x(1) … 0] and whose

last row is [x(n) … x(n – m)].
• 'postwindowed' — H is the n-by-(m + 1) submatrix of H whose first row is [x(m + 1) … x(1)] and

whose last row is [0 … x(n)].
• 'covariance' — H is the (n – m)-by-(m + 1) submatrix of H whose first row is [x(m + 1) … x(1)]

and whose last row is [x(n) … x(n – m)].
• 'modified' — H is the 2(n – m)-by-(m + 1) matrix Hmod defined by

Hmod = 1
2(n−m)

x(m + 1) ⋯ x(1)
⋮ ⋰ ⋮

x(n) ⋯ x(n−m)
x∗(1) ⋯ x∗(m + 1)
⋮ ⋱ ⋮

x∗(n−m) ⋯ x∗(n)

.

References
[1] Marple, S. Lawrence. Digital Spectral Analysis: With Applications. Prentice-Hall Signal Processing

Series. Englewood Cliffs, N.J: Prentice-Hall, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 corrmtx

1-201

See Also
peig | pmusic | rooteig | rootmusic | xcorr

Introduced before R2006a

1 Functions

1-202

countlabels
Count number of unique labels

Syntax
cnt = countlabels(lblsrc)
cnt = countlabels(lblsrc,Name,Value)

Description
Use this function when you are working on a machine or deep learning classification problem and you
want to look at the proportions of label values in your dataset.

cnt = countlabels(lblsrc) counts the number of unique label category values in lblsrc and
returns the count in cnt.

cnt = countlabels(lblsrc,Name,Value) specifies additional input arguments using name-
value pairs. For example, 'TableVariable','Color' reads the labels corresponding to 'Color'.

Examples

Count Labels in Arrays

Categorical Arrays

Generate a categorical array with the categories A, B, C, and D. The array contains samples of each
category.

lbls = categorical(["B" "C" "A" "D" "B" "A" "A" "B" "C" "A"], ...
 ["A" "B" "C" "D"])

lbls = 1x10 categorical
 B C A D B A A B C A

Count the number of unique label category values in the array.

cnt = countlabels(lbls)

cnt=4×3 table
 Label Count Percent
 _____ _____ _______

 A 4 40
 B 3 30
 C 2 20
 D 1 10

Generate a second categorical array with the same categories. The array contains samples of each
category and one sample with a missing value.

 countlabels

1-203

mlbls = categorical(["B" "C" "A" "D" "B" "A" missing "B" "C" "A"], ...
 ["A" "B" "C" "D"])

mlbls = 1x10 categorical
 Columns 1 through 9

 B C A D B A <undefined> B C

 Column 10

 A

Count the number of unique label category values in the array. The sample with a missing value is
included in the count as <undefined>.

mcnt = countlabels(mlbls)

mcnt=5×3 table
 Label Count Percent
 ___________ _____ _______

 A 3 30
 B 3 30
 C 2 20
 D 1 10
 <undefined> 1 10

Character Arrays

Read William Shakespeare's sonnets with the fileread function. Remove all nonalphabetic
characters from the text and convert to lowercase.

sonnets = fileread("sonnets.txt");
letters = lower(sonnets(regexp(sonnets,"[A-z]")))';

Count how many times each letter appears in the sonnets. List the letters that appear most often.

cnt = countlabels(letters);
cnt = sortrows(cnt,"Count","descend");
head(cnt)

ans=8×3 table
 Label Count Percent
 _____ _____ _______

 e 9028 12.298
 t 7210 9.8216
 o 5710 7.7782
 h 5064 6.8982
 s 4994 6.8029
 a 4940 6.7293
 i 4895 6.668
 n 4522 6.1599

1 Functions

1-204

Numeric Arrays

Use the poisrand on page 1-0 function to generate an array of 1000 random integers from the
Poisson distribution with rate parameter 3. Plot a histogram of the results.

N = 1000;
lam = 3;

nums = zeros(N,1);
for jk = 1:N
 nums(jk) = poisrand(lam);
end

histogram(nums)

Count the frequencies of the integers represented in the array.

mm = countlabels(nums)

mm=10×3 table
 Label Count Percent
 _____ _____ _______

 0 36 3.6
 1 153 15.3
 10 1 0.1
 2 211 21.1
 3 213 21.3

 countlabels

1-205

 4 184 18.4
 5 114 11.4
 6 58 5.8
 7 20 2
 8 10 1

function num = poisrand(lam)
% Poisson random integer using rejection method
 p = 0;
 num = -1;
 while p <= lam
 p = p - log(rand);
 num = num + 1;
 end
end

Count Labels in Tables and Datastores

Create a table of characters with two variables. The first variable Type1 contains instances of the
letters P, Q, and R. The second variable Type2 contains instances of the letters A, B, and D.

tbl = table(["P" "R" "P" "Q" "Q" "Q" "R" "P"]', ...
 ["A" "B" "B" "A" "D" "D" "A" "A"]',...
 'VariableNames',["Type1","Type2"]);

Count how many times each letter appears in each of the table variables.

cnt = countlabels(tbl,'TableVariable','Type1')

cnt=3×3 table
 Type1 Count Percent
 _____ _____ _______

 P 3 37.5
 Q 3 37.5
 R 2 25

cnt = countlabels(tbl,'TableVariable','Type2')

cnt=3×3 table
 Type2 Count Percent
 _____ _____ _______

 A 4 50
 B 2 25
 D 2 25

Create an ArrayDatastore object containing the table.

ads = arrayDatastore(tbl,'OutputType','same');

Count how many times each letter appears in each of the table variables.

cnt = countlabels(ads,'TableVariable','Type1')

1 Functions

1-206

cnt=3×3 table
 Type1 Count Percent
 _____ _____ _______

 P 3 37.5
 Q 3 37.5
 R 2 25

cnt = countlabels(ads,'TableVariable','Type2')

cnt=3×3 table
 Type2 Count Percent
 _____ _____ _______

 A 4 50
 B 2 25
 D 2 25

Input Arguments
lblsrc — Input label source
categorical vector | string vector | logical vector | numeric vector | cell array | table | datastore |
CombinedDatastore object

Input label source, specified as one of these:

• A categorical vector.
• A string vector or a cell array of character vectors.
• A numeric vector or a cell array of numeric scalars.
• A logical vector or a cell array of logical scalars.
• A table with variables containing any of the previous data types.
• A datastore whose readall function returns any of the previous data types.
• A CombinedDatastore object containing an underlying datastore whose readall function

returns any of the previous data types. In this case, you must specify the index of the underlying
datastore that has the label values.

lblsrc must contain labels that can be converted to a vector with a discrete set of categories.
Example: lblsrc = categorical(["B" "C" "A" "E" "B" "A" "A" "B" "C" "A"],["A"
"B" "C" "D"]) creates the label source as a ten-sample categorical vector with four categories: A,
B, C, and D.
Example: lblsrc = [0 7 2 5 11 17 15 7 7 11] creates the label source as a ten-sample
numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | table | cell | categorical

 countlabels

1-207

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TableVariable','Sex','UnderlyingDatastoreIndex',5 reads the labels
corresponding to 'Sex' only in the fifth underlying datastore of a combined datastore.

TableVariable — Table variable to read
first table variable (default) | character vector | string scalar

Table variable to read, specified as a character vector or string scalar. If this argument is not
specified, then countlabels uses the first table variable.

UnderlyingDatastoreIndex — Underlying datastore index
integer scalar

Underlying datastore index, specified as an integer scalar. This argument applies when lblsrc is a
CombinedDatastore object. countlabels counts the labels in the datastore obtained using the
UnderlyingDatastores property of lblsrc.

Output Arguments
cnt — Unique label counts
table

Unique label counts, returned as a table with these variables:

• Label — Unique label category values. If 'TableVariable' is specified, then the Label name is
replaced with the table variable name.

• Count — Number of instances of each label value.
• Percent — Proportion of each label value, expressed as a percentage.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition | folders2labels |
splitlabels

Introduced in R2021a

1 Functions

1-208

cpsd
Cross power spectral density

Syntax
pxy = cpsd(x,y)

pxy = cpsd(x,y,window)
pxy = cpsd(x,y,window,noverlap)
pxy = cpsd(x,y,window,noverlap,nfft)

pxy = cpsd(___ ,'mimo')

[pxy,w] = cpsd(___)
[pxy,f] = cpsd(___ ,fs)

[pxy,w] = cpsd(x,y,window,noverlap,w)
[pxy,f] = cpsd(x,y,window,noverlap,f,fs)

[___] = cpsd(x,y, ___ ,freqrange)

cpsd(___)

Description
pxy = cpsd(x,y) estimates the cross power spectral density (CPSD) of two discrete-time signals, x
and y, using Welch’s averaged, modified periodogram method of spectral estimation.

• If x and y are both vectors, they must have the same length.
• If one of the signals is a matrix and the other is a vector, then the length of the vector must equal

the number of rows in the matrix. The function expands the vector and returns a matrix of column-
by-column cross power spectral density estimates.

• If x and y are matrices with the same number of rows but different numbers of columns, then
cpsd returns a three-dimensional array, pxy, containing cross power spectral density estimates
for all combinations of input columns. Each column of pxy corresponds to a column of x, and each
page corresponds to a column of y: pxy(:,m,n) = cpsd(x(:,m),y(:,n)).

• If x and y are matrices of equal size, then cpsd operates column-wise: pxy(:,n) =
cpsd(x(:,n),y(:,n)). To obtain a multi-input/multi-output array, append 'mimo' to the
argument list.

For real x and y, cpsd returns a one-sided CPSD. For complex x or y, cpsd returns a two-sided
CPSD.

pxy = cpsd(x,y,window) uses window to divide x and y into segments and perform windowing.

pxy = cpsd(x,y,window,noverlap) uses noverlap samples of overlap between adjoining
segments.

pxy = cpsd(x,y,window,noverlap,nfft) uses nfft sampling points to calculate the discrete
Fourier transform.

 cpsd

1-209

pxy = cpsd(___ ,'mimo') computes a multi-input/multi-output array of cross power spectral
density estimates. This syntax can include any combination of input arguments from previous
syntaxes.

[pxy,w] = cpsd(___) returns a vector of normalized frequencies, w, at which the cross power
spectral density is estimated.

[pxy,f] = cpsd(___ ,fs) returns a vector of frequencies, f, expressed in terms of the sample
rate, fs, at which the cross power spectral density is estimated. fs must be the sixth numeric input
to cpsd. To input a sample rate and still use the default values of the preceding optional arguments,
specify these arguments as empty, [].

[pxy,w] = cpsd(x,y,window,noverlap,w) returns the cross power spectral density estimates
at the normalized frequencies specified in w.

[pxy,f] = cpsd(x,y,window,noverlap,f,fs) returns the cross power spectral density
estimates at the frequencies specified in f.

[___] = cpsd(x,y, ___ ,freqrange) returns the cross power spectral density estimate over the
frequency range specified by freqrange. Valid options for freqrange are 'onesided',
'twosided', and 'centered'.

cpsd(___) with no output arguments plots the cross power spectral density estimate in the current
figure window.

Examples

Cross Power Spectral Density of Colored Noise Signals

Generate two colored noise signals and plot their cross power spectral density. Specify a length-1024
FFT and a 500-point triangular window with no overlap.

r = randn(16384,1);

hx = fir1(30,0.2,rectwin(31));
x = filter(hx,1,r);

hy = ones(1,10)/sqrt(10);
y = filter(hy,1,r);

cpsd(x,y,triang(500),250,1024)

1 Functions

1-210

SISO and MIMO Cross Power Spectral Densities

Generate two two-channel sinusoids sampled at 1 kHz for 1 second. The channels of the first signal
have frequencies of 200 Hz and 300 Hz. The channels of the second signal have frequencies of 300
Hz and 400 Hz. Both signals are embedded in unit-variance white Gaussian noise.

fs = 1e3;
t = (0:1/fs:1-1/fs)';

q = 2*sin(2*pi*[200 300].*t);
q = q+randn(size(q));

r = 2*sin(2*pi*[300 400].*t);
r = r+randn(size(r));

Compute the cross power spectral density of the two signals. Use a 256-sample Bartlett window to
divide the signals into segments and window the segments. Specify 128 samples of overlap between
adjoining segments and 2048 DFT points. Use the built-in functionality of cpsd to plot the result.

cpsd(q,r,bartlett(256),128,2048,fs)

 cpsd

1-211

By default, cpsd works column-by-column on matrix inputs of the same size. Each channel peaks at
the frequencies of the original sinusoids.

Repeat the calculation, but now append 'mimo' to the list of arguments.

cpsd(q,r,bartlett(256),128,2048,fs,'mimo')

1 Functions

1-212

When called with the 'mimo' option, cpsd returns a three-dimensional array containing cross power
spectral density estimates for all combinations of input columns. The estimate of the second channel
of q and the first channel of r shows an enhanced peak at the common frequency of 300 Hz.

Cross Spectrum Phase of Lagged Sinusoids

Generate two 100 Hz sinusoidal signals sampled at 1 kHz for 296 ms. One of the sinusoids lags the
other by 2.5 ms, equivalent to a phase lag of π/2. Both signals are embedded in white Gaussian noise
of variance 1/4².

Fs = 1000;
t = 0:1/Fs:0.296;

x = cos(2*pi*t*100)+0.25*randn(size(t));
tau = 1/400;
y = cos(2*pi*100*(t-tau))+0.25*randn(size(t));

Compute and plot the magnitude of the cross power spectral density. Use the default settings for
cpsd. The magnitude peaks at the frequency where there is significant coherence between the
signals.

cpsd(x,y,[],[],[],Fs)

 cpsd

1-213

Plot magnitude-squared coherence function and the phase of the cross spectrum. The ordinate at the
high-coherence frequency corresponds to the phase lag between the sinusoids.

[Cxy,F] = mscohere(x,y,[],[],[],Fs);

[Pxy,F] = cpsd(x,y,[],[],[],Fs);

subplot(2,1,1)
plot(F,Cxy)
title('Magnitude-Squared Coherence')

subplot(2,1,2)
plot(F,angle(Pxy))

hold on
plot(F,2*pi*100*tau*ones(size(F)),'--')
hold off

xlabel('Hz')
ylabel('\Theta(f)')
title('Cross Spectrum Phase')

1 Functions

1-214

Cross Power Spectral Density of Exponential Sequences

Generate two N-sample exponential sequences, xa = an and xb = bn, with n ≥ 0. Specify a = 0 . 8,
b = 0 . 9, and a small N to see finite-size effects.

N = 10;
n = 0:N-1;

a = 0.8;
b = 0.9;

xa = a.^n;
xb = b.^n;

Compute and plot the cross power spectral density of the sequences over the complete interval of
normalized frequencies, [− π, π]. Specify a rectangular window of length N and no overlap between
segments.

w = -pi:1/1000:pi;
wind = rectwin(N);
nove = 0;

[pxx,f] = cpsd(xa,xb,wind,nove,w);

The cross power spectrum of the two sequences has an analytic expression for large N:

 cpsd

1-215

R(ω) = 1
1 − ae− jω

1
1 − be jω .

Convert this expression to a cross power spectral density by dividing it by 2πN. Compare the results.
The ripple in the cpsd result is a consequence of windowing.

nfac = 2*pi*N;

X = 1./(1-a*exp(-1j*w));
Y = 1./(1-b*exp(1j*w));
R = X.*Y/nfac;

semilogy(f/pi,abs(pxx))
hold on
semilogy(w/pi,abs(R))
hold off
legend('cpsd','Analytic')

Repeat the calculation with N = 25. The curves agree to six figures for N as small as 100.

N = 25;
n = 0:N-1;
xa = a.^n;
xb = b.^n;

wind = rectwin(N);

1 Functions

1-216

[pxx,f] = cpsd(xa,xb,wind,nove,w);
R = X.*Y/(2*pi*N);

semilogy(f/pi,abs(pxx))
hold on
semilogy(w/pi,abs(R))
hold off
legend('cpsd','Analytic')

Dial Tone Recognition

Use cross power spectral density to identify a highly corrupted tone.

The sound signals generated when you dial a number or symbol on a digital phone are sums of
sinusoids with frequencies taken from two different groups. Each pair of tones contains one
frequency of the low group (697 Hz, 770 Hz, 852 Hz, or 941 Hz) and one frequency of the high group
(1209 Hz, 1336 Hz, or 1477 Hz).

 cpsd

1-217

Generate signals corresponding to all the symbols. Sample each tone at 4 kHz for half a second.
Prepare a reference table.

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

nms = ['1';'2';'3';'4';'5';'6';'7';'8';'9';'*';'0';'#'];

ver = [697 770 852 941];
hor = [1209 1336 1477];

v = length(ver);
h = length(hor);

for k = 1:v
 for l = 1:h
 idx = h*(k-1)+l;
 tone = sum(sin(2*pi*[ver(k);hor(l)].*t))';
 tones(:,idx) = tone;
 end
end

Plot the Welch periodogram of each signal and annotate the component frequencies. Use a 200-
sample Hamming window to divide the signals into non-overlapping segments and window the
segments.

[pxx,f] = pwelch(tones,hamming(200),0,[],fs);

for k = 1:v
 for l = 1:h
 idx = h*(k-1)+l;
 ax = subplot(v,h,idx);
 plot(f,10*log10(pxx(:,idx)))
 ylim([-80 0])
 title(nms(idx))
 tx = [ver(k);hor(l)];
 ax.XTick = tx;
 ax.XTickLabel = int2str(tx);
 end
end

1 Functions

1-218

A signal produced by dialing the number 8 is sent through a noisy channel. The received signal is so
corrupted that the number cannot be identified by inspection.

mys = sum(sin(2*pi*[ver(3);hor(2)].*t))'+5*randn(size(t'));

% To hear, type soundsc(mys,fs)

Compute the cross power spectral density of the corrupted signal and the reference signals. Window
the signals using a 512-sample Kaiser window with shape factor β = 5. Plot the magnitude of each
spectrum.

[pxy,f] = cpsd(mys,tones,kaiser(512,5),100,[],fs);

for k = 1:v
 for l = 1:h
 idx = h*(k-1)+l;
 ax = subplot(v,h,idx);
 plot(f,10*log10(abs(pxy(:,idx))))
 ylim([-80 0])
 title(nms(idx))
 tx = [ver(k);hor(l)];
 ax.XTick = tx;
 ax.XTickLabel = int2str(tx);
 end
end

 cpsd

1-219

The digit in the corrupted signal has the spectrum with the highest peaks and the highest RMS value.

[~,loc] = max(rms(abs(pxy)));

digit = nms(loc)

digit =
'8'

Input Arguments
x, y — Input signals
vectors | matrices

Input signals, specified as vectors or matrices.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments.

1 Functions

1-220

• If window is an integer, then cpsd divides x and y into segments of length window and windows
each segment with a Hamming window of that length.

• If window is a vector, then cpsd divides x and y into segments of the same length as the vector
and windows each segment using window.

If the length of x and y cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then the signals are truncated accordingly.

If you specify window as empty, then cpsd uses a Hamming window such that x and y are divided
into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

• If window is scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then cpsd uses a number that produces 50% overlap between
segments. If the segment length is unspecified, the function sets noverlap to ⌊N/4.5⌋, where N is the
length of the input and output signals.
Data Types: double | single

nfft — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer. If you specify nfft as empty, then cpsd sets
the parameter to max(256,2p), where p = ⌈log2 N⌉ for input signals of length N.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

 cpsd

1-221

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for cross power spectral density estimate
'onesided' | 'twosided' | 'centered'

Frequency range for cross power spectral density estimate, specified as 'onesided', 'twosided',
or 'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals.

• 'onesided' — Returns the one-sided estimate of the cross power spectral density of two real-
valued input signals, x and y. If nfft is even, pxy has nfft/2 + 1 rows and is computed over the
interval [0,π] rad/sample. If nfft is odd, pxy has (nfft + 1)/2 rows and the interval is [0,π) rad/
sample. If you specify fs, the corresponding intervals are [0,fs/2] cycles/unit time for even nfft
and [0,fs/2) cycles/unit time for odd nfft.

• 'twosided' — Returns the two-sided estimate of the cross power spectral density of two real-
valued or complex-valued input signals, x and y. In this case, pxy has nfft rows and is computed
over the interval [0,2π) rad/sample. If you specify fs, the interval is [0,fs) cycles/unit time.

• 'centered' — Returns the centered two-sided estimate of the cross power spectral density of
two real-valued or complex-valued input signals, x and y. In this case, pxy has nfft rows and is
computed over the interval (–π,π] rad/sample for even nfft and (–π,π) rad/sample for odd nfft. If
you specify fs, the corresponding intervals are (–fs/2, fs/2] cycles/unit time for even nfft and (–
fs/2, fs/2) cycles/unit time for odd nfft.

Output Arguments
pxy — Cross power spectral density
vector | matrix | three-dimensional array

Cross power spectral density, returned as a vector, matrix, or three-dimensional array.

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector.

• If pxy is one-sided, w spans the interval [0,π] when nfft is even and [0,π) when nfft is odd.
• If pxy is two-sided, w spans the interval [0,2π).
• If pxy is DC-centered, w spans the interval (–π,π] when nfft is even and (–π,π) when nfft is odd.

Data Types: double | single

f — Frequencies
vector

Frequencies, returned as a real-valued column vector.
Data Types: double | single

1 Functions

1-222

More About
Cross Power Spectral Density

The cross power spectral density is the distribution of power per unit frequency and is defined as

Pxy(ω) = ∑
m = −∞

∞
Rxy(m)e− jωm .

The cross-correlation sequence is defined as

Rxy(m) = E xn + myn
∗ = E xnyn−m

∗ ,

where xn and yn are jointly stationary random processes, –∞ < n < ∞, −∞ < n < ∞, and E {· } is the
expected value operator.

Algorithms
cpsd uses Welch’s averaged, modified periodogram method of spectral estimation.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd

Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[2] Rabiner, Lawrence R., and B. Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 414–419.

[3] Welch, Peter D. “The Use of the Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on
Audio and Electroacoustics, Vol. AU-15, June 1967, pp. 70–73.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mscohere | pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear |
tfestimate

Topics
“Cross Spectrum and Magnitude-Squared Coherence”

 cpsd

1-223

Introduced before R2006a

1 Functions

1-224

cusum
Detect small changes in mean using cumulative sum

Syntax
[iupper,ilower] = cusum(x)

[iupper,ilower] = cusum(x,climit,mshift,tmean,tdev)

[iupper,ilower] = cusum(___ ,'all')
[iupper,ilower,uppersum,lowersum] = cusum(___)

cusum(___)

Description
[iupper,ilower] = cusum(x) returns the first index of the upper and lower cumulative sums of x
that have drifted beyond five standard deviations above and below a target mean. The minimum
detectable mean shift is set to one standard deviation. The target mean and standard deviations are
estimated from the first 25 samples of x.

[iupper,ilower] = cusum(x,climit,mshift,tmean,tdev) specifies climit, the number of
standard deviations that the upper and lower cumulative sums are allowed to drift from the mean. It
also specifies the minimum detectable mean shift, the target mean, and the target standard deviation.

[iupper,ilower] = cusum(___ ,'all') returns all the indices at which the upper and lower
cumulative sums exceed the control limit.

[iupper,ilower,uppersum,lowersum] = cusum(___) also returns the upper and lower
cumulative sums.

cusum(___) with no output arguments plots the upper and lower cumulative sums normalized to
one standard deviation above and below the target mean.

Examples

cusum Default Values

Generate and plot a 100-sample random signal with a linear trend. Reset the random number
generator for reproducible results.

rng('default')

rnds = rand(1,100);
trnd = linspace(0,1,100);

fnc = rnds + trnd;

plot(fnc)

 cusum

1-225

Apply cusum to the function using the default values of the input arguments.

cusum(fnc)

1 Functions

1-226

Compute the mean and standard deviation of the first 25 samples. Apply cusum using these numbers
as the target mean and the target standard deviation. Highlight the point where the cumulative sum
drifts more than five standard deviations beyond the target mean. Set the minimum detectable mean
shift to one standard deviation.

mfnc = mean(fnc(1:25));
sfnc = std(fnc(1:25));

cusum(fnc,5,1,mfnc,sfnc)

 cusum

1-227

Repeat the calculation using a negative linear trend.

nnc = rnds - trnd;

cusum(nnc)

1 Functions

1-228

Unstable Motion Detection

Generate a signal resembling motion about an axle that becomes unstable due to wear. Add white
Gaussian noise of variance 1/9. Reset the random number generator for reproducible results.

rng default

sz = 200;

dr = airy(2,linspace(-14.9371,1.2,sz));
rd = dr + sin(2*pi*(1:sz)/5) + randn(1,sz)/3;

Plot the growing background drift and the resulting signal.

plot(dr)
hold on
plot(rd,'.-')
hold off

 cusum

1-229

Find the mean and standard deviation if the drift is not present and there is no noise. Plot the ideal
noiseless signal and its stable background.

id = 0.3*sin(2*pi*(1:sz)/20);
st = id + sin(2*pi*(1:sz)/5);

mf = mean(st)

mf = -3.8212e-16

sf = std(st)

sf = 0.7401

plot(id)
hold on
plot(st,'.-')
hold off

1 Functions

1-230

Use the CUSUM control chart to pinpoint the onset of instability. Assume that the system becomes
unstable when the signal is three standard deviations beyond its ideal behavior. Specify a minimum
detectable shift of one standard deviation.

cusum(rd,3,1,mf,sf)

 cusum

1-231

Make the violation criterion more strict by increasing the minimum detectable shift. Return all
instances of unwanted drift.

cusum(rd,3,1.2,mf,sf,'all')

1 Functions

1-232

Golf Scorecards

Every hole in golf has an associated "par" that indicates the expected number of strokes needed to
sink the ball. Skilled players usually complete each hole with a number of strokes very close to par. It
is necessary to play several holes and let scores accumulate before a clear winner emerges in a
match.

Ben, Jen, and Ken play a full round, which consists of 18 holes. The course has an assortment of
par-3, par-4, and par-5 holes. At the end of the game, the players tabulate their scores.

hole = 1:18;
par = [4 3 5 3 4 5 3 4 4 4 5 3 5 4 4 4 3 4];

nms = {'Ben';'Jen';'Ken'};

Ben = [4 3 4 2 3 5 2 3 3 4 3 2 3 3 3 3 2 3];
Jen = [4 3 4 3 4 4 3 4 4 4 5 3 4 4 5 5 3 3];
Ken = [4 3 4 3 5 5 4 4 4 4 5 3 5 4 5 4 3 5];

T = table(hole',par',Ben',Jen',Ken', ...
 'VariableNames',['hole';'par';nms])

T=18×5 table
 hole par Ben Jen Ken

 cusum

1-233

 ____ ___ ___ ___ ___

 1 4 4 4 4
 2 3 3 3 3
 3 5 4 4 4
 4 3 2 3 3
 5 4 3 4 5
 6 5 5 4 5
 7 3 2 3 4
 8 4 3 4 4
 9 4 3 4 4
 10 4 4 4 4
 11 5 3 5 5
 12 3 2 3 3
 13 5 3 4 5
 14 4 3 4 4
 15 4 3 5 5
 16 4 3 5 4
 ⋮

The winner of the round is the player whose lower cumulative sum drifts the most below par at the
end. Compute the sums for the three players to determine the winner. Make every shift in mean
detectable by setting a small threshold.

[~,b,~,Bensum] = cusum(Ben-par,1,1e-4,0);
[~,j,~,Jensum] = cusum(Jen-par,1,1e-4,0);
[~,k,~,Kensum] = cusum(Ken-par,1,1e-4,0);

plot([Bensum;Jensum;Kensum]')
legend(nms,'Location','best')

1 Functions

1-234

Ben wins the round. Simulate their next game by adding or subtracting a stroke per hole at random.

Ben = Ben+randi(3,1,18)-2;
Jen = Jen+randi(3,1,18)-2;
Ken = Ken+randi(3,1,18)-2;

[~,b,~,Bensum] = cusum(Ben-par,1,1e-4,0);
[~,j,~,Jensum] = cusum(Jen-par,1,1e-4,0);
[~,k,~,Kensum] = cusum(Ken-par,1,1e-4,0);

plot([Bensum;Jensum;Kensum]')
legend(nms,'Location','best')

 cusum

1-235

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Example: reshape(rand(100,1)*[-1 1],1,200)

climit — Control limit
5 (default) | real scalar

Control limit, specified as a real scalar expressed in standard deviations.

mshift — Minimum mean shift to detect
1 (default) | real scalar

Minimum mean shift to detect, specified as a real scalar expressed in standard deviations.

tmean — Target mean
mean(x(1:25)) (default) | real scalar

Target mean, specified as a real scalar. If tmean is not specified, then it is estimated as the mean of
the first 25 samples of x.

1 Functions

1-236

tdev — Target standard deviation
std(x(1:25)) (default) | real scalar

Target standard deviation, specified as a real scalar. If tdev is not specified, then it is estimated as
the standard deviation of the first 25 samples of x.

Output Arguments
iupper,ilower — Out-of-control point indices
integer scalars | integer vectors

Out-of-control point indices, returned as integer scalars or vectors. If all signal samples are within the
specified tolerance, then cusum returns empty iupper and ilower arguments.

uppersum,lowersum — Upper and lower cumulative sums
vectors

Upper and lower cumulative sums, returned as vectors.

More About
CUSUM Control Chart

The CUSUM control chart is designed to detect small incremental changes in the mean of a process.

Given a sequence x1, x2, x3, …, xn with estimated average mx and estimated standard deviation σx,
define upper and lower cumulative process sums using:

• Upper cumulative sum

Ui =
0, i = 1

max(0, Ui− 1 + xi−mx− 1
2nσx), i > 1

• Lower sum

Li =
0, i = 1

min(0, Li− 1 + xi−mx + 1
2nσx), i > 1

The variable n, represented in cusum by the mshift argument, is the number of standard deviations
from the target mean, tmean, that make a shift detectable.

A process violates the CUSUM criterion at the sample xj if it obeys Uj > cσx or Lj < –cσx. The control
limit c is represented in cusum by the climit argument.

By default, the function returns the first violation it detects. If you specify the 'all' flag, the
function returns every violation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 cusum

1-237

If supplied, input argument 'all' must be a compile-time constant.

See Also
findchangepts | mean

Introduced in R2016a

1 Functions

1-238

czt
Chirp Z-transform

Syntax
y = czt(x,m,w,a)

Description
y = czt(x,m,w,a) returns the length-m chirp Z-transform (CZT) of x along the spiral contour on
the z-plane defined by w and a through z = a*w.^-(0:m-1).

With the default values of m, w, and a, czt returns the Z-transform of x at m equally spaced points
around the unit circle, a result equivalent to the discrete Fourier transform (DFT) of x as given by
fft(x).

Examples

CZT of a Random Vector

Create a random vector, x, of length 1013. Compute its DFT using czt.

rng default
x = randn(1013,1);
y = czt(x);

Narrowband Section of Frequency Response

Use czt to zoom in on a narrow-band section of a filter's frequency response.

Design a 30th-order lowpass FIR filter using the window method. Specify a sample rate of 1 kHz and
a cutoff frequency of 125 Hz. Use a rectangular window. Find the transfer function of the filter.

fs = 1000;
d = designfilt('lowpassfir','FilterOrder',30,'CutoffFrequency',125, ...
 'DesignMethod','window','Window',@rectwin,'SampleRate',fs);
h = tf(d);

Compute the DFT and the CZT of the filter. Restrict the frequency range of the CZT to the band
between 75 and 175 Hz. Generate 1024 samples in each case.

m = 1024;
y = fft(h,m);

f1 = 75;
f2 = 175;
w = exp(-j*2*pi*(f2-f1)/(m*fs));

 czt

1-239

a = exp(j*2*pi*f1/fs);
z = czt(h,m,w,a);

Plot the transforms. Zoom in on the area of interest.

fn = (0:m-1)'/m;
fy = fs*fn;
fz = (f2-f1)*fn + f1;

plot(fy,abs(y),fz,abs(z))
xlim([50 200])
legend('FFT','CZT')
xlabel('Frequency (Hz)')

Input Arguments
x — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, a matrix, or a 3-D array. If x is a matrix, the function transforms
the columns of x. If x is a 3-D array, the function operates along the first array dimension with size
greater than 1.
Example: sin(pi./[4;2]*(0:159))' specifies a two-channel sinusoid.
Data Types: single | double

1 Functions

1-240

Complex Number Support: Yes

m — Transform length
length(x) (default) | positive integer scalar

Transform length, specified as a positive integer scalar.
Data Types: single | double

w — Ratio between spiral contour points
exp(-2j*pi/m) (default) | complex scalar

Ratio between spiral contour points, specified as a complex scalar.
Data Types: single | double
Complex Number Support: Yes

a — Spiral contour initial point
1 (default) | complex scalar

Spiral contour initial point, specified as a complex scalar.
Example: exp(1j*pi/4) lies along the unit circle on the z-plane and makes an angle of 45 degrees
with the real axis.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
y — Chirp Z-transform
vector | matrix

Chirp Z-transform, returned as a vector or matrix.

Algorithms
czt uses the next power-of-2 length FFT to perform a fast convolution when computing the Z-
transform on a specified chirp contour [1].

References
[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Automatic dimension restriction” (MATLAB Coder).

 czt

1-241

• 3-D arrays are not supported for code generation.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fft | freqz

Topics
“Chirp Z-Transform”

Introduced before R2006a

1 Functions

1-242

db
Convert energy or power measurements to decibels

Syntax
dboutput = db(x)
dboutput = db(x,SignalType)
dboutput = db(x,R)
dboutput = db(x,'voltage',R)

Description
dboutput = db(x) converts the elements of x to decibels (dB). This syntax assumes that x contains
voltage measurements across a resistance of 1 Ω.

dboutput = db(x,SignalType) specifies the signal type represented by the elements of x as
either 'voltage' or 'power'.

dboutput = db(x,R) specifies the resistance, R, for voltage measurements.

dboutput = db(x,'voltage',R) is equivalent to db(x,R).

Examples

Decibels from Voltage and Power

Express a unit voltage in decibels. Assume that the resistance is 2 ohms. Compare the answer to the
definition, 10log10

1
2.

V = 1;
R = 2;
dboutput = db(V,2);
compvoltage = [dboutput 10*log10(1/2)]

compvoltage = 1×2

 -3.0103 -3.0103

Convert a vector of power measurements to decibels. Compare the answer to the result of using the
definition.

rng default
X = abs(rand(10,1));
dboutput = db(X,'power');
comppower = [dboutput 10*log10(X)]

comppower = 10×2

 -0.8899 -0.8899

 db

1-243

 -0.4297 -0.4297
 -8.9624 -8.9624
 -0.3935 -0.3935
 -1.9904 -1.9904
 -10.1082 -10.1082
 -5.5518 -5.5518
 -2.6211 -2.6211
 -0.1886 -0.1886
 -0.1552 -0.1552

Input Arguments
x — Signal measurements
scalar | vector | matrix | N-D array

Signal measurements, specified as a scalar, vector, matrix, or N-D array.
Data Types: single | double
Complex Number Support: Yes

SignalType — Type of signal measurements
'voltage' (default) | 'power'

Type of signal measurements, specified as either 'voltage' or 'power'. If you specify SignalType
as 'power', then all elements of x must be nonnegative.

R — Resistive load
1 Ω (default) | positive scalar

Resistive load, specified as a positive scalar expressed in ohms. This argument is ignored if you
specify SignalType as 'power'.
Data Types: single | double

Output Arguments
dboutput — Energy or power measurements in decibels
scalar | vector | matrix | N-D array

Energy or power measurements in decibels, returned as an array with the same dimensions as x.

• If x contains voltage measurements, then dboutput is 10 log10 x 2/R .

• If the input x contains power measurements, then dboutput is 10 log10x .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
db2mag | db2pow | mag2db | pow2db

1 Functions

1-244

Introduced in R2011b

 db

1-245

db2mag
Convert decibels to magnitude

Syntax
y = db2mag(ydb)

Description
y = db2mag(ydb) returns the magnitude measurements, y, that correspond to the decibel (dB)
values specified in ydb. The relationship between magnitude and decibels is ydb = 20 log10(y).

Examples

Magnitudes of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are expressed in
decibels and compute the corresponding magnitudes.

r = randn(2,4,2);

mags = db2mag(r)

mags =
mags(:,:,1) =

 1.0639 0.7710 1.0374 0.9513
 1.2351 1.1044 0.8602 1.0402

mags(:,:,2) =

 1.5098 0.8561 1.0871 1.0858
 1.3755 1.4182 0.9928 0.9767

Use the definition to check the calculation.

chck = 10.^(r/20)

chck =
chck(:,:,1) =

 1.0639 0.7710 1.0374 0.9513
 1.2351 1.1044 0.8602 1.0402

chck(:,:,2) =

 1.5098 0.8561 1.0871 1.0858
 1.3755 1.4182 0.9928 0.9767

1 Functions

1-246

Input Arguments
ydb — Input array in decibels
scalar | vector | matrix | N-D array

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is nonscalar,
db2mag is an element-wise operation.
Data Types: single | double

Output Arguments
y — Magnitude measurements
scalar | vector | matrix | N-D array

Magnitude measurements, returned as a scalar, vector, matrix, or N-D array of the same size as ydb.

See Also
db | db2pow | mag2db | pow2db

Introduced in R2008a

 db2mag

1-247

db2pow
Convert decibels to power

Syntax
y = db2pow(ydb)

Description
y = db2pow(ydb) returns the power measurements, y, that correspond to the decibel (dB) values
specified in ydb. The relationship between power and decibels is ydb = 10 log10(y).

Examples

Power Values of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are expressed in
decibels and compute the corresponding power measurements.

r = randn(2,4,2);

pows = db2pow(r)

pows =
pows(:,:,1) =

 1.1318 0.5944 1.0762 0.9050
 1.5254 1.2196 0.7400 1.0821

pows(:,:,2) =

 2.2795 0.7328 1.1818 1.1789
 1.8921 2.0114 0.9856 0.9539

Use the definition to check the calculation.

chck = 10.^(r/10)

chck =
chck(:,:,1) =

 1.1318 0.5944 1.0762 0.9050
 1.5254 1.2196 0.7400 1.0821

chck(:,:,2) =

 2.2795 0.7328 1.1818 1.1789
 1.8921 2.0114 0.9856 0.9539

1 Functions

1-248

Input Arguments
ydb — Input array in decibels
scalar | vector | matrix | N-D array

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is nonscalar,
db2pow is an element-wise operation.
Data Types: single | double

Output Arguments
y — Power measurements
scalar | vector | matrix | N-D array

Power measurements, returned as a scalar, vector, matrix, or N-D array of the same size as ydb.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
db | db2mag | mag2db | pow2db

Introduced in R2007b

 db2pow

1-249

dct
Discrete cosine transform

Syntax
y = dct(x)
y = dct(x,n)

y = dct(x,n,dim)

y = dct(___ ,'Type',dcttype)

Description
y = dct(x) returns the unitary discrete cosine transform of input array x. The output y has the
same size as x. If x has more than one dimension, then dct operates along the first array dimension
with size greater than 1.

y = dct(x,n) zero-pads or truncates the relevant dimension of x to length n before transforming.

y = dct(x,n,dim) computes the transform along dimension dim. To input a dimension and use the
default value of n, specify the second argument as empty, [].

y = dct(___ ,'Type',dcttype) specifies the type of discrete cosine transform to compute. See
“Discrete Cosine Transform” on page 1-256 for details. This option can be combined with any of the
previous syntaxes.

Examples

Energy Stored in DCT Coefficients

Find how many DCT coefficients represent 99% of the energy in a sequence.

x = (1:100) + 50*cos((1:100)*2*pi/40);
X = dct(x);
[XX,ind] = sort(abs(X),'descend');
i = 1;
while norm(X(ind(1:i)))/norm(X) < 0.99
 i = i + 1;
end
needed = i;

Reconstruct the signal and compare it to the original signal.

X(ind(needed+1:end)) = 0;
xx = idct(X);

plot([x;xx]')
legend('Original',['Reconstructed, N = ' int2str(needed)], ...
 'Location','SouthEast')

1 Functions

1-250

Image Data Compression

Load a file that contains depth measurements of a mold used to mint a United States penny. The data,
taken at the National Institute of Standards and Technology, are sampled on a 128-by-128 grid.
Display the data.

load penny

surf(P)
view(2)
colormap copper
shading interp
axis ij square off

 dct

1-251

Compute the discrete cosine transform of the image data. Operate first along the rows and then along
the columns.

Q = dct(P,[],1);
R = dct(Q,[],2);

Find what fraction of DCT coefficients contain 99.98% of the energy in the image.

X = R(:);

[~,ind] = sort(abs(X),'descend');
coeffs = 1;
while norm(X(ind(1:coeffs)))/norm(X) < 0.9998
 coeffs = coeffs + 1;
end
fprintf('%d of %d coefficients are sufficient\n',coeffs,numel(R))

3572 of 16384 coefficients are sufficient

Reconstruct the image using only the necessary coefficients.

R(abs(R) < abs(X(ind(coeffs)))) = 0;

S = idct(R,[],2);
T = idct(S,[],1);

Display the reconstructed image.

1 Functions

1-252

surf(T)
view(2)
shading interp
axis ij square off

Image Resizing

Load a file that contains depth measurements of a mold used to mint a United States penny. The data,
taken at the National Institute of Standards and Technology, are sampled on a 128-by-128 grid.
Display the data.

load penny

surf(P)
view(2)
colormap copper
shading interp
axis ij square off

 dct

1-253

Compute the discrete cosine transform of the image data using the DCT-1 variant. Operate first along
the rows and then along the columns.

Q = dct(P,[],1,'Type',1);
R = dct(Q,[],2,'Type',1);

Invert the transform. Truncate the inverse so that each dimension of the reconstructed image is one-
half the length of the original.

S = idct(R,size(P,2)/2,2,'Type',1);
T = idct(S,size(P,1)/2,1,'Type',1);

Invert the transform again. Zero-pad the inverse so that each dimension of the reconstructed image is
twice the length of the original.

U = idct(R,size(P,2)*2,2,'Type',1);
V = idct(U,size(P,1)*2,1,'Type',1);

Display the original and reconstructed images.

surf(V)
view(2)
shading interp
hold on

surf(P)
view(2)
shading interp

1 Functions

1-254

surf(T)
view(2)
shading interp
hold off
axis ij equal off

Input Arguments
x — Input array
vector | matrix | N-D array | gpuArray object

Input array, specified as a real-valued or complex-valued vector, matrix, N-D array, or gpuArray
object.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Example: sin(2*pi*(0:255)/4) specifies a sinusoid as a row vector.
Example: sin(2*pi*[0.1;0.3]*(0:39))' specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

n — Transform length
positive integer scalar

 dct

1-255

Transform length, specified as a positive integer scalar.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.
Data Types: single | double

dcttype — Discrete cosine transform type
2 (default) | 1 | 3 | 4

Discrete cosine transform type, specified as a positive integer scalar from 1 to 4. See “Discrete
Cosine Transform” on page 1-256 for the definitions of the different types of DCT.
Data Types: single | double

Output Arguments
y — Discrete cosine transform
vector | matrix | N-D array | gpuArray object

Discrete cosine transform, returned as a real-valued or complex-valued vector, matrix, N-D array, or
gpuArray object.

More About
Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. You can often
reconstruct a sequence very accurately from only a few DCT coefficients. This property is useful for
applications requiring data reduction.

The DCT has four standard variants. For a signal x of length N, and with δkℓ the Kronecker delta, the
transforms are defined by:

• DCT-1:

y(k) = 2
N − 1 ∑n = 1

N
x(n) 1

1 + δn1 + δnN

1
1 + δk1 + δkN

cos π
N − 1(n− 1)(k− 1)

• DCT-2:

y(k) = 2
N ∑

n = 1

N
x(n) 1

1 + δk1
cos π

2N (2n− 1)(k− 1)

• DCT-3:

y(k) = 2
N ∑

n = 1

N
x(n) 1

1 + δn1
cos π

2N (n− 1)(2k− 1)

• DCT-4:

1 Functions

1-256

y(k) = 2
N ∑

n = 1

N
x(n)cos π

4N (2n− 1)(2k− 1)

The series are indexed from n = 1 and k = 1 instead of the usual n = 0 and k = 0, because MATLAB
vectors run from 1 to N instead of from 0 to N – 1.

All variants of the DCT are unitary (or, equivalently, orthogonal): To find their inverses, switch k and n
in each definition. DCT-1 and DCT-4 are their own inverses. DCT-2 and DCT-3 are inverses of each
other.

References
[1] Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[3] Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression Standard. New York: Van
Nostrand Reinhold, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C and C++ code generation for dct requires DSP System Toolbox™ software.
• The length of the transform dimension must be a power of two. If specified, the pad or truncation

value must be constant. Expressions or variables are allowed if their values do not change.
• Inputs must be double precision.
• Only DCT-2 is allowed.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• N-D input arrays are not supported.
• The dim and dcttype input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

 dct

1-257

See Also
fft | idct | dct2 | idct2

Topics
“DCT for Speech Signal Compression”

Introduced before R2006a

1 Functions

1-258

decimate
Decimation — decrease sample rate by integer factor

Syntax
y = decimate(x,r)
y = decimate(x,r,n)
y = decimate(x,r,'fir')
y = decimate(x,r,n,'fir')

Description
y = decimate(x,r) reduces the sample rate of x, the input signal, by a factor of r. The decimated
vector, y, is shortened by a factor of r so that length(y) = ceil(length(x)/r). By default,
decimate uses a lowpass Chebyshev Type I infinite impulse response (IIR) filter of order 8.

y = decimate(x,r,n) uses a Chebyshev filter of order n.

y = decimate(x,r,'fir') uses a finite impulse response (FIR) filter designed using the window
method with a Hamming window. The filter has an order of 30.

y = decimate(x,r,n,'fir') uses an FIR filter of order n.

Examples

Decimate Signal

Create a sinusoidal signal sampled at 4 kHz. Decimate it by a factor of four.

t = 0:1/4e3:1;
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = decimate(x,4);

Plot the original and decimated signals.

subplot(2,1,1)
stem(0:120,x(1:121),'filled','MarkerSize',3)
grid on
xlabel('Sample Number')
ylabel('Original')

subplot(2,1,2)
stem(0:30,y(1:31),'filled','MarkerSize',3)
grid on
xlabel('Sample Number')
ylabel('Decimated')

 decimate

1-259

Decimate Signal Using Chebyshev Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using a Chebyshev IIR filter of order
5. Plot the original and decimated signals.

r = 13;
n = 16:365;
lx = length(n);
x = sin(2*pi*n/153) + cos(2*pi*n/127);

plot(0:lx-1,x,'o')
hold on
y = decimate(x,r,5);
stem(lx-1:-r:0,fliplr(y),'ro','filled','markersize',4)

legend('Original','Decimated','Location','south')
xlabel('Sample number')
ylabel('Signal')

1 Functions

1-260

The original and decimated signals have matching last elements.

Decimate Signal Using FIR Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using an FIR filter of order 82. Plot
the original and decimated signals.

r = 13;
n = 16:365;
lx = length(n);
x = sin(2*pi*n/153) + cos(2*pi*n/127);

plot(0:lx-1,x,'o')
hold on
y = decimate(x,r,82,'fir');
stem(0:r:lx-1,y,'ro','filled','markersize',4)

legend('Original','Decimated','Location','south')
xlabel('Sample number')
ylabel('Signal')

 decimate

1-261

The original and decimated signals have matching first elements.

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Data Types: double

r — Decimation factor
positive integer

Decimation factor, specified as a positive integer. For better results when r is greater than 13, divide
r into smaller factors and call decimate several times.
Data Types: double

n — Filter order
positive integer

Filter order, specified as a positive integer. IIR filter orders above 13 are not recommended because
of numerical instability. The function displays a warning in those cases.
Data Types: double

1 Functions

1-262

Output Arguments
y — Decimated signal
vector

Decimated signal, returned as a vector.
Data Types: double

Algorithms
Decimation reduces the original sample rate of a sequence to a lower rate. It is the opposite of
interpolation. decimate lowpass filters the input to guard against aliasing and downsamples the
result. The function uses decimation algorithms 8.2 and 8.3 from [1].

1 decimate creates a lowpass filter. The default is a Chebyshev Type I filter designed using
cheby1. This filter has a normalized cutoff frequency of 0.8/r and a passband ripple of 0.05 dB.
Sometimes, the specified filter order produces passband distortion due to round-off errors
accumulated from the convolutions needed to create the transfer function. decimate
automatically reduces the filter order when distortion causes the magnitude response at the
cutoff frequency to differ from the ripple by more than 10–6.

When the 'fir' option is chosen, decimate uses fir1 to design a lowpass FIR filter with cutoff
frequency 1/r.

2 When using the FIR filter, decimate filters the input sequence in only one direction. This
conserves memory and is useful for working with long sequences. In the IIR case, decimate
applies the filter in the forward and reverse directions using filtfilt to remove phase
distortion. In effect, this process doubles the filter order. In both cases, the function minimizes
transient effects at both ends of the signal by matching endpoint conditions.

3 Finally, decimate resamples the data by selecting every rth point from the interior of the
filtered signal. In the resampled sequence (y), y(end) matches x(end) when the IIR filter is
used, and y(1) matches x(1) when the FIR filter is used.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979.

See Also
cheby1 | downsample | filtfilt | fir1 | interp | resample

Introduced before R2006a

 decimate

1-263

demod
Demodulation for communications simulation

Syntax
x = demod(y,fc,fs,method)
x = demod(y,fc,fs,method,opt)

Description
x = demod(y,fc,fs,method) demodulates the real carrier signal y with a carrier frequency fc
and sample rate fs using the method specified in method.

x = demod(y,fc,fs,method,opt) demodulates the real carrier signal y using the additional
options specified in opt.

Examples

Frequency Modulation and Demodulation

Generate a 150 Hz sinusoid sampled at 8 kHz for 1 second. Embed the modulated signal in white
Gaussian noise of variance 0.1².

fs = 8e3;

t = 0:1/fs:1-1/fs;
s = cos(2*pi*150*t) + randn(size(t))/10;

Frequency modulate the signal at a carrier frequency of 3 kHz using a modulation constant of 0.1.

fc = 3e3;
rx = modulate(s,fc,fs,'fm',0.1);

Frequency demodulate the signal using the same carrier frequency and modulation constant.
Compute and plot power spectrum estimates for the transmitted, received, and demodulated signals.

y = demod(rx,fc,fs,'fm',0.1);

pspectrum([s;rx;y]',fs,'Leakage',0.85)

legend('Transmitted signal','Received signal','Demodulated signal','Location','best')

1 Functions

1-264

Input Arguments
y — Modulated signal
real vector | real matrix

Modulated message signal, specified as a real vector or matrix. Except for the methods pwm and ppm,
y is the same size as x.

fc — Carrier frequency
real positive scalar

Carrier frequency used to modulate the message signal, specified as a real positive scalar.

fs — Sample rate
real positive scalar

Sample rate, specified as a real positive scalar.

method — Method of modulation used
'am' (default) | 'amdsb-tc' | 'amssb' | 'fm' | 'pm' | 'pwm' | 'ppm' | 'qam'

Method of modulation used, specified as one of:

• am or amdsb-sc — Amplitude demodulation, double sideband, suppressed carrier. Multiplies y by
a sinusoid of frequency fc and applies a fifth-order Butterworth lowpass filter using filtfilt.

 demod

1-265

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

• amdsb-tc — Amplitude demodulation, double sideband, transmitted carrier. Multiplies y by a
sinusoid of frequency fc and applies a fifth-order Butterworth lowpass filter using filtfilt.

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x. The default value for opt is 0.
• amssb — Amplitude demodulation, single sideband. Multiplies y by a sinusoid of frequency fc and

applies a fifth-order Butterworth lowpass filter using filtfilt..

x = y.*cos(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

• fm — Frequency demodulation. Demodulates the FM waveform by modulating the Hilbert
transform of y by a complex exponential of frequency -fc Hz and obtains the instantaneous
frequency of the result..

y=cos(2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation of the integral of x. modulate uses opt as the constant of
frequency modulation. If you do not specify the opt parameter, modulate uses a default of
opt = (fc/fs)*2*pi/(max(max(x))) so the maximum frequency excursion from fc is fc Hz.

• pm — Phase demodulation. Demodulates the PM waveform by modulating the Hilbert transform of
y by a complex exponential of frequency -fc Hz and obtains the instantaneous phase of the
result.

y=cos(2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If you do not specify the opt parameter,
modulate uses a default of opt = pi/(max(max(x))) so the maximum phase excursion is π
radians.

• pwm — Pulse-width demodulation. Finds the pulse widths of a pulse-width modulated signal y.
demod returns in x a vector whose elements specify the width of each pulse in fractions of a
period. The pulses in y should start at the beginning of each carrier period, that is, they should be
left justified. modulate(x,fc,fs,'pwm','centered') yields pulses centered at the beginning
of each period. The length of y is length(x)*fs/fc.

• ppm — Pulse-position demodulation. Finds the pulse positions of a pulse-position modulated signal
y. For correct demodulation, the pulses cannot overlap. x is length length(t)*fc/fs.

• qam— Quadrature amplitude demodulation. [x1,x2] = demod(y,fc,fs,'qam') multiplies y
by a cosine and a sine of frequency fc and applies a fifth-order Butterworth lowpass filter using
filtfilt.

x1 = y.*cos(2*pi*fc*t);
x2 = y.*sin(2*pi*fc*t);
[b,a] = butter(5,fc*2/fs);
x1 = filtfilt(b,a,x1);
x2 = filtfilt(b,a,x2);

The input argument opt must be the same size as y.

1 Functions

1-266

opt — Optional input for some methods
real vector

Optional input, specified for some methods. Refer to method for more details on how to use opt.

Output Arguments
x — Demodulated message signal
real vector | real matrix

Demodulated message signal, returned as a real vector or matrix.

See Also
modulate | vco | fskdemod | genqamdemod | mskdemod | pamdemod | pmdemod | qamdemod

Introduced before R2006a

 demod

1-267

designfilt
Design digital filters

Note designfilt no longer assists in correcting calls to the function within a script or function. For
more information, see “Compatibility Considerations”.

Syntax
d = designfilt(resp,Name,Value)

designfilt(d)

Description
d = designfilt(resp,Name,Value) designs a digitalFilter object, d, with response type
resp. Examples of resp are 'lowpassfir' and 'bandstopiir'. Specify the filter further using a
set of “Name-Value Pair Arguments” on page 1-292. The allowed specification sets depend on resp
and consist of combinations of these:

• “Frequency Constraints” on page 1-0 correspond to the frequencies at which a filter exhibits a
desired behavior. Examples include 'PassbandFrequency' and 'CutoffFrequency'. You must
always specify the frequency constraints.

• “Magnitude Constraints” on page 1-0 describe the filter behavior at particular frequency
ranges. Examples include 'PassbandRipple' and 'StopbandAttenuation'. designfilt
provides default values for magnitude constraints left unspecified. In arbitrary-magnitude designs
you must always specify the vectors of desired amplitudes.

• “Filter Order” on page 1-0 . Some design methods let you specify the order. Others produce
minimum-order designs. That is, they generate the smallest filters that satisfy the specified
constraints.

• “Design Method” on page 1-0 is the algorithm used to design the filter. Examples include
constrained least squares ('cls') and Kaiser windowing ('kaiserwin'). For some specification
sets, there are multiple design methods available to choose from. In other cases, you can use only
one method to meet the desired specifications.

• “Design Method Options” on page 1-0 are parameters specific to a given design method.
Examples include 'Window' for the 'window' method and optimization 'Weights' for arbitrary-
magnitude equiripple designs. designfilt provides default values for design options left
unspecified.

• “Sample Rate” on page 1-0 is the frequency at which the filter operates. designfilt has a
default sample rate of 2 Hz. Using this value is equivalent to working with normalized frequencies.

Note If you specify an incomplete or inconsistent set of name-value arguments at the command line,
designfilt offers to open a “Filter Design Assistant” on page 1-297. The assistant helps you design
the filter and pastes the corrected MATLAB code on the command line.

If you call designfilt from a script or function with an incorrect set of specifications, designfilt
issues an error message with a link to open a “Filter Design Assistant” on page 1-297. The assistant

1 Functions

1-268

helps you design the filter and pastes the corrected MATLAB code on the command line. The
designed filter is saved to the workspace.

• Use filter in the form dataOut = filter(d,dataIn) to filter a signal with a
digitalFilter, d. For IIR filters, the filter function uses a direct-form II implementation.

• Use FVTool to visualize a digitalFilter, d.
• Type d.Coefficients to obtain the coefficients of a digitalFilter, d. For IIR filters, the
coefficients are expressed as second-order sections.

• See digitalFilter for a list of the filtering and analysis functions available for use with
digitalFilter objects.

designfilt(d) lets you edit an existing digital filter, d. It opens a “Filter Design Assistant” on page
1-297 populated with the filter’s specifications, which you can then modify. This is the only way you
can edit a digitalFilter object. Its properties are otherwise read-only.

Examples

Lowpass FIR Filter

Design a minimum-order lowpass FIR filter with normalized passband frequency 0 . 25π rad/sample,
stopband frequency 0 . 35π rad/sample, passband ripple 0.5 dB, and stopband attenuation 65 dB. Use
a Kaiser window to design the filter. Visualize its magnitude response. Use it to filter a vector of
random data.

lpFilt = designfilt('lowpassfir','PassbandFrequency',0.25, ...
 'StopbandFrequency',0.35,'PassbandRipple',0.5, ...
 'StopbandAttenuation',65,'DesignMethod','kaiserwin');
fvtool(lpFilt)

 designfilt

1-269

dataIn = rand(1000,1);
dataOut = filter(lpFilt,dataIn);

Lowpass IIR Filter

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Visualize the magnitude response of the filter.

lpFilt = designfilt('lowpassiir','FilterOrder',8, ...
 'PassbandFrequency',35e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
fvtool(lpFilt)

1 Functions

1-270

Use the filter you designed to filter a 1000-sample random signal.

dataIn = randn(1000,1);
dataOut = filter(lpFilt,dataIn);

Output the filter coefficients, expressed as second-order sections.

sos = lpFilt.Coefficients

sos = 4×6

 0.2666 0.5333 0.2666 1.0000 -0.8346 0.9073
 0.1943 0.3886 0.1943 1.0000 -0.9586 0.7403
 0.1012 0.2023 0.1012 1.0000 -1.1912 0.5983
 0.0318 0.0636 0.0318 1.0000 -1.3810 0.5090

Highpass FIR Filter

Design a minimum-order highpass FIR filter with normalized stopband frequency 0 . 25π rad/sample,
passband frequency 0 . 35π rad/sample, passband ripple 0.5 dB, and stopband attenuation 65 dB. Use
a Kaiser window to design the filter. Visualize its magnitude response. Use it to filter 1000 samples of
random data.

hpFilt = designfilt('highpassfir','StopbandFrequency',0.25, ...
 'PassbandFrequency',0.35,'PassbandRipple',0.5, ...

 designfilt

1-271

 'StopbandAttenuation',65,'DesignMethod','kaiserwin');
fvtool(hpFilt)

dataIn = randn(1000,1);
dataOut = filter(hpFilt,dataIn);

Highpass IIR Filter

Design a highpass IIR filter with order 8, passband frequency 75 kHz, and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Visualize the filter's magnitude response. Apply the filter to a 1000-
sample vector of random data.

hpFilt = designfilt('highpassiir','FilterOrder',8, ...
 'PassbandFrequency',75e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
fvtool(hpFilt)

1 Functions

1-272

dataIn = randn(1000,1);
dataOut = filter(hpFilt,dataIn);

Bandpass FIR Filter

Design a 20th-order bandpass FIR filter with lower cutoff frequency 500 Hz and higher cutoff
frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it
to filter a random signal containing 1000 samples.

bpFilt = designfilt('bandpassfir','FilterOrder',20, ...
 'CutoffFrequency1',500,'CutoffFrequency2',560, ...
 'SampleRate',1500);
fvtool(bpFilt)

 designfilt

1-273

dataIn = randn(1000,1);
dataOut = filter(bpFilt,dataIn);

Output the filter coefficients.

b = bpFilt.Coefficients

b = 1×21

 -0.0113 0.0067 0.0125 -0.0445 0.0504 0.0101 -0.1070 0.1407 -0.0464 -0.1127 0.1913 -0.1127 -0.0464 0.1407 -0.1070 0.0101 0.0504 -0.0445 0.0125 0.0067 -0.0113

Bandpass IIR Filter

Design a 20th-order bandpass IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency
560 Hz. The sample rate is 1500 Hz. Visualize the frequency response of the filter. Use it to filter a
1000-sample random signal.

bpFilt = designfilt('bandpassiir','FilterOrder',20, ...
 'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ...
 'SampleRate',1500);
fvtool(bpFilt)

1 Functions

1-274

dataIn = randn(1000,1);
dataOut = filter(bpFilt,dataIn);

Bandstop FIR Filter

Design a 20th-order bandstop FIR filter with lower cutoff frequency 500 Hz and higher cutoff
frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it
to filter 1000 samples of random data.

bsFilt = designfilt('bandstopfir','FilterOrder',20, ...
 'CutoffFrequency1',500,'CutoffFrequency2',560, ...
 'SampleRate',1500);
fvtool(bsFilt)

 designfilt

1-275

dataIn = randn(1000,1);
dataOut = filter(bsFilt,dataIn);

Bandstop IIR Filter

Design a 20th-order bandstop IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency
560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it to filter
1000 samples of random data.

bsFilt = designfilt('bandstopiir','FilterOrder',20, ...
 'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ...
 'SampleRate',1500);
fvtool(bsFilt)

1 Functions

1-276

dataIn = randn(1000,1);
dataOut = filter(bsFilt,dataIn);

FIR Differentiator

Design a full-band differentiator filter of order 7. Display its zero-phase response. Use it to filter a
1000-sample vector of random data.

dFilt = designfilt('differentiatorfir','FilterOrder',7);
fvtool(dFilt,'MagnitudeDisplay','Zero-phase')

 designfilt

1-277

dataIn = randn(1000,1);
dataOut = filter(dFilt,dataIn);

FIR Hilbert Transformer

Design a Hilbert transformer of order 18. Specify a normalized transition width of 0 . 25π rad/sample.
Display in linear units the magnitude response of the filter. Use it to filter a 1000-sample vector of
random data.

hFilt = designfilt('hilbertfir','FilterOrder',18,'TransitionWidth',0.25);
fvtool(hFilt,'MagnitudeDisplay','magnitude')

1 Functions

1-278

dataIn = randn(1000,1);
dataOut = filter(hFilt,dataIn);

Arbitrary-Magnitude FIR Filter

You are given a signal sampled at 1 kHz. Design a filter that stops frequencies between 100 Hz and
350 Hz and frequencies greater than 400 Hz. Specify a filter order of 60. Visualize the frequency
response of the filter. Use it to filter a 1000-sample random signal.

mbFilt = designfilt('arbmagfir','FilterOrder',60, ...
 'Frequencies',0:50:500,'Amplitudes',[1 1 1 0 0 0 0 1 1 0 0], ...
 'SampleRate',1000);
fvtool(mbFilt)

 designfilt

1-279

dataIn = randn(1000,1);
dataOut = filter(mbFilt,dataIn);

Input Arguments
resp — Filter response and type
'lowpassfir' | 'lowpassiir' | 'highpassfir' | 'highpassiir' | 'bandpassfir' |
'bandpassiir' | 'bandstopfir' | 'bandstopiir' | 'differentiatorfir' | 'hilbertfir' |
'arbmagfir'

Filter response and type, specified as a character vector or string scalar.

'lowpassfir' — FIR lowpass filter
response type

Choose this option to design a finite impulse response (FIR) lowpass filter. This example uses the fifth
specification set from the table.

d = designfilt('lowpassfir', ... % Response type
 'FilterOrder',25, ... % Filter order
 'PassbandFrequency',400, ... % Frequency constraints
 'StopbandFrequency',550, ...
 'DesignMethod','ls', ... % Design method
 'PassbandWeight',1, ... % Design method options
 'StopbandWeight',2, ...
 'SampleRate',2000) % Sample rate

1 Functions

1-280

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'PassbandFrequen
cy'

'StopbandFrequen
cy'

'PassbandRipple'

'StopbandAttenua
tion'

'equiripple'
(default)

N/A

'kaiserwin' 'MinOrder'

'ScalePassband'
'FilterOrder' 'HalfPowerFreque

ncy'
N/A 'maxflat' N/A

'FilterOrder' 'CutoffFrequency
'

N/A 'window' 'Window'

'ScalePassband'
'FilterOrder' 'CutoffFrequency

'
'PassbandRipple'

'StopbandAttenua
tion'

'cls' 'PassbandOffset'

'ZeroPhase'

'FilterOrder' 'PassbandFrequen
cy'

'StopbandFrequen
cy'

N/A 'equiripple'
(default)

'PassbandWeight'

'StopbandWeight'
'ls' 'PassbandWeight'

'StopbandWeight'

'lowpassiir' — IIR lowpass filter
response type

Choose this option to design an infinite impulse response (IIR) lowpass filter. This example uses the
first specification set from the table.

d = designfilt('lowpassiir', ... % Response type
 'PassbandFrequency',400, ... % Frequency constraints
 'StopbandFrequency',550, ...
 'PassbandRipple',4, ... % Magnitude constraints
 'StopbandAttenuation',55, ...
 'DesignMethod','ellip', ... % Design method
 'MatchExactly','passband', ... % Design method options
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

 designfilt

1-281

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'PassbandFrequen
cy'

'StopbandFrequen
cy'

'PassbandRipple'

'StopbandAttenua
tion'

'butter' (default) 'MatchExactly'
'cheby1' 'MatchExactly'
'cheby2' 'MatchExactly'
'ellip' 'MatchExactly'

'FilterOrder' 'HalfPowerFreque
ncy'

N/A 'butter' N/A

'FilterOrder' 'PassbandFrequen
cy'

'PassbandRipple' 'cheby1' N/A

'FilterOrder' 'PassbandFrequen
cy'

'PassbandRipple'

'StopbandAttenua
tion'

'ellip' N/A

'FilterOrder' 'StopbandFrequen
cy'

'StopbandAttenua
tion'

'cheby2' N/A

'NumeratorOrder'

'DenominatorOrde
r'

'HalfPowerFreque
ncy'

N/A 'butter' N/A

'highpassfir' — FIR highpass filter
response type

Choose this option to design a finite impulse response (FIR) highpass filter. This example uses the
first specification set from the table.

d = designfilt('highpassfir', ... % Response type
 'StopbandFrequency',400, ... % Frequency constraints
 'PassbandFrequency',550, ...
 'StopbandAttenuation',55, ... % Magnitude constraints
 'PassbandRipple',4, ...
 'DesignMethod','kaiserwin', ... % Design method
 'ScalePassband',false, ... % Design method options
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.

1 Functions

1-282

• If you omit the design method options, designfilt uses the defaults for the design method of
choice.

• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'StopbandFrequen
cy'

'PassbandFrequen
cy'

'StopbandAttenua
tion'

'PassbandRipple'

'equiripple'
(default)

N/A

'kaiserwin' 'MinOrder'

'ScalePassband'
'FilterOrder' 'CutoffFrequency

'
N/A 'window' 'Window'

'ScalePassband'
'FilterOrder' 'CutoffFrequency

'
'StopbandAttenua
tion'

'PassbandRipple'

'cls' 'PassbandOffset'

'ZeroPhase'

'FilterOrder' 'StopbandFrequen
cy'

'PassbandFrequen
cy'

N/A 'equiripple'
(default)

'PassbandWeight'

'StopbandWeight'
'ls' 'PassbandWeight'

'StopbandWeight'

'highpassiir' — IIR highpass filter
response type

Choose this option to design an infinite impulse response (IIR) highpass filter. This example uses the
first specification set from the table.

d = designfilt('highpassiir', ... % Response type
 'StopbandFrequency',400, ... % Frequency constraints
 'PassbandFrequency',550, ...
 'StopbandAttenuation',55, ... % Magnitude constraints
 'PassbandRipple',4, ...
 'DesignMethod','cheby1', ... % Design method
 'MatchExactly','stopband', ... % Design method options
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

 designfilt

1-283

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'StopbandFrequen
cy'

'PassbandFrequen
cy'

'StopbandAttenua
tion'

'PassbandRipple'

'butter' (default) 'MatchExactly'
'cheby1' 'MatchExactly'
'cheby2' 'MatchExactly'
'ellip' 'MatchExactly'

'FilterOrder' 'HalfPowerFreque
ncy'

N/A 'butter' N/A

'FilterOrder' 'PassbandFrequen
cy'

'PassbandRipple' 'cheby1' N/A

'FilterOrder' 'PassbandFrequen
cy'

'StopbandAttenua
tion'

'PassbandRipple'

'ellip' N/A

'FilterOrder' 'StopbandFrequen
cy'

'StopbandAttenua
tion'

'cheby2' N/A

'NumeratorOrder'

'DenominatorOrde
r'

'HalfPowerFreque
ncy'

N/A 'butter' N/A

'bandpassfir' — FIR bandpass filter
response type

Choose this option to design a finite impulse response (FIR) bandpass filter. This example uses the
fourth specification set from the table.

d = designfilt('bandpassfir', ... % Response type
 'FilterOrder',86, ... % Filter order
 'StopbandFrequency1',400, ... % Frequency constraints
 'PassbandFrequency1',450, ...
 'PassbandFrequency2',600, ...
 'StopbandFrequency2',650, ...
 'DesignMethod','ls', ... % Design method
 'StopbandWeight1',1, ... % Design method options
 'PassbandWeight', 2, ...
 'StopbandWeight2',3, ...
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

1 Functions

1-284

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'StopbandFrequen
cy1'

'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'StopbandFrequen
cy2'

'StopbandAttenua
tion1'

'PassbandRipple'

'StopbandAttenua
tion2'

'equiripple'
(default)

N/A

'kaiserwin' 'MinOrder'

ScalePassband

'FilterOrder' 'CutoffFrequency
1'

'CutoffFrequency
2'

N/A 'window' 'Window'

'ScalePassband'

'FilterOrder' 'CutoffFrequency
1'

'CutoffFrequency
2'

'StopbandAttenua
tion1'

'PassbandRipple'

'StopbandAttenua
tion2'

'cls' 'PassbandOffset'

'ZeroPhase'

'FilterOrder' 'StopbandFrequen
cy1'

'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'StopbandFrequen
cy2'

N/A 'equiripple'
(default)

'StopbandWeight1
'

'PassbandWeight'

'StopbandWeight2
'

'ls' 'StopbandWeight1
'

'PassbandWeight'

'StopbandWeight2
'

'bandpassiir' — IIR bandpass filter
response type

Choose this option to design an infinite impulse response (IIR) bandpass filter. This example uses the
first specification set from the table.

d = designfilt('bandpassiir', ... % Response type
 'StopbandFrequency1',400, ... % Frequency constraints
 'PassbandFrequency1',450, ...
 'PassbandFrequency2',600, ...
 'StopbandFrequency2',650, ...
 'StopbandAttenuation1',40, ... % Magnitude constraints

 designfilt

1-285

 'PassbandRipple',1, ...
 'StopbandAttenuation2',50, ...
 'DesignMethod','ellip', ... % Design method
 'MatchExactly','passband', ... % Design method options
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'StopbandFrequen
cy1'

'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'StopbandFrequen
cy2'

'StopbandAttenua
tion1'

'PassbandRipple'

'StopbandAttenua
tion2'

'butter' (default) 'MatchExactly'
'cheby1' 'MatchExactly'
'cheby2' 'MatchExactly'
'ellip' 'MatchExactly'

'FilterOrder' 'HalfPowerFreque
ncy1'

'HalfPowerFreque
ncy2'

N/A 'butter' N/A

'FilterOrder' 'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'PassbandRipple' 'cheby1' N/A

'FilterOrder' 'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'StopbandAttenua
tion1'

'PassbandRipple'

'StopbandAttenua
tion2'

'ellip' N/A

'FilterOrder' 'StopbandFrequen
cy1'

'StopbandFrequen
cy2'

'StopbandAttenua
tion'

'cheby2' N/A

1 Functions

1-286

'bandstopfir' — FIR bandstop filter
response type

Choose this option to design a finite impulse response (FIR) bandstop filter. This example uses the
fourth specification set from the table.

d = designfilt('bandstopfir', ... % Response type
 'FilterOrder',32, ... % Filter order
 'PassbandFrequency1',400, ... % Frequency constraints
 'StopbandFrequency1',500, ...
 'StopbandFrequency2',700, ...
 'PassbandFrequency2',850, ...
 'DesignMethod','ls', ... % Design method
 'PassbandWeight1',1, ... % Design method options
 'StopbandWeight', 3, ...
 'PassbandWeight2',5, ...
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'PassbandFrequen
cy1'

'StopbandFrequen
cy1'

'StopbandFrequen
cy2'

'PassbandFrequen
cy2'

'PassbandRipple1
'

'StopbandAttenua
tion'

'PassbandRipple2
'

'equiripple'
(default)

N/A

'kaiserwin' 'MinOrder'

'ScalePassband'

'FilterOrder' 'CutoffFrequency
1'

'CutoffFrequency
2'

N/A 'window' 'Window'

'ScalePassband'

 designfilt

1-287

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

'FilterOrder' 'CutoffFrequency
1'

'CutoffFrequency
2'

'PassbandRipple1
'

'StopbandAttenua
tion'

'PassbandRipple2
'

'cls' 'PassbandOffset'

'ZeroPhase'

'FilterOrder' 'PassbandFrequen
cy1'

'StopbandFrequen
cy1'

'StopbandFrequen
cy2'

'PassbandFrequen
cy2'

N/A 'equiripple'
(default)

'PassbandWeight1
'

'StopbandWeight'

'PassbandWeight2
'

'ls' 'PassbandWeight1
'

'StopbandWeight'

'PassbandWeight2
'

'bandstopiir' — IIR bandstop filter
response type

Choose this option to design an infinite impulse response (IIR) bandstop filter. This example uses the
first specification set from the table.

d = designfilt('bandstopiir', ... % Response type
 'PassbandFrequency1',400, ... % Frequency constraints
 'StopbandFrequency1',500, ...
 'StopbandFrequency2',700, ...
 'PassbandFrequency2',850, ...
 'PassbandRipple1',1, ... % Magnitude constraints
 'StopbandAttenuation',55, ...
 'PassbandRipple2',1, ...
 'DesignMethod','ellip', ... % Design method
 'MatchExactly','both', ... % Design method options
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

• If you omit the magnitude constraints, designfilt uses default values.
• If you omit 'DesignMethod', designfilt uses the default design method for the specification

set.
• If you omit the design method options, designfilt uses the defaults for the design method of

choice.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

1 Functions

1-288

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

N/A (Minimum-order
design)

'PassbandFrequen
cy1'

'StopbandFrequen
cy1'

'StopbandFrequen
cy2'

'PassbandFrequen
cy2'

'PassbandRipple1
'

'StopbandAttenua
tion'

'PassbandRipple2
'

'butter' (default) 'MatchExactly'
'cheby1' 'MatchExactly'
'cheby2' 'MatchExactly'
'ellip' 'MatchExactly'

'FilterOrder' 'HalfPowerFreque
ncy1'

'HalfPowerFreque
ncy2'

N/A 'butter' N/A

'FilterOrder' 'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'PassbandRipple' 'cheby1' N/A

'FilterOrder' 'PassbandFrequen
cy1'

'PassbandFrequen
cy2'

'PassbandRipple'

'StopbandAttenua
tion'

'ellip' N/A

'FilterOrder' 'StopbandFrequen
cy1'

'StopbandFrequen
cy2'

'StopbandAttenua
tion'

'cheby2' N/A

'differentiatorfir' — FIR differentiator filter
response type

Choose this option to design a finite impulse response (FIR) differentiator filter. This example uses
the second specification set from the table.

d = designfilt('differentiatorfir', ... % Response type
 'FilterOrder',42, ... % Filter order
 'PassbandFrequency',400, ... % Frequency constraints
 'StopbandFrequency',500, ...
 'DesignMethod','equiripple', ... % Design method
 'PassbandWeight',1, ... % Design method options
 'StopbandWeight',4, ...
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder', or any of the frequency constraints when designing a partial-band
differentiator, designfilt throws an error.

 designfilt

1-289

• If you omit 'DesignMethod', designfilt uses the default design method for the specification
set.

• If you omit the design method options, designfilt uses the defaults for the design method of
choice.

• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

'FilterOrder' N/A N/A 'equiripple'
(default)

N/A

'ls' N/A
'FilterOrder' 'PassbandFrequen

cy'

'StopbandFrequen
cy'

N/A 'equiripple'
(default)

'PassbandWeight'

'StopbandWeight'
'ls' N/A

'hilbertfir' — FIR Hilbert transformer filter
response type

Choose this option to design a finite impulse response (FIR) Hilbert transformer filter. This example
uses the specification set from the table.

d = designfilt('hilbertfir', ... % Response type
 'FilterOrder',12, ... % Filter order
 'TransitionWidth',400, ... % Frequency constraints
 'DesignMethod','ls', ... % Design method
 'SampleRate',2000) % Sample rate

• If you omit 'FilterOrder' or 'TransitionWidth', designfilt throws an error.
• If you omit 'DesignMethod', designfilt uses the default design method for Hilbert

transformers.
• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

'FilterOrder' 'TransitionWidth
'

N/A 'equiripple'
(default)

N/A

'ls' N/A

'arbmagfir' — FIR filter of arbitrary magnitude response
response type

Choose this option to design a finite impulse response (FIR) filter of arbitrary magnitude response.
This example uses the second specification set from the table.

d = designfilt('arbmagfir', ... % Response type
 'FilterOrder',88, ... % Filter order
 'NumBands',4, ... % Frequency constraints

1 Functions

1-290

 'BandFrequencies1',[0 20], ...
 'BandFrequencies2',[25 40], ...
 'BandFrequencies3',[45 65], ...
 'BandFrequencies4',[70 100], ...
 'BandAmplitudes1',[2 2], ... % Magnitude constraints
 'BandAmplitudes2',[0 0], ...
 'BandAmplitudes3',[1 1], ...
 'BandAmplitudes4',[0 0], ...
 'DesignMethod','ls', ... % Design method
 'BandWeights1',[1 1]/10, ... % Design method options
 'BandWeights2',[3 1], ...
 'BandWeights3',[2 4], ...
 'BandWeights4',[5 1], ...
 'SampleRate',200) % Sample rate

• If you omit 'FilterOrder', or any of the frequency or magnitude constraints, designfilt
throws an error.

• If you omit 'DesignMethod', designfilt uses the default design method for the specification
set.

• If you omit the design method options, designfilt uses the defaults for the design method of
choice.

• If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order
Argument Names

Frequency
Constraint
Argument Names

Magnitude
Constraint
Argument Names

'DesignMethod'
Argument Values

Design Option
Argument Names

'FilterOrder' 'Frequencies' 'Amplitudes' 'freqsamp'
(default)

'Window'

'equiripple' 'Weights'
'ls' 'Weights'

'FilterOrder'

'NumBands'

'BandFrequencies
1'

…

'BandFrequencies
N'

'BandAmplitudes1
'

…

'BandAmplitudesN
'

'equiripple'
(default)

'BandWeights1'

…

'BandWeightsN'
'ls' 'BandWeights1'

…

'BandWeightsN'

Data Types: char | string

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object generated by designfilt. Use this input to
change the specifications of an existing digitalFilter.

 designfilt

1-291

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Not all name-value combinations are valid. The valid combinations depend on the filter response that
you need and on the frequency and magnitude constraints of your design.
Example: 'FilterOrder',20,'CutoffFrequency',0.4 suffices to specify a lowpass FIR filter.

Filter Order

FilterOrder — Filter order
positive integer scalar

Filter order, specified as a positive integer scalar.
Data Types: double

NumeratorOrder — Numerator order
positive integer scalar

Numerator order of an IIR design, specified as a positive integer scalar.
Data Types: double

DenominatorOrder — Denominator order
positive integer scalar

Denominator order of an IIR design, specified as a positive integer scalar.
Data Types: double

Frequency Constraints

PassbandFrequency, PassbandFrequency1, PassbandFrequency2 — Passband frequency
positive scalar

Passband frequency, specified as a positive scalar. The frequency value must be within the Nyquist
range.

'PassbandFrequency1' is the lower passband frequency for a bandpass or bandstop design.

'PassbandFrequency2' is the higher passband frequency for a bandpass or bandstop design.
Data Types: double

StopbandFrequency, StopbandFrequency1, StopbandFrequency2 — Stopband frequency
positive scalar

Stopband frequency, specified as a positive scalar. The frequency value must be within the Nyquist
range.

'StopbandFrequency1' is the lower stopband frequency for a bandpass or bandstop design

'StopbandFrequency2' is the higher stopband frequency for a bandpass or bandstop design.
Data Types: double

1 Functions

1-292

CutoffFrequency, CutoffFrequency1, CutoffFrequency2 — 6-dB frequency
positive scalar

6-dB frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'CutoffFrequency1' is the lower 6-dB frequency for a bandpass or bandstop design.

'CutoffFrequency2' is the higher 6-dB frequency for a bandpass or bandstop design.
Data Types: double

HalfPowerFrequency, HalfPowerFrequency1, HalfPowerFrequency2 — 3-dB frequency
positive scalar

3-dB frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'HalfPowerFrequency1' is the lower 3-dB frequency for a bandpass or bandstop design.

'HalfPowerFrequency2' is the higher 3-dB frequency for a bandpass or bandstop design.
Data Types: double

TransitionWidth — Width of transition region
positive scalar

Width of the transition region between passband and stopband for a Hilbert transformer, specified as
a positive scalar.
Data Types: double

Frequencies — Response frequencies
vector

Response frequencies, specified as a vector. Use this variable to list the frequencies at which a filter
of arbitrary magnitude response has desired amplitudes. The frequencies must be monotonically
increasing and lie within the Nyquist range. The first element of the vector must be either 0 or –fs/2,
where fs is the sample rate, and its last element must be fs/2. If you do not specify a sample rate,
designfilt uses the default value of 2 Hz.
Data Types: double

NumBands — Number of bands
positive integer scalar

Number of bands in a multiband design, specified as a positive integer scalar not greater than 10.
Data Types: double

BandFrequencies1, ..., BandFrequenciesN — Multiband response frequencies
vectors

Multiband response frequencies, specified as numeric vectors. 'BandFrequenciesi', where i runs
from 1 through 'NumBands', is a vector containing the frequencies at which the ith band of a
multiband design has the desired values, 'BandAmplitudesi'. 'NumBands' can be at most 10. The
frequencies must lie within the Nyquist range and must be specified in monotonically increasing
order. Adjacent frequency bands must have the same amplitude at their junction.
Data Types: double

 designfilt

1-293

Magnitude Constraints

PassbandRipple, PassbandRipple1, PassbandRipple2 — Passband ripple
1 (default) | positive scalar

Passband ripple, specified as a positive scalar expressed in decibels.

'PassbandRipple1' is the lower-band passband ripple for a bandstop design.

'PassbandRipple2' is the higher-band passband ripple for a bandstop design.
Data Types: double

StopbandAttenuation, StopbandAttenuation1, StopbandAttenuation2 — Stopband
attenuation
60 (default) | positive scalar

Stopband attenuation, specified as a positive scalar expressed in decibels.

'StopbandAttenuation1' is the lower-band stopband attenuation for a bandpass design.

'StopbandAttenuation2' is the higher-band stopband attenuation for a bandpass design.
Data Types: double

Amplitudes — Desired response amplitudes
vector

Desired response amplitudes of an arbitrary magnitude response filter, specified as a vector. Express
the amplitudes in linear units. The vector must have the same length as 'Frequencies'.
Data Types: double

BandAmplitudes1, ..., BandAmplitudesN — Multiband response amplitudes
vectors

Multiband response amplitudes, specified as numeric vectors. 'BandAmplitudesi', where i runs
from 1 through 'NumBands', is a vector containing the desired amplitudes in the ith band of a
multiband design. 'NumBands' can be at most 10. Express the amplitudes in linear units.
'BandAmplitudesi' must have the same length as 'BandFrequenciesi'. Adjacent frequency
bands must have the same amplitude at their junction.
Data Types: double

Design Method

DesignMethod — Design method
'butter' | 'cheby1' | 'cheby2' | 'cls' | 'ellip' | 'equiripple' | 'freqsamp' |
'kaiserwin' | 'ls' | 'maxflat' | 'window'

Design method, specified as a character vector or string scalar. The choice of design method depends
on the set of frequency and magnitude constraints that you specify.

• 'butter' designs a Butterworth IIR filter. Butterworth filters have a smooth monotonic
frequency response that is maximally flat in the passband. They sacrifice rolloff steepness for
flatness.

1 Functions

1-294

• 'cheby1' designs a Chebyshev type I IIR filter. Chebyshev type I filters have a frequency
response that is equiripple in the passband and maximally flat in the stopband. Their passband
ripple increases with increasing rolloff steepness.

• 'cheby2' designs a Chebyshev type II IIR filter. Chebyshev type II filters have a frequency
response that is maximally flat in the passband and equiripple in the stopband.

• 'cls' designs an FIR filter using constrained least squares. The method minimizes the
discrepancy between a specified arbitrary piecewise-linear function and the filter’s magnitude
response. At the same time, it lets you set constraints on the passband ripple and stopband
attenuation.

• 'ellip' designs an elliptic IIR filter. Elliptic filters have a frequency response that is equiripple
in both passband and stopband.

• 'equiripple' designs an equiripple FIR filter using the Parks-McClellan algorithm. Equiripple
filters have a frequency response that minimizes the maximum ripple magnitude over all bands.

• 'freqsamp' designs an FIR filter of arbitrary magnitude response by sampling the frequency
response uniformly and taking the inverse Fourier transform.

• 'kaiserwin' designs an FIR filter using the Kaiser window method. The method truncates the
impulse response of an ideal filter and uses a Kaiser window to attenuate the resulting truncation
oscillations.

• 'ls' designs an FIR filter using least squares. The method minimizes the discrepancy between a
specified arbitrary piecewise-linear function and the filter’s magnitude response.

• 'maxflat' designs a maximally flat FIR filter. These filters have a smooth monotonic frequency
response that is maximally flat in the passband.

• 'window' uses a least-squares approximation to compute the filter coefficients and then smooths
the impulse response with 'Window'.

Data Types: char | string

Design Method Options

MinOrder — Minimum order parity
'any' (default) | 'even'

Minimum order parity of a 'kaiserwin' design, specified as 'any' or 'even'. When you set
'MinOrder' to 'even', designfilt returns a minimum-order filter with even order. When you set
'MinOrder' to 'any', the returned filter can have even or odd order, whichever is smaller.
Data Types: char | string

Window — Window
numeric vector | window name | function handle | cell array

Window, specified as a vector of length N + 1, where N is the filter order. 'Window' can also be
paired with a window name or function handle that specifies the function used to generate the
window. Any such function must take N + 1 as first input. Additional inputs can be passed by
specifying a cell array. By default, 'Window' is an empty vector for the 'freqsamp' design method
and @hamming for the 'window' design method.

For a list of available windows, see “Windows”.
Example: 'Window',hann(N+1) and 'Window',(1-cos(2*pi*(0:N)'/N))/2 both specify a
Hann window to use with a filter of order N.

 designfilt

1-295

Example: 'Window','hamming' specifies a Hamming window of the required order.
Example: 'Window',@mywindow lets you define your own window function.
Example: 'Window',{@kaiser,0.5} specifies a Kaiser window of the required order with shape
parameter 0.5.
Data Types: double | char | string | function_handle | cell

MatchExactly — Band to match exactly
'stopband' | 'passband' | 'both'

Band to match exactly, specified as 'stopband', 'passband', or 'both'. 'both' is available only
for the elliptic design method, where it is the default. 'stopband' is the default for the 'butter'
and 'cheby2' methods. 'passband' is the default for 'cheby1'.
Data Types: char | string

PassbandOffset — Passband offset
0 (default) | positive scalar

Passband offset, specified as a positive scalar expressed in decibels. 'PassbandOffset' specifies
the filter gain in the passband.
Example: 'PassbandOffset',0 results in a filter with unit gain in the passband.
Example: 'PassbandOffset',2 results in a filter with a passband gain of 2 dB or 1.259.
Data Types: double

ScalePassband — Scale passband
true (default) | false

Scale passband, specified as a logical scalar. When you set 'ScalePassband' to true, the passband
is scaled, after windowing, so that the filter has unit gain at zero frequency.
Example: 'Window',{@kaiser,0.1},'ScalePassband',true help specify a filter whose
magnitude response at zero frequency is exactly 0 dB. This is not the case when you specify
'ScalePassband',false. To verify, visualize the filter with fvtool and zoom in.
Data Types: logical

ZeroPhase — Zero phase
false (default) | true

Zero phase, specified as logical scalar. When you set 'ZeroPhase' to true, the zero-phase response
of the resulting filter is always positive. This lets you perform spectral factorization on the result and
obtain a minimum-phase filter from it.
Data Types: logical

PassbandWeight, PassbandWeight1, PassbandWeight2 — Passband optimization weight
1 (default) | positive scalar

Passband optimization weight, specified as a positive scalar.

'PassbandWeight1' is the lower-band passband optimization weight for a bandstop FIR design.

'PassbandWeight2' is the higher-band passband optimization weight for a bandstop FIR design.

1 Functions

1-296

Data Types: double

StopbandWeight, StopbandWeight1, StopbandWeight2 — Stopband optimization weight
1 (default) | positive scalar

Stopband optimization weight, specified as a positive scalar.

'StopbandWeight1' is the lower-band stopband optimization weight for a bandpass FIR design.

'StopbandWeight2' is the higher-band stopband optimization weight for a bandpass FIR design.
Data Types: double

Weights — Optimization weights
1 (default) | positive scalar | vector

Optimization weights, specified as a positive scalar or a vector of the same length as 'Amplitudes'.
Data Types: double

BandWeights1, ..., BandWeightsN — Multiband weights
1 (default) | positive scalar | vectors

Multiband weights, specified as sets of positive scalars or of vectors. 'BandWeightsi', where i runs
from 1 through 'NumBands', is a scalar or vector containing the optimization weights of the ith band
of a multiband design. If specified as a vector, 'BandWeightsi' must have the same length as
'BandAmplitudesi'.
Data Types: double

Sample Rate

SampleRate — Sample rate
2 (default) | positive scalar

Sample rate, specified as a positive scalar expressed in hertz. To work with normalized frequencies,
set 'SampleRate' to 2, or simply omit it.
Data Types: double

Output Arguments
d — Digital filter
digitalFilter object

Digital filter, returned as a digitalFilter object.

More About
Filter Design Assistant

If you specify an incomplete or inconsistent set of design parameters, designfilt offers to open a
Filter Design Assistant.

(In the argument description for resp there is a complete list of valid specification sets for all
available response types.)

 designfilt

1-297

The assistant behaves differently if you call designfilt at the command line or within a script or
function.

Filter Design Assistant at the Command Line

You are given a signal sampled at 2 kHz. You are asked to design a lowpass FIR filter that suppresses
frequency components higher than 650 Hz. The “cutoff frequency” sounds like a good candidate for a
specification parameter. You type this code at the MATLAB command line.

Fsamp = 2e3;
Fctff = 650;
dee = designfilt('lowpassfir','CutoffFrequency',Fctff, ...
 'SampleRate',Fsamp);

Something seems to be amiss because this dialog box appears on your screen.

You click Yes and get a new dialog box that offers to generate code. You see that the variables you
defined before have been inserted where expected.

1 Functions

1-298

After exploring some of the options offered, you decide to test the corrected filter. You click OK and
get this code on the command line.

designfilt('lowpassfir','FilterOrder', 10, ...
 'CutoffFrequency',Fctff,'SampleRate',2000);

Typing the name of the filter reiterates the information from the dialog box.

dee

dee =
 digitalFilter with properties:

 Coefficients: [-0.0036 0.0127 -0.0066 -0.0881 0.2595 ...
 0.6521 0.2595 -0.0881 -0.0066 0.0127 -0.0036]
 Specifications:
 FrequencyResponse: 'lowpass'
 ImpulseResponse: 'fir'
 SampleRate: 2000
 CutoffFrequency: 650
 FilterOrder: 10

 designfilt

1-299

 DesignMethod: 'window'

 Use fvtool to visualize filter
 Use designfilt to edit filter
 Use filter to filter data

You invoke FVTool and get a plot of dee’s frequency response.

fvtool(dee)

The cutoff does not look particularly sharp. The response is above 40 dB for most frequencies. You
remember that the assistant had an option to set up a “magnitude constraint” called the “stopband
attenuation”. Open the assistant by calling designfilt with the filter name as input.

designfilt(dee)

Click the Magnitude constraints drop-down menu and select Passband ripple and
stopband attenuation. You see that the design method has changed from Window to FIR
constrained least-squares. The default value for the attenuation is 60 dB, which is higher than
40. Click OK and visualize the resulting filter.

dee = designfilt('lowpassfir','FilterOrder',10, ...
 'CutoffFrequency',650,'PassbandRipple',1, ...
 'StopbandAttenuation',60,'SampleRate',2000);
fvtool(dee)

1 Functions

1-300

The cutoff still does not look sharp. The attenuation is indeed 60 dB, but for frequencies above 900
Hz.

Again invoke designfilt with your filter as input.

designfilt(dee)

The assistant reappears.

 designfilt

1-301

To narrow the distinction between accepted and rejected frequencies, increase the order of the filter
or change Frequency constraints from Cutoff (6dB) frequency to Passband and
stopband frequencies. If you change the filter order from 10 to 50, you get a sharper filter.

dee = designfilt('lowpassfir','FilterOrder',50, ...
 'CutoffFrequency',650,'PassbandRipple',1, ...
 'StopbandAttenuation',60,'SampleRate',2000);
fvtool(dee)

1 Functions

1-302

A little experimentation shows that you can obtain a similar filter by setting the passband and
stopband frequencies respectively to 600 Hz and 700 Hz.

dee = designfilt('lowpassfir','PassbandFrequency',600, ...
 'StopbandFrequency',700,'PassbandRipple',1, ...
 'StopbandAttenuation',60,'SampleRate',2000);
fvtool(dee)

 designfilt

1-303

Filter Design Assistant in a Script or Function

You are given a signal sampled at 2 kHz. You are asked to design a highpass filter that stops
frequencies below 700 Hz. You don’t care about the phase of the signal, and you need to work with a
low-order filter. Thus an IIR filter seems adequate. You are not sure what filter order is best, so you
write a function that accepts the order as input. Open the MATLAB Editor and create the file.

function dataOut = hipassfilt(Order,dataIn)
hpFilter = designfilt('highpassiir','FilterOrder',N);
dataOut = filter(hpFilter,dataIn);
end

To test your function, create a signal composed of two sinusoids with frequencies 500 and 800 Hz and
generate samples for 0.1 s. A 5th-order filter seems reasonable as an initial guess. Create a script
called driveHPfilt.m.

% script driveHPfilt.m
Fsamp = 2e3;
Fsm = 500;
Fbg = 800;
t = 0:1/Fsamp:0.1;
sgin = sin(2*pi*Fsm*t)+sin(2*pi*Fbg*t);
N = 5;
sgout = hipassfilt(N,sgin);

When you run the script at the command line, you get an error message.

1 Functions

1-304

The error message gives you the choice of opening an assistant to correct the MATLAB code. Click
Click here to get the Filter Design Assistant on your screen.

 designfilt

1-305

You see the problem: You did not specify the frequency constraint. You also forgot to set a sample
rate. After experimenting, you find that you can specify Frequency units as Hz, Passband
frequency equal to 700 Hz, and Input Fs equal to 2000 Hz. The Design method changes from
Butterworth to Chebyshev type I. You click OK and get this on the command line.

hp = designfilt('highpassiir','FilterOrder',N, ...
 'PassbandFrequency',700,'PassbandRipple',1, ...
 'SampleRate',2000);

The new digitalFilter object hp is saved to the workspace. Depending on your design
constraints, you can change your specification set.

Filter Design Assistant Preferences

You can set designfilt to never offer the Filter Design Assistant. This action sets a MATLAB
preference that can be unset with setpref:

• Use setpref('dontshowmeagain','filterDesignAssistant',false) to be offered the
assistant every time. With this command, you can get the assistant again after having disabled it.

• Use setpref('dontshowmeagain','filterDesignAssistant',true) to disable the
assistant permanently. You can also click Do not show this message again in the initial dialog
box.

You can set designfilt to always correct faulty specifications without asking. This action sets a
MATLAB preference that can be unset by using setpref:

• Use setpref('dontshowmeagain','filterDesignAssistantCodeCorrection',false)
to have designfilt correct your MATLAB code without asking for confirmation. You can also
click Always accept in the confirmation dialog box.

• Use setpref('dontshowmeagain','filterDesignAssistantCodeCorrection',true) to
ensure that designfilt corrects your MATLAB code only when you confirm you want the
changes. With this command, you can undo the effect of having clicked Always accept in the
confirmation dialog box.

Troubleshooting

There are some instances in which, given an invalid set of specifications, designfilt does not offer
a Filter Design Assistant, either through a dialog box or through a link in an error message.

• You are not offered an assistant if you use code-section evaluation, either from the MATLAB
Toolstrip or by pressing Ctrl+Enter. (See “Divide Your File into Sections” for more information.)

• You are not offered an assistant if your code has multiple calls to designfilt, at least one of
those calls is incorrect, and

• You paste the code on the command line and execute it by pressing Enter.
• You select the code in the Editor and execute it by pressing F9.

• You are not offered an assistant if you run designfilt using an anonymous function. (See
“Anonymous Functions” for more information.) For example, this input offers an assistant.

d = designfilt('lowpassfir','CutoffFrequency',0.6)

This input does not.

1 Functions

1-306

myFilterDesigner = @designfilt;
d = myFilterDesigner('lowpassfir','CutoffFrequency',0.6)

• You are not offered an assistant if you run designfilt using eval. For example, this input offers
an assistant.

d = designfilt('lowpassfir','CutoffFrequency',0.6)

This input does not.

myFilterDesigner = ...
 sprintf('designfilt(''%s'',''CutoffFrequency'',%f)', ...
 'lowpassfir',0.6);
d = eval(myFilterDesigner)

The Filter Design Assistant requires Java® software and the MATLAB desktop to run. It is not
supported if you run MATLAB with the -nojvm, -nodisplay, or -nodesktop options.

Compatibility Considerations
designfilt function no longer assists in correcting calls to designfilt
Behavior changed in R2021b

Starting in R2021b, the designfilt function no longer assists in correcting calls to designfilt
within a script or function. In previous releases, the function automatically corrected and executed
code on the command line.

You do not need to make any changes to your code. If the call to designfilt contains an error, the
function issues an error with a link to open the Filter Design Assistant. You can use the assistant to
generate a filter and display the corresponding code on the command line. The generated filter object
is saved to the workspace.

See Also
digitalFilter | double | fftfilt | filt2block | filter | filtfilt | filtord | firtype |
freqz | FVTool | grpdelay | impz | impzlength | info | isallpass | isdouble | isfir |
islinphase | ismaxphase | isminphase | issingle | isstable | phasedelay | phasez |
single | ss | stepz | tf | zerophase | zpk | zplane

Topics
“Practical Introduction to Digital Filter Design”
“Filter Design Gallery”
“Practical Introduction to Digital Filtering”

Introduced in R2014a

 designfilt

1-307

Design Filter
Design a digital filter in the Live Editor

Description
Design Filter helps you design a digital filter interactively. The task automatically generates and
runs MATLAB code to design a filter using the digitalFilter object.

To get started, select a filter response type. The task offers controls to specify filter parameters that
depend on the type of filter response and include:

• Filter order
• Frequency constraints
• Magnitude constraints
• Design method

Choose from a list of display options to visualize the generated filter response and additional filter
information. For a detailed description of the filter constraints, design methods, and design method
parameters, see the designfilt documentation.

For more information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

1 Functions

1-308

Open the Task
To add the Design Filter task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Design Filter.
• In a code block in the script, type a relevant keyword, such as designfilt, filter, or lowpass.

Select Design Filter from the suggested command completions.

Parameters
Filter response — Filter response type
Lowpass FIR | Highpass FIR | Bandpass FIR | Bandstop FIR | Hilbert Transformer FIR |
Differentiator FIR | Lowpass IIR | Highpass IIR | Bandpass IIR | Bandstop IIR

Choose the filter response type as one of these:

 Design Filter

1-309

• Lowpass FIR
• Lowpass IIR
• Highpass FIR
• Highpass IIR
• Bandpass FIR
• Bandpass IIR
• Bandstop FIR
• Bandstop IIR
• Hilbert Transformer FIR
• Differentiator FIR

Filter Order — Filter order
Minimum | Specify

Design a minimum order filter or specify a filter order. Some responses might not have a minimum
order design available and will require you to specify a filter order value.

Frequency constraints — Frequencies at which filter exhibits desired behavior
Passband and stopband frequencies | Cutoff (6dB) frequency | Half power (3dB)
frequency | ...

Specify the frequencies at which the designed filter exhibits a desired behavior. Available options
depend on filter response type and filter order.

Note You can specify Frequency units as Normalized (0 to 1) (default) or Hz. If you specify
frequency units in hertz, you must specify a sample rate.

Magnitude constraints — Filter magnitude response behavior at particular frequency
ranges
Passband ripple | Stopband attenuation | ...

Choose the filter magnitude response behavior at the specified frequency ranges. Available options
depend on filter response type, filter order, and frequency constraints.

Design method — Filter design algorithm
Butterworth | Equiripple | FIR least-squares | ...

Specify the algorithm used to design the filter. Available options depend on filter response type, filter
order, and frequency and magnitude constraints. Some design methods have additional options
available in the Design options section.

Note In some design cases, there are model order restrictions. If an even or odd restriction exists for
the selected design method and the specified order is not valid, the task reduces the order by one.

Examples

1 Functions

1-310

Design a Digital Filter in the Live Editor

This example shows how to use the Design Filter task in the Live Editor to generate code for a
digital filter. The task helps you interactively design a digital filter, displays the filter response, and
generates code.

Create or Load Signal

In the Live Editor, load a noisy electrocardiogram (ECG) signal into the MATLAB® workspace. Plot
the data.

load noisyecg
plot(noisyECG_withTrend)

The ECG signal appears noisy. There are several sources of noise that can affect the signal including
movement artifacts, high-frequency noise, and power source interference. Interactively design a filter
to remove the noise from the signal. In the Live Editor tab, expand the Task list and select Design
Filter to open the task.

Design Lowpass FIR Filter Using Kaiser Window

To remove high-frequency noise, first select a Lowpass FIR filter and specify the Order as 10. The
available options for frequency, magnitude, and algorithm parameters depend on the selected filter
response type and filter order.

 Design Filter

1-311

A lowpass filter removes from an input signal the unwanted frequency content above a specified
threshold. In the Specify frequency parameters section, select Cutoff (6dB) frequency from
the Frequency constraints list. When the sample rate is known, you can select Hz from the
Frequency units list. A Sample rate option appears, and you can select a sample rate from the
variables in the workspace. In this example, the sample rate is unknown, so specify a normalized
cutoff frequency of 0.3 rad/sample.

For an FIR lowpass filter, in the Specify magnitude parameters section, you can specify constraints
to control the amount of passband ripple and stopband attenuation. Select Passband ripple and
stopband attenuation from the Magnitude constraints list. Magnitude constraints and filter
order can also affect the transition width of the filter.

The task chooses an FIR contrained least-squares design algorithm by default based on the
specified frequency and magnitude parameters. Leave the design options at their default settings.

In the Display filter response section, select Magnitude & phase and Group delay to visualize
the designed filter response. In the magnitude plot, you can see the level of attenuation in the
stopband is at 60 dB. The group delay plot shows a delay of 5 samples and that the filter is linear
phase.

1 Functions

1-312

Click the arrow below the Display filter response section to show the generated code for the
designed filter. You can copy and paste the code on the command line to edit the filter design
specifications manually.

 Design Filter

1-313

Apply the designed filter to the noisy ECG signal. Account for the delay introduced by the filter and
plot the result.

load designedFilter
filteredECG = filter(designedFilter,noisyECG_withTrend);
delay = grpdelay(designedFilter);
mdelay = mean(delay);
filteredECG(1:mdelay) = [];

plot(noisyECG_withTrend(1:end-mdelay))
hold on
plot(filteredECG)
legend(["Original","Filtered"])
hold off

Design Equiripple Bandstop FIR Filter

A medical device like an ECG monitor can be impacted by electromagnetic interference. A power
source commonly operates at a frequency of 50 Hz or 60 Hz. For this example, a 60 Hz sinusoid was
added as noise to an ECG signal taken from the MIT-BIH Arrhythmia Database [1]. The sample rate is
360 Hz. To remove the noise, open the Design Filter task and design a minimum-order bandstop FIR
filter. Change the default filter name to bandstop60Hz.

1 Functions

1-314

Specify the Frequency units as Hz. To specify a sample rate, enter a value or select a sample rate
variable from the list. To appear in the list, a sample rate variable must be saved in the workspace.
Create a variable, fs, and set it equal to 360 Hz, then select fs from the Sample rate list. Specify
the passband and stopband frequency values to attenuate frequencies between 55–65 Hz for a 10 Hz
notch filter centered at 60 Hz.

fs = 360;

Set the Passband ripple 2 (dB) to 0.5 and increase the Stopband attenuation (dB) to 80.

The task defaults to an equiripple design method. Display the magnitude and phase responses of the
filter.

 Design Filter

1-315

You can also select Filter information from the Display filter response section to view
additional details about the designed filter.

Load ecg60Hz into the workspace. The MAT-file contains the original ECG signal with added noise
(ecg60) and the filtered signal (ecgFilt). Plot both signals to visualize the filter result.

load ecg60Hz
t = 0:1/fs:(length(ecg60)-1)/fs;
plot(t,[ecg60 ecgFilt])
legend(["Original";"Filtered"])

1 Functions

1-316

Tips
• You can toggle the autorun option by clicking the circle in the top right corner of the task window.

If autorun is enabled, the current section including the task runs automatically when a change is
made.

References
[1] Moody, G.B., and R.G. Mark. "The Impact of the MIT-BIH Arrhythmia Database". IEEE Eng in Med

and Biol 20(3):45-50 (May-June 2001): 45-50.

See Also
Functions
bandpass | bandstop | designfilt | highpass | lowpass

Introduced in R2021b

 Design Filter

1-317

dfilt
Discrete-time filter

Syntax
Hd = dfilt.structure(input1,...)

Description
Hd = dfilt.structure(input1,...) returns a discrete-time filter, Hd, of type structure. Each
structure takes one or more inputs. If you specify a dfilt.structure with no inputs, a default filter
is created.

Note You must use a structure with dfilt.

Hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...] returns a
vector containing dfilt filters.

Structures

Available structures for the dfilt object are shown below. The target block for the block method
depends on the filter structure. Depending on the target block, the DSP System Toolbox software may
be required.

dfilt.structure Description Coefficient Mapping
Support in realizemdl

Target Filter Block for
block Method

dfilt.delay Delay Not supported Delay

Requires DSP System
Toolbox

dfilt.df1 Direct-form I Supported Discrete Filter
dfilt.df1sos Direct-form I, second-order

sections
Supported Discrete Filter

Requires DSP System
Toolbox

dfilt.df1t Direct-form I transposed Supported Discrete Filter
dfilt.df1tsos Direct-form I transposed,

second-order sections
Supported Biquad Filter

Requires DSP System
Toolbox

dfilt.df2 Direct-form II Supported Discrete Filter
dfilt.df2sos Direct-form II, second-order

sections
Supported Discrete Filter

dfilt.df2t Direct-form II transposed Supported Discrete Filter

1 Functions

1-318

dfilt.structure Description Coefficient Mapping
Support in realizemdl

Target Filter Block for
block Method

dfilt.df2tsos Direct-form II transposed,
second-order sections

Supported Biquad Filter

Requires DSP System
Toolbox

dfilt.dffir Direct-form FIR Supported Discrete FIR Filter
dfilt.dffirt Direct-form FIR transposed Supported Discrete FIR Filter
dfilt.dfsymfir Direct-form symmetric FIR Supported Discrete FIR Filter
dfilt.dfasymfir Direct-form antisymmetric

FIR
Supported Discrete FIR Filter

dfilt.fftfir Overlap-add FIR Not supported Overlap-Add FFT Filter

Requires DSP System
Toolbox

dfilt.latticeall
pass

Lattice allpass Supported Not supported

dfilt.latticear Lattice autoregressive (AR) Supported Allpole Filter

Requires DSP System
Toolbox

dfilt.latticearm
a

Lattice autoregressive
moving- average (ARMA)

Supported Not supported

dfilt.latticemam
ax

Lattice moving-average
(MA) for maximum phase

Supported Not supported

dfilt.latticemam
in

Lattice moving-average
(MA) for minimum phase

Supported Discrete FIR Filter

dfilt.statespace State-space Supported. Not supported
dfilt.scalar Scalar gain object Supported Gain

Requires DSP System
Toolbox

dfilt.cascade Filters arranged in series Supported Target blocks depend on
filter structures in the series

dfilt.parallel Filters arranged in parallel Supported Target blocks depend on
filter structures in the
parallel system

For more information on each structure, use the syntax help dfilt.structure at the MATLAB
prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dfilt object without having to
specify the filter parameters again. You can apply these methods directly on the variable you assigned
to your dfilt object.

 dfilt

1-319

For example, if you create a dfilt object, Hd, you can check whether it has linear phase with
islinphase(Hd), view its frequency response plot with fvtool(Hd), or obtain its frequency
response values with h=freqz(Hd). You can use all of the methods below in this way.

Note If your variable is a 1-D array of dfilt filters, the method is applied to each object in the array.
Only freqz, grpdelay, impz, is*, order, and stepz methods can be applied to arrays. The
zplane method can be applied to an array only if it is used without outputs.

Some of the methods listed below have the same name as Signal Processing Toolbox functions and
they behave similarly. This is called overloading of functions.

Available methods are:

Method Description
addstage Adds a stage to a cascade or parallel object, where a stage is a

separate, modular filter. See dfilt.cascade and dfilt.parallel.
block block(Hd) creates a Simulink filter block of the dfilt object. The

target filter block depends on the filter structure. You must have
Simulink to use this method. Additionally, the DSP System Toolbox
may be required depending on the filter structure. See “Structures”
on page 1-318 for a mapping between the target blocks and filter
structures.

The block method can specify these properties/values:

'MapCoeffstoPorts' indicates whether to map the filter
coefficients to constant blocks connected to the generated block.
Default value is 'off'. Setting 'MapCoeffstoPorts' to 'on' turns
on the mapping and enables the 'CoeffNames' property, which
defines the constant block parameter names. 'CoeffNames' is a cell
array. Default values are {'Num'} for Direct form FIR filters, {'K'}
for lattice filters, {'Num','Den'} for IIR filters, and
{Num','Den','g'} for biquad filters. Variables, defined by
'CoeffNames', are created in the MATLAB workspace and have the
same data type as the filter's 'Arithmetic' property. Any existing
variable with the same name is overwritten. Note that you can use
either 'Link2Obj' or 'MapCoeffstoPorts', but not both
simultaneously.

'InputProcessing' specifies sample-based,
'elementsaschannels', frame-based, 'columnsaschannels',
processing, or 'inherited'. The default is frame-based processing.
If you do not have the DSP System Toolbox software, explicitly set the
'InputProcessing' property to 'elementsaschannels' to avoid
a runtime error. Setting 'InputProcessing' to 'inherited'
targets the Digital Filter block regardless of structure.

cascade Returns the series combination of two dfilt objects. See
dfilt.cascade.

1 Functions

1-320

Method Description
coeffs Returns the filter coefficients in a structure containing fields that use

the same property names as those in the original dfilt.
convert Converts a dfilt object from one filter structure to another filter

structure.
fcfwrite Writes a filter coefficient ASCII file. The file can contain a single filter

or a vector of objects. Default file name is untitled.fcf.

fcfwrite(Hd,filename) writes to a disk file named filename in
the current working directory. The .fcf extension is added
automatically.

fcfwrite(...,fmt) writes the coefficients in the format fmt,
where fmt can be one of the following:

'hex' for hexadecimal

'dec' for decimal

'bin' for binary representation.
fftcoeffs Returns the frequency-domain coefficients used when filtering with a

dfilt.fftfir.
filter Performs filtering using the dfilt object.

y = filter(Hd,x) filters x using the Hd filter and returns the
filtered data in y. See “Using Filter States” on page 1-325 for
information on using initial conditions. If x is a matrix, each column is
filtered as an independent channel. If x is a multidimensional array,
filter operates on the first nonsingleton dimension.

y = filter(Hd,x,dim) operates along the dimension dim. If x is a
vector or matrix and dim is 1, every column of x is a channel. If dim is
2, every row is a channel.

firtype Returns the type (1-4) of a linear phase FIR filter.
freqz Plots the frequency response in FVTool. Note that unlike the freqz

function, this dfilt freqz method has a default length of 8192.
grpdelay Plots the group delay in FVTool.
impz Plots the impulse response in FVTool.
impzlength Returns the length of the impulse response.
info Displays brief dfilt information, such as filter structure, length,

stability, linear phase, and, when appropriate, lattice and ladder
length. To display detailed information about the design method,
options, etc, use info(Hd, 'long'). The default display is
'short'. For multistage filters (cascade and parallel), use
info(Hd.Stage(x)), where x is the stage number, to see
information about that stage.

isallpass Returns a logical 1 (i.e., true) if the dfilt object in an allpass filter or
a logical 0 (i.e., false) if it is not.

 dfilt

1-321

Method Description
iscascade Returns a logical 1 if the dfilt object is cascaded or a logical 0 if it

is not.
isfir Returns a logical 1 if the dfilt object has finite impulse response

(FIR) or a logical 0 if it does not.
islinphase Returns a logical 1 if the dfilt object is linear phase or a logical 0 if

it is not.
ismaxphase Returns a logical 1 if the dfilt object is maximum-phase or a logical

0 if it is not.
isminphase Returns a logical 1 if the dfilt object is minimum-phase or a logical

0 if it is not.
isparallel Returns a logical 1 if the dfilt object has parallel stages or a logical

0 if it does not.
isreal Returns a logical 1 if the dfilt object has real-valued coefficients or

a logical 0 if it does not.
isscalar Returns a logical 1 if the dfilt object is a scalar or a logical 0 if it is

not scalar.
issos Returns a logical 1 if the dfilt object has second-order sections or a

logical 0 if it does not.
isstable Returns a logical 1 if the dfilt object is stable or a logical 0 if it are

not.
nsections Returns the number of sections in a second-order sections filter. If a

multistage filter contains stages with multiple sections, using
nsections returns the total number of sections in all the stages (a
stage with a single section returns 1).

nstages Returns the number of stages of the filter, where a stage is a separate,
modular filter.

nstates Returns the number of states for an object.
order Returns the filter order. If Hd is a single-stage filter, the order is given

by the number of delays needed for a minimum realization of the
filter. If Hd has multiple stages, the order is given by the number of
delays needed for a minimum realization of the overall filter.

parallel Returns the parallel combination of two dfilt filters. See
dfilt.parallel.

phasez Plots the phase response in FVTool.

1 Functions

1-322

Method Description
realizemdl (Available only with Simulink software.)

realizemdl(Hd) creates a Simulink model containing a subsystem
block realization of your dfilt.

realizemdl(Hd,p1,v1,p2,v2,...) creates the block using the
properties p1, p2,... and values v1, v2,.. specified.

The following properties are available:

'Blockname' specifies the name of the block. The default value is
'Filter'.

'Destination' specifies whether to add the block to a current
Simulink model, create a new model, or place the block in an existing
subsystem in your model. Valid values are 'current', 'new', or the
name of an existing subsystem in your model. Default value is
'current'.

'OverwriteBlock' specifies whether to overwrite an existing block
that was created by realizemdl or create a new block. Valid values
are 'on' and 'off' and the default is 'off'. Note that only blocks
created by realizemdl are overwritten.

The following properties optimize the block structure. Specifying
'on' turns the optimization on and 'off' creates the block without
optimization. The default for each of the following is 'on'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a direct
connection.

'OptimizeNegOnes' replaces negative unity-gain blocks with a sign
change at the nearest summation block.

'OptimizeDelayChains' replaces cascaded chains of delay block
with a single integer delay block set to the appropriate delay.

removestage Removes a stage from a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.

 dfilt

1-323

Method Description
sos Converts the dfilt to a second-order sections dfilt. If Hd has a

single section, the returned filter has the same class.

sos(Hd,flag) specifies the ordering of the second-order sections. If
flag='UP', the first row contains the poles closest to the origin, and
the last row contains the poles closest to the unit circle. If
flag='down', the sections are ordered in the opposite direction. The
zeros are always paired with the poles closest to them.

sos(Hd,flag,scale) specifies the scaling of the gain and the
numerator coefficients of all second-order sections. scale can be
'none', 'inf' (infinity-norm) or 'two' (2-norm). Using infinity-
norm scaling with up ordering minimizes the probability of overflow
in the realization. Using 2-norm scaling with down ordering minimizes
the peak round-off noise.

ss Converts the dfilt to state-space. To see the separate A,B,C,D
matrices for the state-space model, use [A,B,C,D]=ss(Hd).

stepz Plots the step response in FVTool.

stepz(Hd,n) computes the first n samples of the step response.

stepz(Hd,n,Fs) separates the time samples by T = 1/Fs, where
Fs is assumed to be in Hz.

sysobj Converts the dfilt to a filter System object. See the reference page
for a list of supported objects. To use this method, you must have DSP
System Toolbox software installed.

tf Converts the dfilt to a transfer function.
zerophase Plots the zero-phase response in FVTool.
zpk Converts the dfilt to zeros-pole-gain form.
zplane Plots a pole-zero plot in FVTool.

For more information on each method, use the syntax help dfilt/method at the MATLAB prompt.

Viewing Properties

As with any object, you can use get to view a dfilt properties. To see a specific property, use

 get(Hd,'property')

To see all properties for an object, use

get(Hd)

Changing Properties

To set specific properties, use

set(Hd,'property1',value,'property2',value,...)

Note that you must use single quotation marks around the property name.

1 Functions

1-324

Alternatively, you can get or set a property value with Object.property:

b = [0.05 0.9 0.05];
Hd = dfilt.dffir(b);
% Lowpass direct-form I FIR filter
Hd.arithmetic % get arithmetic property
% returns double
Hd.arithmetic = 'single';
% Set arithmetic property to single precision

Copying an Object

To create a copy of an object, use the copy method.

H2 = copy(Hd)

Note Using the syntax H2 = Hd copies only the object handle and does not create a new object.

Converting Between Filter Structures

To change the filter structure of a dfilt object Hd, use

Hd2=convert(Hd,'structure_name');

where structure_name is any valid structure name in single quotes. If Hd is a cascade or
parallel structure, each of its stages is converted to the new structure.

Using Filter States

Two properties control the filter states:

• states — stores the current states of the filter. Before the filter is applied, the states correspond
to the initial conditions and after the filter is applied, the states correspond to the final conditions.
For df1, df1t, df1sos and df1tsos structures, states returns a filtstate object.

• PersistentMemory — controls whether filter states are saved. The default value is 'false',
which causes the initial conditions to be reset to zero before filtering and turns off the display of
states information. Setting PersistentMemory to 'true' allows the filter to use your initial
conditions or to reuse the final conditions of a previous filtering operation as the initial conditions
of the next filtering operation. It also displays information about the filter states.

Note If you set states and want to use them for filtering, you must set PersistentMemory to
'true' before you use the filter.

Examples
Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
Hd = dfilt.df1(b,a)

If a dfilt's numerator values do not fit on a single line, a description of the vector is displayed. To
see the specific numerator values for this example, use

 dfilt

1-325

get(Hd,'numerator')

or alternatively

Hd.numerator

Refer to the reference pages for each structure for more examples.

See Also
Apps
Signal Analyzer | Filter Designer

Functions
filter | freqz | grpdelay | impz | step | tf | zpk | zplane

Introduced before R2006a

1 Functions

1-326

dfilt.cascade
Cascade of discrete-time filters

Syntax
Hd = dfilt.cascade(Hd1,Hd2,...)

Description
Hd = dfilt.cascade(Hd1,Hd2,...) returns a discrete-time filter, Hd, of type cascade, which is
a serial interconnection of two or more dfilt filters, Hd1, Hd2, etc. Each filter in a cascade is a
separate stage.

To add a filter (Hd1) to the end of an existing cascade (Hd), use

addstage(Hd,Hd1)

and to reorder the filters in a cascade, use the stage indices to indicate the desired ordering, such as.

Hd.stage = Hd.stage([1,3,2]);

You can also use the nondot notation format for calling a cascade:

cascade(Hd1,Hd2,...)

Examples
Cascade a lowpass filter and a highpass filter to produce a bandpass filter:

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
H1=dfilt.df2t(b1,a1);
H2=dfilt.df2t(b2,a2);
Hcas=dfilt.cascade(H1,H2) % Bandpass-passband .4-.6

To view details of the first stage, use

info(Hcas.Stage(1))

To view the states of a stage, use

Hcas.stage(1).states

You can display states for individual stages only.

 dfilt.cascade

1-327

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-328

dfilt.delay
Delay filter

Syntax
Hd = dfilt.delay
Hd = dfilt.delay(latency)

Description
Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds a single delay to
any signal filtered with Hd. The filtered signal has its values shifted by one sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay, which adds the
number of delay units specified in latency to any signal filtered with Hd. The filtered signal has its
values shifted by the latency number of samples. The values that appear before the shifted signal
are the filter states.

Examples
Create a delay filter with a latency of 4 and filter a simple signal to view the impact of applying a
delay.

h = dfilt.delay(4)
h =
 FilterStructure: 'Delay'
 Latency: 4
 PersistentMemory: false

sig = 1:7 % Create some simple signal data
sig =
 1 2 3 4 5 6 7

states = h.states % Filter states before filtering
states =
 0
 0
 0
 0

filter(h,sig) % Filter using the delay filter
ans =
 0 0 0 0 1 2 3

states=h.states % Filter states after filtering
states =
 4
 5
 6
 7

 dfilt.delay

1-329

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-330

dfilt.df1
Discrete-time, direct-form I filter

Syntax
Hd = dfilt.df1(b,a)
Hd = dfilt.df1

Description
Hd = dfilt.df1(b,a) returns a discrete-time, direct-form I filter, Hd, with numerator coefficients
b and denominator coefficients a. The filter states for this object are stored in a filtstates object.

Hd = dfilt.df1 returns a default, discrete-time, direct-form I filter, Hd, with b=1 and a=1. This
filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

Image of direct form one filter diagram

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is

 dfilt.df1

1-331

zb(1)
zb(2)
⋯

zb(n)
za(1)
za(2)
⋯

za(n)

Examples
Create a direct-form I discrete-time filter with coefficients from a fourth-order lowpass Butterworth
design

[b,a] = butter(4,.5);
Hd = dfilt.df1(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-332

dfilt.df1sos
Discrete-time, second-order section, direct-form I filter

Syntax
Hd = dfilt.df1sos(s)
Hd = dfilt.df1sos(b1,a1,b2,a2,...)
Hd = dfilt.df1sos(...,g)
Hd = dfilt.df1sos

Description
Hd = dfilt.df1sos(s) returns a discrete-time, second-order section, direct-form I filter, Hd, with
coefficients given in the s matrix. The filter states for this object are stored in a filtstates object.

Hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form I filter, Hd, with coefficients for the first section given in the b1 and a1 vectors, for the second
section given in the b2 and a2 vectors, etc.

Hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df1sos returns a default, discrete-time, second-order section, direct-form I filter, Hd.
This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

 dfilt.df1sos

1-333

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector is

zb1(1) zb2(1)
zb1(2) zb2(2)
za1(1) za2(1)
za1(2) za2(2)

For filters with more than one section, each section is a separate column in the matrix.

Examples
Specify a second-order sections, direct-form I discrete-time filter with coefficients from a sixth order,
lowpass, elliptical filter using the following code. The resulting filter has three sections.

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1sos(s,g)

1 Functions

1-334

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df1sos

1-335

dfilt.df1t
Discrete-time, direct-form I transposed filter

Syntax
Hd = dfilt.df1t(b,a)
Hd = dfilt.df1t

Description
Hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter, Hd, with numerator
coefficients b and denominator coefficients a. The filter states for this object are stored in a
filtstates object.

Hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The vector of states is:

1 Functions

1-336

zb(1)
zb(2)
⋮

zb(M)
za(1)
za(2)
⋮

za(N)

Alternatively, you can access the states in the filtstates object:

b = [0.05 0.9 0.05];
Hd = dfilt.df1t(b,1);
Hd.States
% Returns
% Numerator: [2x1 double]
% Denominator: [0x1 double]
Hd.States.Numerator(1)=1; %Set zb(1) equal to 1.

Examples
Create a direct-form I transposed discrete-time filter with coefficients from a fourth-order lowpass
Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df1t(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df1t

1-337

dfilt.df1tsos
Discrete-time, second-order section, direct-form I transposed filter

Syntax
Hd = dfilt.df1tsos(s)
Hd = dfilt.df1tsos(b1,a1,b2,a2,...)
Hd = dfilt.df1tsos(...,g)
Hd = dfilt.df1tsos

Description
Hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, direct-form I, transposed
filter, Hd, with coefficients given in the s matrix. The filter states for this object are stored in a
filtstates object.

Hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form I, transposed filter, Hd, with coefficients for the first section given in the b1 and a1 vectors, for
the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df1tsos returns a default, discrete-time, second-order section, direct-form I,
transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

1 Functions

1-338

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.df1 object and
double (Hs) % Hs is the filtstates object

The matrix is

zb1(1) zb2(1)
zb1(2) zb2(2)
za1(1) za2(1)
za1(2) za2(2)

Examples
Specify a second-order sections, direct-form I, transposed discrete-time filter with coefficients from a
sixth order, lowpass, elliptical filter using the following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df1tsos(s,g)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df1tsos

1-339

dfilt.df2
Discrete-time, direct-form II filter

Syntax
Hd = dfilt.df2(b,a)
Hd = dfilt.df2

Description
Hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter, Hd, with numerator coefficients
b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter, Hd, with b=1 and a=1. This
filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

The resulting filter states column vector is

1 Functions

1-340

z(1)
z(2)
⋮

z(n)

Examples
Create a direct-form II discrete-time filter with coefficients from a fourth-order lowpass Butterworth
design:

[b,a] = butter(4,.5);
Hd = dfilt.df2(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df2

1-341

dfilt.df2sos
Discrete-time, second-order section, direct-form II filter

Syntax
Hd = dfilt.df2sos(s)
Hd = dfilt.df2sos(b1,a1,b2,a2,...)
Hd = dfilt.df2sos(...,g)
Hd = dfilt.df2sos

Description
Hd = dfilt.df2sos(s) returns a discrete-time, second-order section, direct-form II filter, Hd, with
coefficients given in the s matrix.

Hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form II object, Hd, with coefficients for the first section given in the b1 and a1 vectors, for the second
section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form II filter, Hd.
This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

1 Functions

1-342

The resulting filter states column vector is

z1(1) z2(1)
z1(2) z2(2)

For filters with more than one section, each section is a separate column in the vector.

Examples
Specify a second-order sections, direct-form II discrete-time filter with coefficients from a sixth order,
lowpass, elliptical filter using the following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS
Hd = dfilt.df2sos(s,g)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df2sos

1-343

dfilt.df2t
Discrete-time, direct-form II transposed filter

Syntax
Hd = dfilt.df2t(b,a)
Hd = dfilt.df2t

Description
Hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed filter, Hd, with numerator
coefficients b and denominator coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

The filter states of dfilt.df2t object can be extracted as a column vector with:

b =[1 2];
a =[1 -0.9];
Hd = dfilt.df2t(b,a);
FiltStates = double(Hd.States);

The resulting filter states column vector is

1 Functions

1-344

z(1)
z(2)

Examples
Create a direct-form II transposed discrete-time filter with coefficients from a 4–th order lowpass
Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2t(b,a);

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df2t

1-345

dfilt.df2tsos
Discrete-time, second-order section, direct-form II transposed filter

Syntax
Hd = dfilt.df2tsos(s)
Hd = dfilt.df2tsos(b1,a1,b2,a2,...)
Hd = dfilt.df2tsos(...,g)
Hd = dfilt.df2tsos

Description
Hd = dfilt.df2tsos(s) returns a discrete-time, second-order section, direct-form II, transposed
filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time, second-order section, direct-
form II, transposed filter, Hd, with coefficients for the first section given in the b1 and a1 vectors, for
the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form II,
transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

The resulting filter states column vector is

1 Functions

1-346

z1(1) z2(1)
z1(2) z2(2)

Examples

Elliptic Filter as Second-Order Sections

Design a second-order sections, direct-form II, transposed discrete-time filter starting from a 6th-
order lowpass elliptic filter. Specify a passband edge frequency of 0 . 4π rad/sample, a passband ripple
of 1 dB, and a stopband attenuation of 60 dB. Visualize the filter response.

[z,p,k] = ellip(6,1,60,0.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SOS

Hd = dfilt.df2tsos(s,g);

fvtool(Hd)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.df2tsos

1-347

dfilt.dfasymfir
Discrete-time, direct-form antisymmetric FIR filter

Syntax
Hd = dfilt.dfasymfir(b)
Hd = dfilt.dfasymfir

Description
Hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, antisymmetric FIR filter, Hd, with
numerator coefficients b.

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric FIR filter, Hd,
with b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be antisymmetric.
In the figure below for an odd number of coefficients, b(3) = 0, b(4) = –b(2) and b(5) = –b(1),
and in the next figure for an even number of coefficients, b(4) = –b(3), b(5) = –b(2), and
b(6) = –b(1).

1 Functions

1-348

 dfilt.dfasymfir

1-349

The resulting filter states column vector for the odd number of coefficients example above is

z(1)
z(2)
z(3)
z(4)
z(5)
z(6)

Examples

Odd-Order Antisymmetric FIR Filter Structure

Create a Type-4 25th-order highpass direct-form antisymmetric FIR filter structure for a dfilt
object.

Num_coeffs = firpm(25,[0 .4 .5 1],[0 0 1 1],'h');
Hd = dfilt.dfasymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)

1 Functions

1-350

Even-Order Antisymmetric FIR Filter Structure

Create a 44th-order lowpass direct-form antisymmetric FIR differentiator filter structure for a dfilt
object.

Num_coeffs = firpm(44,[0 .3 .4 1],[0 .2 0 0],'differentiator');
Hd = dfilt.dfasymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)

 dfilt.dfasymfir

1-351

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-352

dfilt.dffir
Discrete-time, direct-form, FIR filter

Syntax
Hd = dfilt.dffir(b)
Hd = dfilt.dffir

Description
Hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse response (FIR) filter, Hd,
with numerator coefficients, b.

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter, Hd, with b=1. This filter
passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)

Examples
Create a direct-form FIR discrete-time filter with coefficients from a 30th order lowpass equiripple
design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffir(b)

 dfilt.dffir

1-353

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-354

dfilt.dffirt
Discrete-time, direct-form FIR transposed filter

Syntax
Hd = dfilt.dffirt(b)
Hd = dfilt.dffirt

Description
Hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed filter, Hd, with
numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter, Hd, with
b=1. This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)

Examples
Create a direct-form FIR transposed discrete-time filter with coefficients from a 30th order lowpass
equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffirt(b)

See Also
Signal Analyzer | designfilt

 dfilt.dffirt

1-355

Introduced before R2006a

1 Functions

1-356

dfilt.dfsymfir
Discrete-time, direct-form symmetric FIR filter

Syntax
Hd = dfilt.dfsymfir(b)
Hd = dfilt.dfsymfir

Description
Hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR filter, Hd, with
numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR filter, Hd, with
b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be symmetric. In
the figure below for an odd number of coefficients, b(3) = 0, b(4) = b(2) and b(5) = b(1), and in
the next figure for an even number of coefficients, b(4) = b(3), b(5) = b(2), and b(6) = b(1).

 dfilt.dfsymfir

1-357

The resulting filter states column vector for the odd number of coefficients example above is

z(1)
z(2)
z(3)
z(4)

Examples

Odd-Order Symmetric FIR Filter Structure

Create a Type-2 15th-order direct-form symmetric FIR filter structure for a dfilt object.

Num_coeffs = fir1(15,0.5);
Hd = dfilt.dfsymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)

1 Functions

1-358

Even-Order Symmetric FIR Filter Structure

Create a Type-1 16th-order direct-form symmetric FIR filter structure for a dfilt object.

Num_coeffs = fir1(16,0.5);
Hd = dfilt.dfsymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)

 dfilt.dfsymfir

1-359

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-360

dfilt.fftfir
Discrete-time, overlap-add, FIR filter

Syntax
Hd = dfilt.fftfir(b,len)
Hd = dfilt.fftfir(b)
Hd = dfilt.fftfir

Description
This object uses the overlap-add method of block FIR filtering, which is very efficient for streaming
data.

Hd = dfilt.fftfir(b,len) returns a discrete-time, FFT, FIR filter, Hd, with numerator
coefficients, b and block length, len. The block length is the number of input points to use for each
overlap-add computation.

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd, with numerator coefficients, b
and block length, len=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with the numerator b=1
and block length, len=100. This filter passes the input through to the output unchanged.

Note When you use a dfilt.fftfir object to filter data, the filter always operates on a segment of
the signal equal in length to an integer multiple of the object's block length, len. If the input signal
length is not equal to an integer multiple of the block length, the signal length is truncated to the
nearest integer satisfying this requirement. If the PersistentMemory property is set to true, the
next time you use the filter object the remaining signal samples are prepended to the subsequent
input. The resulting number of FFT points = (filter length + the block length - 1). The filter is most
efficient if the number of FFT points is a power of 2.

The fftfir uses an overlap-add block processing algorithm, which is represented as follows,

 dfilt.fftfir

1-361

where len is the block length and M is the length of the numerator-1, (length(b)-1), which is also
the number of states. The output of each convolution is a block that is longer than the input block by
a tail of (length(b)-1) samples. These tails overlap the next block and are added to it. The states
reported by dfilt.fftfir are the tails of the final convolution.

Examples
Create an FFT FIR discrete-time filter with coefficients from a 30th order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.fftfir(b)

To view the frequency domain coefficients used in the filtering, use the following command.

freq_coeffs = fftcoeffs(Hd);

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1 Functions

1-362

dfilt.latticeallpass
Discrete-time, lattice allpass filter

Syntax
Hd = dfilt.latticeallpass(k)
Hd = dfilt.latticeallpass

Description
Hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter, Hd, with lattice
coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter, Hd, with k=[].
This filter passes the input through to the output unchanged.

The resulting filter states column vector Hd.States is

z(1)
z(2)

Examples
Form a third-order lattice allpass filter structure for a dfilt object, Hd, using the following lattice
coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticeallpass(k)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.latticeallpass

1-363

dfilt.latticear
Discrete-time, lattice, autoregressive filter

Syntax
Hd = dfilt.latticear(k)
Hd = dfilt.latticear

Description
Hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive filter, Hd, with lattice
coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter, Hd, with k=[].
This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)
z(3)

Examples
Form a third-order lattice autoregressive filter structure for a dfilt object, Hd, using the following
lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticear(k)

See Also
Signal Analyzer | designfilt

1 Functions

1-364

Introduced before R2006a

 dfilt.latticear

1-365

dfilt.latticearma
Discrete-time, lattice, autoregressive, moving-average filter

Syntax
Hd = dfilt.latticearma(k,v)
Hd = dfilt.latticearma

Description
Hd = dfilt.latticearma(k,v) returns a discrete-time, lattice autoregressive, moving-average
filter, Hd, with lattice coefficients, k and ladder coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice autoregressive, moving-average
filter, Hd, with k=[] and v=1. This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)
z(3)

Examples
Form a third-order lattice autoregressive, moving-average filter structure for a dfilt object, Hd,
using the following lattice coefficients:

k = [.66 .7 .44];
Hd = dfilt.latticearma(k)

See Also
Signal Analyzer | designfilt

1 Functions

1-366

Introduced before R2006a

 dfilt.latticearma

1-367

dfilt.latticemamax
Discrete-time, lattice, moving-average filter

Syntax
Hd = dfilt.latticemamax(k)
Hd = dfilt.latticemamax

Description
Hd = dfilt.latticemamax(k) returns a discrete-time, lattice, moving-average filter, Hd, with
lattice coefficients k.

Note If the k coefficients define a maximum phase filter, the resulting filter in this structure is
maximum phase. If your coefficients do not define a maximum phase filter, placing them in this
structure does not produce a maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average filter, Hd, with
k=[]. This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)
z(3)

Examples
Form a fourth-order lattice, moving-average, maximum phase filter structure for a dfilt object, Hd,
using the following lattice coefficients:

1 Functions

1-368

k = [.66 .7 .44 .33];
Hd = dfilt.latticemamax(k)

Introduced before R2006a

 dfilt.latticemamax

1-369

dfilt.latticemamin
Discrete-time, lattice, moving-average filter

Syntax
Hd = dfilt.latticemamin(k)
Hd = dfilt.latticemamin

Description
Hd = dfilt.latticemamin(k) returns a discrete-time, lattice, moving-average, minimum phase,
filter, Hd, with lattice coefficients k.

Note If the k coefficients define a minimum phase filter, the resulting filter in this structure is
minimum phase. If your coefficients do not define a minimum phase filter, placing them in this
structure does not produce a minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average, minimum
phase, filter, Hd, with k=[]. This filter passes the input through to the output unchanged.

The resulting filter states column vector is

z(1)
z(2)
z(3)

Examples
Form a third-order lattice, moving-average, minimum phase, filter structure for a dfilt object, Hd,
using the following lattice coefficients.

1 Functions

1-370

k = [.66 .7 .44];
Hd = dfilt.latticemamin(k)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.latticemamin

1-371

dfilt.parallel
Discrete-time, parallel structure filter

Syntax
Hd = dfilt.parallel(Hd1,Hd2,...)

Description
Hd = dfilt.parallel(Hd1,Hd2,...) returns a discrete-time filter, Hd, which is a structure of
two or more dfilt filters, Hd1, Hd2, etc. arranged in parallel. Each filter in a parallel structure is a
separate stage. You can display states for individual stages only. To view the states of a stage use

Hd.stage(1).states

To append a filter (Hd1) onto an existing parallel filter (Hd), use

addstage(Hd,Hd1)

You can also use the nondot notation format for calling a parallel structure.

parallel(Hd1,Hd2,...)

Examples
Using a parallel structure, create a coupled-allpass decomposition of a 7th order lowpass digital,
elliptic filter with a normalized cutoff frequency of 0.5, 1 decibel of peak-to-peak ripple and a
minimum stopband attenuation of 40 decibels.

k1 = [-0.0154 0.9846 -0.3048 0.5601];
Hd1 = dfilt.latticeallpass(k1);
k2 = [-0.1294 0.8341 -0.4165];
Hd2 = dfilt.latticeallpass(k2);
Hpar = parallel(Hd1 ,Hd2);
gain = dfilt.scalar(0.5); % Normalize passband gain
Hcas = cascade(gain,Hpar);

For details on the stages of this filter, use

1 Functions

1-372

info(Hcas.Stage(1))

and

info(Hcas.Stage(2))

To view this filter, use

fvtool(Hcas)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.parallel

1-373

dfilt.scalar
Discrete-time, scalar filter

Syntax
Hd = dfilt.scalar(g)
Hd = dfilt.scalar

Description
Hd = dfilt.scalar(g) returns a discrete-time, scalar filter, Hd, with gain g, where g is a scalar.

Hd = dfilt.scalar returns a default, discrete-time scalar gain filter, Hd, with gain 1.

Examples
Create a direct-form I filter and a scalar object with a gain of 3 and cascade them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
Hd_filt = dfilt.df1(b,a);
Hd_gain = dfilt.scalar(3);
Hd_cascade = cascade(Hd_gain,Hd_filt);
hfvt = fvtool(Hd_filt,Hd_gain,Hd_cascade);
legend(hfvt,'Original Filter','Gain','Cascaded Filter',...
'location','southwest');

To view the stages of the cascaded filter, use

1 Functions

1-374

Hd.stage(1)

and

Hd.stage(2)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.scalar

1-375

dfilt.statespace
Discrete-time, state-space filter

Syntax
Hd = dfilt.statespace(A,B,C,D)
Hd = dfilt.statespace

Description
Hd = dfilt.statespace(A,B,C,D) returns a discrete-time state-space filter, Hd, with rectangular
arrays A, B, C, and D.

A, B, C, and D are from the matrix or state-space form of a filter's difference equations

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

where x(n) is the vector states at time n, u(n) is the input at time n, y is the output at time n, A is the
state-transition matrix, B is the input-to-state transmission matrix, C is the state-to-output
transmission matrix, and D is the input-to-output transmission matrix. For single-channel systems, A is
an m-by-m matrix where m is the order of the filter, B is a column vector, C is a row vector, and D is a
scalar.

Hd = dfilt.statespace returns a default, discrete-time state-space filter, Hd, with A=[], B=[],
C=[], and D=1. This filter passes the input through to the output unchanged.

The resulting filter states column vector has the same number of rows as the number of rows of A or
B.

Examples
Create a second-order, state-space filter structure from a second-order, lowpass Butterworth design.

1 Functions

1-376

[A,B,C,D] = butter(2,0.5);
Hd = dfilt.statespace(A,B,C,D)

See Also
Signal Analyzer | designfilt

Introduced before R2006a

 dfilt.statespace

1-377

dftmtx
Discrete Fourier transform matrix

Syntax
a = dftmtx(n)

Description
a = dftmtx(n) returns an n-by-n complex discrete Fourier transform matrix.

Examples

The FFT and the DFT Matrix

In practice, it is more efficient to compute the discrete Fourier transform with the FFT than with the
DFT matrix. The FFT also uses less memory. The two procedures give the same result.

x = 1:256;

y1 = fft(x);

n = length(x);
y2 = x*dftmtx(n);

norm(y1-y2)

ans = 8.0174e-12

Input Arguments
n — Discrete Fourier transform length
positive integer

Discrete Fourier transform length, specified as an integer.
Data Types: single | double

Output Arguments
a — Discrete Fourier transform matrix
matrix

Discrete Fourier transform matrix, returned as a matrix.

1 Functions

1-378

More About
Discrete Fourier Transform Matrix

A discrete Fourier transform matrix is a complex matrix whose matrix product with a vector
computes the discrete Fourier transform of the vector. dftmtx takes the FFT of the identity matrix to
generate the transform matrix.

For a column vector x,

y = dftmtx(n)*x

is the same as y = fft(x,n). The inverse discrete Fourier transform matrix is

ainv = conj(dftmtx(n))/n

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
convmtx | fft

Introduced before R2006a

 dftmtx

1-379

digitalFilter
Digital filter

Description
Use designfilt to design and edit digitalFilter objects.

• Use designfilt in the form d = designfilt(resp,Name,Value) to design a digital filter, d,
with response type resp. Customize the filter further using Name,Value pairs.

• Use designfilt in the form designfilt(d) to edit an existing filter, d.

Note This is the only way to edit an existing digitalFilter object. Its properties are otherwise
read-only.

• Use filter in the form dataOut = filter(d,dataIn) to filter a signal with a
digitalFilter d. The input can be a double- or single-precision vector. It can also be a matrix
with as many columns as there are input channels.

• Use FVTool to visualize a digitalFilter.
• These functions take digitalFilter objects as input.

Object Functions
Filtering

Function Description
fftfilt Filters a signal with a digitalFilter using an FFT-based overlap-add

method
filter Filters a signal using a digitalFilter
filtfilt Performs zero-phase filtering of a signal with a digitalFilter

1 Functions

1-380

Filter Analysis

Function Description
double Casts the coefficients of a digitalFilter to double precision
filt2block Generates a Simulink filter block corresponding to a digitalFilter
filtord Returns the filter order of a digitalFilter
firtype Returns the type (1, 2, 3, or 4) of an FIR digitalFilter
freqz Returns or plots the frequency response of a digitalFilter
FVTool Opens the Filter Visualization Tool and displays the magnitude response

of a digitalFilter
grpdelay Returns or plots the group delay response of a digitalFilter
impz Returns or plots the impulse response of a digitalFilter
impzlength Returns the length of the impulse response of a digitalFilter,

whether actual (for FIR filters) or effective (for IIR filters)
info Returns a character array with information about a digitalFilter
isallpass Returns true if a digitalFilter is allpass
isdouble Returns true if the coefficients of a digitalFilter are double

precision
isfir Returns true if a digitalFilter has a finite impulse response
islinphase Returns true if a digitalFilter has linear phase
ismaxphase Returns true if a digitalFilter is maximum phase
isminphase Returns true if a digitalFilter is minimum phase
issingle Returns true if the coefficients of a digitalFilter are single

precision
isstable Returns true if a digitalFilter is stable
phasedelay Returns or plots the phase delay response of a digitalFilter
phasez Returns or plots the (unwrapped) phase response of a digitalFilter
single Casts the coefficients of a digitalFilter to single precision
ss Returns the state-space representation of a digitalFilter
stepz Returns or plots the step response of a digitalFilter
tf Returns the transfer function representation of a digitalFilter
zerophase Returns or plots the zero-phase response of a digitalFilter
zpk Returns the zero-pole-gain representation of a digitalFilter
zplane Displays the poles and zeros of the transfer function represented by a

digitalFilter

Examples

 digitalFilter

1-381

Lowpass IIR Filter

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Visualize the magnitude response of the filter.

lpFilt = designfilt('lowpassiir','FilterOrder',8, ...
 'PassbandFrequency',35e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
fvtool(lpFilt)

Use the filter you designed to filter a 1000-sample random signal.

dataIn = randn(1000,1);
dataOut = filter(lpFilt,dataIn);

Output the filter coefficients, expressed as second-order sections.

sos = lpFilt.Coefficients

sos = 4×6

 0.2666 0.5333 0.2666 1.0000 -0.8346 0.9073
 0.1943 0.3886 0.1943 1.0000 -0.9586 0.7403
 0.1012 0.2023 0.1012 1.0000 -1.1912 0.5983
 0.0318 0.0636 0.0318 1.0000 -1.3810 0.5090

1 Functions

1-382

See Also
designfilt | double | fftfilt | filt2block | filter | filtfilt | filtord | firtype | freqz
| FVTool | grpdelay | impz | impzlength | info | isallpass | isdouble | isfir | islinphase |
ismaxphase | isminphase | issingle | isstable | phasedelay | phasez | single | ss | stepz |
tf | zerophase | zpk | zplane

Introduced in R2014a

 digitalFilter

1-383

digitrevorder
Permute input into digit-reversed order

Syntax
y = digitrevorder(x,r)
[y,i] = digitrevorder(x,r)

Description
digitrevorder is useful for pre-ordering a vector of filter coefficients for use in frequency-domain
filtering algorithms, in which the fft and ifft transforms are computed without digit-reversed
ordering for improved run-time efficiency.

y = digitrevorder(x,r) returns the input data in digit-reversed order in vector or matrix y. The
digit-reversal is computed using the number system base (radix base) r, which can be any integer
from 2 to 36. The length of x must be an integer power of r. If x is a matrix, the digit reversal occurs
on the first dimension of x with size greater than 1. y is the same size as x.

[y,i] = digitrevorder(x,r) returns the digit-reversed vector or matrix y and the digit-reversed
indices i, such that y = x(i). Recall that MATLAB matrices use 1-based indexing, so the first index
of y will be 1, not 0.

The following table shows the numbers 0 through 15, the corresponding digits and the digit-reversed
numbers using radix base-4. The corresponding radix base-2 bits and bit-reversed indices are also
shown.

Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2 Bits Base-2 Reversed
(bitrevorder)

Bit- Reversed
Index

0 00 00 0 0000 0000 0
1 01 10 4 0001 1000 8
2 02 20 8 0010 0100 4
3 03 30 12 0011 1100 12
4 10 01 1 0100 0010 2
5 11 11 5 0101 1010 10
6 12 21 9 0110 0110 6
7 13 31 13 0111 1110 14
8 20 02 2 1000 0001 1
9 21 12 6 1001 1001 9
10 22 22 10 1010 0101 5
11 23 32 14 1011 1101 13
12 30 03 3 1100 0011 3

1 Functions

1-384

Linear
Index

Base-4
Digits

Digit-
Reversed

Digit-
Reversed
Index

Base-2 Bits Base-2 Reversed
(bitrevorder)

Bit- Reversed
Index

13 31 13 7 1101 1011 11
14 32 23 11 1110 0111 7
15 33 33 15 1111 1111 15

Examples

Base-3 Digit-Reversed Order

Obtain the digit-reversed, radix base-3 ordered output of a vector containing 9 values. Obtain the
same result by converting to base 3 and reversing the digits.

x = (0:8)';

y = digitrevorder(x,3);

c1 = dec2base(x,3);
c2 = fliplr(c1);
c3 = base2dec(c2,3);

T = table(x,y,c1,c2,c3)

T=9×5 table
 x y c1 c2 c3
 _ _ __ __ __

 0 0 00 00 0
 1 3 01 10 3
 2 6 02 20 6
 3 1 10 01 1
 4 4 11 11 4
 5 7 12 21 7
 6 2 20 02 2
 7 5 21 12 5
 8 8 22 22 8

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
bitrevorder | fft | ifft

 digitrevorder

1-385

Introduced before R2006a

1 Functions

1-386

diric
Dirichlet or periodic sinc function

Syntax
y = diric(x,n)

Description
y = diric(x,n) returns the “Dirichlet Function” on page 1-391 of degree n evaluated at the
elements of the input array x.

Examples

Dirichlet Function

Compute and plot the Dirichlet function between −2π and 2π for N = 7 and N = 8. The function has a
period of 2π for odd N and 4π for even N.

x = linspace(-2*pi,2*pi,301);

d7 = diric(x,7);
d8 = diric(x,8);

subplot(2,1,1)
plot(x/pi,d7)
ylabel('N = 7')
title('Dirichlet Function')

subplot(2,1,2)
plot(x/pi,d8)
ylabel('N = 8')
xlabel('x / \pi')

 diric

1-387

Periodic and Aperiodic Sinc Functions

The Dirichlet and sinc functions are related by DN(πx) = sinc(Nx/2)/sinc(x/2). Show this relationship
for N = 6. Avoid indeterminate expressions by specifying that the ratio of sinc functions is −1 k N − 1

for x = 2k, where k is an integer.

xmax = 4;
x = linspace(-xmax,xmax,1001)';

N = 6;

yd = diric(x*pi,N);
ys = sinc(N*x/2)./sinc(x/2);
ys(~mod(x,2)) = (-1).^(x(~mod(x,2))/2*(N-1));

subplot(2,1,1)
plot(x,yd)
title('D_6(x*pi)')
subplot(2,1,2)
plot(x,ys)
title('sinc(6*x/2) / sinc(x/2)')

1 Functions

1-388

Repeat the calculation for N = 13.

N = 13;

yd = diric(x*pi,N);
ys = sinc(N*x/2)./sinc(x/2);
ys(~mod(x,2)) = (-1).^(x(~mod(x,2))/2*(N-1));

subplot(2,1,1)
plot(x,yd)
title('D_{13}(x*pi)')
subplot(2,1,2)
plot(x,ys)
title('sinc(13*x/2) / sinc(x/2)')

 diric

1-389

Input Arguments
x — Input array
real scalar | real vector | real matrix | real N-D array

Input array, specified as a real scalar, vector, matrix, or N-D array. When x is nonscalar, diric is an
element-wise operation.
Data Types: double | single

n — Function degree
positive integer scalar

Function degree, specified as a positive integer scalar.
Data Types: double | single

Output Arguments
y — Output array
real scalar | real vector | real matrix | real N-D array

Output array, returned as a real-valued scalar, vector, matrix, or N-D array of the same size as x.

1 Functions

1-390

More About
Dirichlet Function

The Dirichlet function, or periodic sinc function, is

DN(x) =
sin(Nx/2)
Nsin(x/2) x ≠ 2πk, k = 0, ± 1, ± 2, ± 3, ...

(− 1)k(N − 1) x = 2πk, k = 0, ± 1, ± 2, ± 3, ...

for any nonzero integer N.

This function has period 2π for odd N and period 4π for even N. Its maximum value is 1 for all N, and
its minimum value is –1 for even N. The magnitude of the function is 1/N times the magnitude of the
discrete-time Fourier transform of the N-point rectangular window.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cos | gauspuls | pulstran | rectpuls | sawtooth | sin | sinc | square | tripuls

Introduced before R2006a

 diric

1-391

dlstft
Deep learning short-time Fourier transform

Syntax
[yr,yi] = dlstft(x)
[yr,yi] = dlstft(x,fs)
[yr,yi] = dlstft(x,ts)

[yr,yi] = dlstft(___ ,Name,Value)

[yr,yi,f,t] = dlstft(___)

Description
[yr,yi] = dlstft(x) returns the deep learning “Short-Time Fourier Transform” on page 1-397
(STFT) of x. dlstft requires Deep Learning Toolbox™.

[yr,yi] = dlstft(x,fs) returns the deep learning STFT assuming that x was sampled at the
rate fs.

[yr,yi] = dlstft(x,ts) returns the deep learning STFT assuming that x was sampled with
sample time ts.

[yr,yi] = dlstft(___ ,Name,Value) specifies additional options using name-value arguments.
Options include the spectral window and the FFT length. These arguments can be added to any of the
previous input syntaxes. For example, 'DataFormat','CBT' specifies the data format of x as CBT.

[yr,yi,f,t] = dlstft(___) returns the frequencies f and times t at which the deep learning
STFT is computed.

Examples

Deep Learning Short-Time Fourier Transform of Chirp

Generate a signal sampled at 600 Hz for 2 seconds. The signal consists of a chirp with sinusoidally
varying frequency content.

fs = 6e2;
t = 0:1/fs:2;
x = vco(sin(2*pi*t),[0.1 0.4]*fs,fs);

Store the signal in an unformatted deep learning array. Compute the short-time Fourier transform of
the signal. Input the sample time as a duration scalar. (Alternatively, input the sample rate as a
numeric scalar.) Specify that the input array is in 'CTB' format.

dlx = dlarray(x);

[yr,yi,f,t] = dlstft(dlx,seconds(1/fs),'DataFormat','CTB');

1 Functions

1-392

Convert the outputs to numeric arrays. Compute the magnitude of the short-time Fourier transform
and display it as a waterfall plot.

yr = extractdata(yr);
yi = extractdata(yi);

f = extractdata(f);
t = seconds(t);

waterfall(f,t,squeeze(hypot(yr,yi))')

ax = gca;
ax.XDir = 'reverse';
view(30,45)

ylabel('Time (s)')
xlabel('Frequency (Hz)')
zlabel('Magnitude')

Deep Learning Short-Time Fourier Transform of Sinusoid

Generate a 3-by-160(-by-1) array containing one batch of a three-channel, 160-sample sinusoidal
signal. The normalized sinusoid frequencies are π/4 rad/sample, π/2 rad/sample, and 3π/4 rad/
sample. Save the signal as a dlarray, specifying the dimensions in order. dlarray permutes the

 dlstft

1-393

array dimensions to the 'CBT' shape expected by a deep learning network. Display the array
dimension sizes.

x = dlarray(cos(pi.*(1:3)'/4*(0:159)),'CTB');
[nchan,nbtch,nsamp] = size(x)

nchan = 3

nbtch = 1

nsamp = 160

Compute the deep learning short-time Fourier transform of the signal. Specify a 64-sample
rectangular window and an FFT length of 1024.

[re,im,f,t] = dlstft(x,'Window',rectwin(64),'FFTLength',1024);

dlstft computes the transform along the 'T' dimension. The output arrays are in 'SCBT' format.
The 'S' dimension corresponds to frequency in the short-time Fourier transform.

Extract the data from the deep learning arrays.

re = squeeze(extractdata(re));
im = squeeze(extractdata(im));

f = extractdata(f);
t = extractdata(t);

Compute the magnitude of the short-time Fourier transform. Plot the magnitude separately for each
channel in a waterfall plot.

z = abs(re + 1j*im);

for kj = 1:nchan
 subplot(nchan,1,kj)
 waterfall(f/pi,t,squeeze(z(:,kj,:))')
 view(30,45)
end

xlabel('Frequency (\times\pi rad/sample)')
ylabel('Samples')

1 Functions

1-394

Input Arguments
x — Input array
dlarray object | numeric array

Input array, specified as an unformatted dlarray, a formatted dlarray in 'CBT' format, or a
numeric array. If x is an unformatted dlarray or a numeric array, you must specify the
'DataFormat' as some permutation of 'CBT'.
Example: dlarray(cos(pi./[4;2]*(0:159)),'CTB') and dlarray(cos(pi./
[4;2]*(0:159))','TCB') both specify one batch observation of a two-channel sinusoid in the
'CBT' format.

fs — Sample rate
2π (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.

ts — Sample time
duration scalar

Sample time, specified as duration scalar. Specifying ts is equivalent to setting a sample rate fs =
1/ts.
Example: seconds(1) is a duration scalar representing a 1-second time difference between
consecutive signal samples.

 dlstft

1-395

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(100),'OverlapLength',50,'FFTLength',128 windows the data
using a 100-sample Hamming window, with 50 samples of overlap between adjoining segments and a
128-point FFT.

DataFormat — Data format of input
character vector | string scalar

Data format of input, specified as a character vector or string scalar. This argument is valid only if x
is unformatted.

Each character in this argument must be one of these labels:

• C — Channel
• B — Batch observations
• T — Time

The dlstft function accepts any permutation of 'CBT'. You can specify at most one of each of the C,
B, and T labels.

Each element of the argument labels the matching dimension of x. If the argument is not in the listed
order ('C' followed by 'B' and so on), then dlstft implicitly permutes both the argument and the
data to match the order, but without changing how the data is stored.
Example: 'CBT'

Window — Spectral window
hann(128,'periodic') (default) | vector

Spectral window, specified as a vector. If you do not specify the window or specify it as empty, the
function uses a Hann window of length 128. The length of 'Window' must be greater than or equal to
2.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: double | single

OverlapLength — Number of overlapped samples
75% of window length (default) | nonnegative integer

Number of overlapped samples, specified as a nonnegative integer smaller than the length of
'Window'. If you omit 'OverlapLength' or specify it as empty, it is set to the largest integer less
than 75% of the window length, which is 96 samples for the default Hann window.
Data Types: double | single

FFTLength — Number of discrete Fourier transform (DFT) points
128 (default) | positive integer

1 Functions

1-396

Number of DFT points, specified as a positive integer. The value must be greater than or equal to the
window length. If the length of the input signal is less than the DFT length, the data is padded with
zeros.
Data Types: double | single

Output Arguments
yr, yi — Short-time Fourier transform
formatted dlarray objects | unformatted dlarray objects

Short-time Fourier transform, returned as two formatted dlarray objects. yr contains the real part
of the transform. yi contains the imaginary part of the transform.

• If x is a formatted dlarray, yr and yi are 'SCBT' formatted dlarray objects. The 'S'
dimension corresponds to frequency in the short-time Fourier transform.

• If x is an unformatted dlarray or a numeric array, yr and yi are unformatted dlarray objects.
The dimension order in yr and yi is 'SCBT'.

If no time information is specified, then the STFT is computed over the Nyquist range [0, π] if
'FFTLength' is even and over [0, π) if 'FFTLength' is odd. If you specify time information, then
the intervals are [0, fs/2] and [0, fs/2), respectively, where fs is the effective sample rate.

f — Frequencies
dlarray object

Frequencies at which the deep learning STFT is computed, returned as a dlarray object.

• If the input array does not contain time information, then the frequencies are in normalized units
of rad/sample.

• If the input array contains time information, then f contains frequencies expressed in Hz.

t — Times
dlarray object | duration array

Times at which the deep learning STFT is computed, returned as a dlarray object or a duration
array.

• If you do not specify time information, then t contains sample numbers.
• If you specify a sample rate, then t contains time values in seconds.
• If you specify a sample time, then t is a duration array with the same time format as x.

More About
Short-Time Fourier Transform

The short-time Fourier transform (STFT) is used to analyze how the frequency content of a
nonstationary signal changes over time.

The STFT of a signal is calculated by sliding an analysis window of length M over the signal and
calculating the discrete Fourier transform of the windowed data. The window hops over the original
signal at intervals of R samples. Most window functions taper off at the edges to avoid spectral
ringing. If a nonzero overlap length L is specified, overlap-adding the windowed segments

 dlstft

1-397

compensates for the signal attenuation at the window edges. The DFT of each windowed segment is
added to a matrix that contains the magnitude and phase for each point in time and frequency. The
number of columns in the STFT matrix is given by

k =
Nx− L
M − L ,

where Nx is the length of the original signal x(n) and the ⌊⌋ symbols denote the floor function. The
number of rows in the matrix equals NDFT, the number of DFT points, for centered and two-sided
transforms and ⌊NDFT/2⌋ + 1 for one-sided transforms.

The STFT matrix is given by X(f) = X1(f) X2(f) X3(f) ⋯ Xk(f) such that the mth element of this
matrix is

Xm(f) = ∑
n = −∞

∞
x(n)g(n−mR)e− j2πfn,

where

• g(n) — Window function of length M.
• Xm(f) — DFT of windowed data centered about time mR.
• R — Hop size between successive DFTs. The hop size is the difference between the window length

Mand the overlap length L.

The magnitude squared of the STFT yields the spectrogram representation of the power spectral
density of the function.

1 Functions

1-398

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
dlarray | stft | istft | stftmag2sig | stftLayer

Topics
“Spoken Digit Recognition with Custom Log Spectrogram Layer and Deep Learning”

Introduced in R2021a

 dlstft

1-399

double
Cast coefficients of digital filter to double precision

Syntax
f2 = double(f1)

Description
f2 = double(f1) casts coefficients in a digital filter, f1, to double precision and returns a new
digital filter, f2, that contains these coefficients.

Examples

Lowpass FIR Filter in Single and Double Precision

Use designfilt to design a 5th-order FIR lowpass filter. Specify a normalized passband frequency
of 0 . 2π rad/sample and a normalized stopband frequency of 0 . 55π rad/sample.

Cast the filter to single precision and cast it back to double precision. Display the first coefficient of
each filter.

format long
d = designfilt('lowpassfir','FilterOrder',5, ...
 'PassbandFrequency',0.2,'StopbandFrequency', 0.55);
e = single(d);
f = double(e);

coed = d.Coefficients(1)

coed =
 0.003947882145754

coee = e.Coefficients(1)

coee = single
 0.0039479

coef = f.Coefficients(1)

coef =
 0.003947881981730

Use double to analyze, in double precision, the effects of single-precision quantization of filter
coefficients.

1 Functions

1-400

Input Arguments
f1 — Single-precision digital filter
digitalFilter object

Single-precision digital filter, specified as a digitalFilter object. Use designfilt to generate a
digital filter based on frequency-response specifications and single to cast it to single precision.
Example: f1=
single(designfilt('lowpassfir','FilterOrder',3,'HalfPowerFrequency',0.5))
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample cast in
single precision.

Output Arguments
f2 — Double-precision digital filter
digitalFilter object

Double-precision digital filter, returned as a digitalFilter object.

See Also
designfilt | digitalFilter | isdouble | issingle | single

Introduced in R2014a

 double

1-401

downsample
Decrease sample rate by integer factor

Syntax
y = downsample(x,n)
y = downsample(x,n,phase)

Description
y = downsample(x,n) decreases the sample rate of x by keeping the first sample and then every
nth sample after the first. If x is a matrix, the function treats each column as a separate sequence.

y = downsample(x,n,phase) specifies the number of samples by which to offset the downsampled
sequence.

Examples

Decrease Sample Rates

Decrease the sample rate of a sequence by a factor of 3.

x = [1 2 3 4 5 6 7 8 9 10];
y = downsample(x,3)

y = 1×4

 1 4 7 10

Decrease the sample rate of the sequence by a factor of 3 and add a phase offset of 2.

y = downsample(x,3,2)

y = 1×3

 3 6 9

Decrease the sample rate of a matrix by a factor of 3.

x = [1 2 3;
 4 5 6;
 7 8 9;
 10 11 12];
y = downsample(x,3)

y = 2×3

 1 2 3
 10 11 12

1 Functions

1-402

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix. If x is a matrix, the function treats the columns as
independent channels.
Example: cos(pi/4*(0:159)) + randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Example: cos(pi./[4;2]*(0:159))' + randn(160,2) specifies a two-channel noisy sinusoid.

n — Downsampling factor
positive integer

Downsampling factor, specified as a positive integer.
Data Types: single | double

phase — Offset
0 (default) | positive integer

Offset, specified as a positive integer from 0 to n – 1.
Data Types: single | double

Output Arguments
y — Downsampled array
vector | matrix

Downsampled array, returned as a vector or matrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
decimate | interp | interp1 | resample | spline | upfirdn | upsample

Introduced before R2006a

 downsample

1-403

dpss
Discrete prolate spheroidal (Slepian) sequences

Syntax
dps_seq = dpss(seq_length,time_halfbandwidth)
[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth)
[...] = dpss(seq_length,time_halfbandwidth,num_seq)
[...] = dpss(seq_length,time_halfbandwidth,'interp_method')
[...] = dpss(...,Ni)
[...] = dpss(...,'trace')

Description
dps_seq = dpss(seq_length,time_halfbandwidth) returns the first
round(2*time_halfbandwidth) discrete prolate spheroidal (DPSS), or Slepian sequences of
length seq_length. dps_seq is a matrix with seq_length rows and
round(2*time_halfbandwidth) columns. time_halfbandwidth must be strictly less than
seq_length/2.

[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth) returns the frequency-domain
energy concentration ratios of the column vectors in dps_seq. The ratios represent the amount of
energy in the passband [–W,W] to the total energy from [–Fs/2,Fs/2], where Fs is the sample rate.
lambda is a column vector equal in length to the number of Slepian sequences.

[...] = dpss(seq_length,time_halfbandwidth,num_seq) returns the first num_seq Slepian
sequences with time half bandwidth product time_halfbandwidth ordered by their energy
concentration ratios. If num_seq is a two-element vector, the returned Slepian sequences range from
num_seq(1) to num_seq(2).

[...] = dpss(seq_length,time_halfbandwidth,'interp_method') uses interpolation to
compute the DPSSs from a user-created database of DPSSs. Create the database of DPSSs with
dpsssave and ensure that the resulting file, dpss.mat, is in the MATLAB search path. Valid options
for 'interp_method' are 'spline' and 'linear'. The interpolation method uses the Slepian
sequences in the database with time half bandwidth product time_halfbandwidth and length
closest to seq_length.

[...] = dpss(...,Ni) interpolates from DPSSs of length Ni in the database dpss.mat.

[...] = dpss(...,'trace') prints the method used to compute the DPSSs in the command
window. Possible methods include: direct, spline interpolation, and linear interpolation.

Examples

Generate a Set of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a time half
bandwidth product of 2.5. Plot the sequences and find the concentration ratios.

1 Functions

1-404

seq_length = 512;
time_halfbandwidth = 2.5;
num_seq = 2*(2.5)-1;
[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth,num_seq);

plot(dps_seq)
title('Slepian Sequences, N = 512, NW = 2.5')
axis([0 512 -0.15 0.15])
legend('1st','2nd','3rd','4th')

concentration_ratios = lambda'

concentration_ratios = 1×4

 1.0000 0.9998 0.9962 0.9521

More About
Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-frequency
concentration problem. For all finite-energy sequences x[n] index limited to some set [N1, N1 + N2],
which sequence maximizes the following ratio:

 dpss

1-405

λ =
∫

−W

W
X(f) 2df

∫
−Fs/2

Fs/2
X(f) 2df

where Fs is the sample rate and W < Fs/2. Accordingly, this ratio determines which index-limited
sequence has the largest proportion of its energy in the band [–W,W]. For index-limited sequences,
the ratio must satisfy the inequality 0 < λ < 1. The sequence maximizing the ratio is the first discrete
prolate spheroidal or Slepian sequence. The second Slepian sequence maximizes the ratio and is
orthogonal to the first Slepian sequence. The third Slepian sequence maximizes the ratio of integrals
and is orthogonal to both the first and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [–W,W] is the
effective bandwidth of the sequence. In constructing Slepian sequences, you choose the desired
sequence length and bandwidth 2W. Both the sequence length and bandwidth affect how many
Slepian sequences have concentration ratios near one. As a rule, there are 2NW – 1 Slepian
sequences with energy concentration ratios approximately equal to one. Beyond 2NW – 1 Slepian
sequences, the concentration ratios begin to approach zero. Common choices for the time half
bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half bandwidth
product as NW/Fs, where Fs is the sample rate.

References
Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications. Cambridge, UK:
Cambridge University Press, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
dpssclear | dpssload | dpsssave | pmtm

Topics
“Nonparametric Methods”

Introduced before R2006a

1 Functions

1-406

dpssclear
Remove discrete prolate spheroidal sequences from database

Syntax
dpssclear(n,nw)

Description
dpssclear(n,nw) removes sequences with length n and time-bandwidth product nw from the DPSS
MAT-file database dpss.mat.

See Also
dpss | dpssdir | dpssload | dpsssave

Introduced before R2006a

 dpssclear

1-407

dpssdir
Discrete prolate spheroidal sequences database directory

Syntax
dpssdir
dpssdir(n)
dpssdir(nw,'nw')
dpssdir(n,nw)
index = dpssdir

Description
dpssdir manages the database directory that contains the generated DPSS samples in the DPSS
MAT-file database dpss.mat. Create the DPSS MAT-file database with dpsssave.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw,'nw') lists the sequences saved with time-bandwidth product nw.

dpssdir(n,nw) lists the sequences saved with length n and time-bandwidth product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n and nw options as for
the no output case to get a filtered index.

See Also
dpss | dpssclear | dpssload | dpsssave

Introduced before R2006a

1 Functions

1-408

dpssload
Load discrete prolate spheroidal sequences from database

Syntax
[e,v] = dpssload(n,nw)

Description
[e,v] = dpssload(n,nw) loads all sequences with length n and time-bandwidth product nw in the
columns of e and their corresponding concentrations in vector v from the DPSS MAT-file database
dpss.mat. Create the dpss.mat file using dpssave.

See Also
dpss | dpssclear | dpssdir | dpsssave

Introduced before R2006a

 dpssload

1-409

dpsssave
Discrete prolate spheroidal or Slepian sequence database

Syntax
dpsssave(time_halfbandwith,dps_seq,lambda)
status = dpsssave(time_halfbandwith,dps_seq,lambda)

Description
dpsssave(time_halfbandwith,dps_seq,lambda) creates a database of discrete prolate
spheroidal (DPSS) or Slepian sequences and saves the results in dpss.mat. The time half bandwidth
producttime_halfbandwith is a real-valued scalar determining the frequency concentration of the
Slepian sequences in dps_seq. dps_seq is a NxK matrix of Slepian sequences where N is the length
of the sequences. lambda is a 1xK vector containing the frequency concentration ratios of the
Slepian sequences in dps_seq.

If the database dpss.mat exists, subsequent calls to dpsssave append the Slepian sequences to the
existing file. If the sequences are already in the existing file, dpsssave overwrites the old values and
issues a warning.

status = dpsssave(time_halfbandwith,dps_seq,lambda) returns a 0 if the database
operation was successful or a 1 if unsuccessful.

Examples

Create a Database of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a time half
bandwidth product of 2.5. Use them to create a database of Slepian sequences, dpss.mat, in the
current working directory. The output variable, status, is 0 if there is success.

seq_length = 512;
time_halfbandwidth = 2.5;
num_seq = 4;
[dps_seq,lambda] = dpss(seq_length,time_halfbandwidth);
status = dpsssave(time_halfbandwidth,dps_seq,lambda)

status = 0

More About
Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-frequency
concentration problem. For all finite-energy sequences x[n] index limited to some set [N1, N1 + N2],
which sequence maximizes the following ratio:

1 Functions

1-410

λ =
∫

−W

W
X(f) 2df

∫
−Fs/2

Fs/2
X(f) 2df

where Fs is the sample rate and W < Fs/2. Accordingly, this ratio determines which index-limited
sequence has the largest proportion of its energy in the band [–W,W]. For index-limited sequences,
the ratio must satisfy the inequality 0 < λ < 1. The sequence maximizing the ratio is the first discrete
prolate spheroidal or Slepian sequence. The second Slepian sequence maximizes the ratio and is
orthogonal to the first Slepian sequence. The third Slepian sequence maximizes the ratio of integrals
and is orthogonal to both the first and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [–W,W] is the
effective bandwidth of the sequence. In constructing Slepian sequences, you choose the desired
sequence length and bandwidth 2W. Both the sequence length and bandwidth affect how many
Slepian sequences have concentration ratios near one. As a rule, there are 2NW – 1 Slepian
sequences with energy concentration ratios approximately equal to one. Beyond 2NW – 1 Slepian
sequences, the concentration ratios begin to approach zero. Common choices for the time half
bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half bandwidth
product as NW/Fs, where Fs is the sample rate.

References
Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications. Cambridge, UK:
Cambridge University Press, 1993.

See Also
dpss | dpssclear | dpssdir | dpssload

Introduced before R2006a

 dpsssave

1-411

dspdata
DSP data parameter information

Syntax
Hs = dspdata.dataobj(input1,...)

Description

Note The use of dspdata.dataobj is not recommended. Use the appropriate function interface
instead.

Hs = dspdata.dataobj(input1,...) returns a dspdata object Hs of type dataobj. This object
contains all the parameter information needed for the specified type of dataobj. Each dataobj
takes one or more inputs, which are described on the individual reference pages. If you do not specify
any input values, the returned object has default property values appropriate for the particular
dataobj type.

Note You must use a dataobj with dspdata.

Data Objects

A data object, dataobj, for dspdata specifies the type of data stored in the object. Available
dataobj types for dspdata are shown below.

dspdata.dataobj Description Corresponding Functions
dspdata.msspectrum Mean-square spectrum data (power) periodogram

pwelch
dspdata.psd Power spectral density data (power/

frequency)
pburg

pcov

periodogram

pmcov

pmtm

pwelch

pyulear
dspdata.pseudospec
trum

Pseudospectrum data (power) peig

pmusic

1 Functions

1-412

For more information on each dataobj type, use the syntax help dspdata.dataobj at the
MATLAB prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can apply these
methods directly on the variable you assigned to your dspdata object.

Method Description
avgpower This method applies only to dspdata.psd objects.

avgpower(Hs) computes the average power of a signal, Hs, in a
given frequency band. The technique uses a rectangle
approximation of the integral of the signal's power spectral density
(PSD). If the signal is a matrix, the computation is done on each
column. The average power is the total signal power. The
SpectrumType property determines whether the total average
power is contained in the one-sided or the two-sided spectrum. For
a one-sided spectrum, the range is [0,pi] if the number of
frequency points is even and [0,pi) if it is odd. For a two-sided
spectrum, the range is [0,2pi).

avgpower(Hs,freqrange) specifies the frequency range over
which to calculate the average power. freqrange is a two-element
vector containing the lower and upper bounds of the frequency
range. If a frequency value does not match exactly the frequency in
Hs, the next closest value is used. The first frequency value in
freqrange is included in the calculation and the second value is
excluded.

centerdc centerdc(Hs) or centerdc(Hs,true) shifts the data and
frequency values so that the DC component is at the center of the
spectrum. If the SpectrumType property is 'onesided', it is
changed to 'twosided' and then the DC component is centered.

centerdc(Hs,'false') shifts the data and frequency values so
that the DC component is at the left edge of the spectrum.

 dspdata

1-413

Method Description
findpeaks findpeaks(Hs) finds local maxima or peaks. If no peaks are

found, findpeaks returns an empty vector.

[pks,frqs] = findpeaks(x) returns the peaks’ values, pks,
and the frequencies, frqs, at which they occur.

findpeaks(x,'minpeakheight',mph) returns only peaks
greater than the minimum peak height mph, where mph is a real
scalar. The default is -Inf.

findpeaks(x,'minpeakdistance',mpd) returns only peaks
separated by the minimum frequency units distance mpd, which is
a positive integer. Setting the minimum peak distance ignores
smaller peaks that may occur close to larger local peaks. The
default is 1.

findpeaks(x,'threshold',th) returns only peaks greater
than their neighbors by at least the threshold, th, which is a real,
scalar value greater than or equal to 0. The default is 0.

findpeaks(x,'npeaks',np) returns a maximum of np number
of peaks. When np peaks are found, the search stops. The default
is to return all peaks.

findpeaks(x,'sortstr',str) specifies the sorting order,
where str is 'ascend', 'descend', or 'none'. When str is set
to 'ascend', the peaks are sorted from smallest to largest. When
str is set to 'descend' the peaks are sorted in descending order.
When str is set to 'none', the peaks are returned in the order in
which they occur.

halfrange halfrange(Hs) converts the spectrum of Hs to a spectrum
calculated over half the Nyquist interval. All associated properties
affected by the new frequency range are adjusted automatically.
This method is used for dspdata.pseudospectrum objects.

The spectrum is assumed to be from a real signal. That is,
halfrange uses half the data points regardless of whether the
data is symmetric.

normalizefreq normalizefreq(Hs) or normalizefreq(Hs,true) normalizes
the frequency specifications in the Hs object to Fs so the
frequencies are between 0 and 1. It also sets the
NormalizedFrequency property to true.

normalizefreq(Hs,false) converts the frequencies to linear
frequencies.

normalizefreq(Hs,false,Fs) sets a new sampling frequency,
Fs. This can be used only with false.

1 Functions

1-414

Method Description
onesided onesided(Hs) converts the spectrum of Hs to a spectrum

calculated over half the Nyquist interval and containing the total
signal power. All associated properties affected by the new
frequency range are adjusted automatically. This method is used
for dspdata.psd and dspdata.msspectrum objects.

The spectrum is assumed to be from a real signal. That is,
onesided uses half the data points regardless of whether the data
is symmetric.

plot Displays the data graphically in the current figure window.

For a dspdata.psd object, it displays the power spectral density
in dB/Hz.

For a dspdata.msspectrum object, it displays the mean–square
in dB.

For a dspdata.pseudospectrum object, it displays the
pseudospectrum in dB.

sfdr This method applies only to dspdata.msspectrum objects.

sfdr(Hs) computes the spurious-free dynamic range (SFDR) in
dB of a mean square spectrum object Hs. SFDR is the usable range
before spurious noise interferes with the signal.

[sfd,spur,frq] = sfdr(Hs) returns the magnitude of the
highest spur and the frequency frq at which it occurs.

sfdr(Hs,'minspurlevel',msl) ignores spurs below the
minimum spur level msl, which is a real scalar in dB.

sfdr(Hs,'minspurdistance',msd) includes spurs only if they
are separated by at least the minimum spur distance msd, which is
a real, positive scalar in frequency units.

twosided twosided(Hs) converts the Hs spectrum to a spectrum calculated
over the whole Nyquist interval. All associated properties affected
by the new frequency range are adjusted automatically. This
method is used for dspdata.psd and dspdata.msspectrum
objects.

If your data is nonuniformly sampled, converting from onesided
to twosided may produce incorrect results.

wholerange wholerange(Hs) converts the Hs spectrum to a spectrum
calculated over the whole Nyquist interval. All associated
properties affected by the new frequency range are adjusted
automatically. This method is used for dspdata.pseudospectrum
objects.

If your data is nonuniformly sampled, converting from half to
wholerange may produce incorrect results.

 dspdata

1-415

For more information on each method, use the syntax help dspdata/method at the MATLAB
prompt.

Plotting a dspdata Object

The plot method displays the dspdata object spectrum in a separate figure window.

Modifying a dspdata Object

After you create a dspdata object, you can use any of the methods in the table above to modify the
object properties. For example, to change an object, Hs, from two-sided to one-sided, use
onesided(Hs).

Examples
See the dspdata.msspectrum, dspdata.psd, and dspdata.pseudospectrum reference pages for
specific examples.

See Also
pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear

Introduced before R2006a

1 Functions

1-416

dspdata.msspectrum
Mean-square (power) spectrum

Syntax
Hmss = dspdata.msspectrum(Data)
Hmss = dspdata.msspectrum(Data,Frequencies)
Hmss = dspdata.msspectrum(...,'Fs',Fs)
Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType)
Hmss = dspdata.msspectrum(...,'CenterDC',flag)

Description

Note The use of dspdata.msspectrum is not recommended. Use periodogram or pwelch instead.

The mean-squared spectrum (MSS) is intended for discrete spectra. Unlike the power spectral
density (PSD), the peaks in the MSS reflect the power in the signal at a given frequency. The MSS of
a signal is the Fourier transform of that signal's autocorrelation.

Hmss = dspdata.msspectrum(Data) uses the mean-square (power) spectrum data contained in
Data, which can be in the form of a vector or a matrix, where each column is a separate set of data.
Default values for other properties of the object are as follows:

Property Default Value Description
Name 'Mean-square

Spectrum'
Read-only character vector

 dspdata.msspectrum

1-417

Property Default Value Description
Frequencies []

type double

Vector of frequencies at which the spectrum is
evaluated. The range of this vector depends on
the SpectrumType value. For a one-sided
spectrum, the default range is [0, π) or [0, Fs/2)
for odd length, and [0, π] or [0, Fs/2] for even
length, if Fs is specified. For a two-sided
spectrum, it is [0, 2π) or [0, Fs).

The length of the Frequencies vector must
match the length of the columns of Data.

If you do not specify Frequencies, a default
vector is created. If one-sided is selected, then
the whole number of FFT points (nFFT) for this
vector is assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to pi (or
Fs/2, if Fs is specified). If the last point is closer
to pi (or Fs/2) than it is to the previous point,
nFFT is assumed to be even. If it is closer to the
previous point, nFFT is assumed to be odd.

Fs 'Normalized' Sampling frequency, which is 'Normalized' if
NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults to
1 Hz.

SpectrumType 'Onesided' Nyquist interval over which the spectral density
is calculated. Valid values are 'Onesided' and
'Twosided'. See the onesided and twosided
methods in dspdata for information on changing
this property.

The interval for Onesided is [0 π) or [0 π]
depending on the number of FFT points, and for
Twosided the interval is [0 2π).

NormalizedFrequency true Whether the frequency is normalized (true) or
not (false). This property is set automatically at
construction time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See the
normalizefreq method in dspdata for
information on changing this property.

Hmss = dspdata.msspectrum(Data,Frequencies) uses the mean–square spectrum data
contained in Data and Frequencies vectors.

Hmss = dspdata.msspectrum(...,'Fs',Fs) uses the sampling frequency Fs. Specifying Fs
uses a default set of linear frequencies (in Hz) based on Fs and sets NormalizedFrequency to
false.

1 Functions

1-418

Hmss = dspdata.msspectrum(...,'SpectrumType',SpectrumType) uses SpectrumType to
specify the interval over which the mean-square spectrum was calculated. For data that ranges from
[0 π) or [0 π], set the SpectrumType to onesided; for data that ranges from [0 2π), set the
SpectrumType to twosided.

Hmss = dspdata.msspectrum(...,'CenterDC',flag) uses the value of flag to indicate
whether the zero-frequency (DC) component is centered. If flag is true, it indicates that the DC
component is in the center of the two-sided spectrum. Set the flag to false if the DC component is
on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object without having to
specify the parameters again. You can apply a method directly on the variable you assigned to your
dspdata.msspectrum object. You can use the following methods with a dspdata.msspectrum
object.

• centerdc
• normalizefreq
• onesided
• plot
• sfdr
• twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the spectrum, see the dspdata reference
page.

Examples

Mean-Square Spectrum of Sinusoids

Create a signal consisting of two sinusoids in additive noise.

Fs = 32e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*t*1.24e3)+cos(2*pi*t*10e3)+randn(size(t));

Compute the one-sided PSD estimate of the signal. Use the result to construct a dspdata object. Plot
the mean-square spectrum.

P = periodogram(x,[],[],Fs);

Hmss = dspdata.msspectrum(P,'Fs',Fs,'spectrumtype','onesided');

plot(Hmss)

 dspdata.msspectrum

1-419

See Also
periodogram | pwelch

Introduced before R2006a

1 Functions

1-420

dspdata.psd
Power spectral density

Syntax
Hpsd = dspdata.psd(Data)
Hpsd = dspdata.psd(Data,Frequencies)
Hpsd = dspdata.psd(...,'Fs',Fs)
Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType)
Hpsd = dspdata.psd(...,'CenterDC',flag)

Description

Note The use of dspdata.psd is not recommended. Use pburg, pcov, periodogram, pmcov, pmtm,
pwelch, or pyulear instead.

The power spectral density (PSD) is intended for continuous spectra. The integral of the PSD over a
given frequency band computes the average power in the signal over that frequency band. In contrast
to the mean-squared spectrum, the peaks in this spectra do not reflect the power at a given
frequency. See the avgpower method of dspdata for more information.

A one-sided PSD contains the total power of the signal in the frequency interval from DC to half of the
Nyquist rate. A two-sided PSD contains the total power in the frequency interval from DC to the
Nyquist rate.

Hpsd = dspdata.psd(Data) uses the power spectral density data contained in Data, which can be
in the form of a vector or a matrix, where each column is a separate set of data. Default values for
other properties of the object are shown below:

Property Default Value Description
Name 'Power Spectral

Density'
Read-only character vector

 dspdata.psd

1-421

Property Default Value Description
Frequencies []

type double

Vector of frequencies at which the power spectral
density is evaluated. The range of this vector
depends on the SpectrumType value. For one-
sided, the default range is [0, π) or [0, Fs/2) for
odd length, and [0, π] or [0, Fs/2] for even length,
if Fs is specified. For two-sided, it is [0, 2pi) or [0,
Fs).

If you do not specify Frequencies, a default
vector is created. If one-sided is selected, then the
whole number of FFT points (nFFT) for this vector
is assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to π (or
Fs/2, if Fs is specified). If the last point is closer
to π (or Fs/2) than it is to the previous point, nFFT
is assumed to be even. If it is closer to the
previous point, nFFT is assumed to be odd.

The length of the Frequencies vector must
match the length of the columns of Data.

Fs 'Normalized' Sampling frequency, which is 'Normalized' if
NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults to
1.

SpectrumType 'Onesided' Nyquist interval over which the power spectral
density is calculated. Valid values are
'Onesided' and 'Twosided'. A one-sided PSD
contains the total signal power in half the Nyquist
interval. See the onesided and twosided
methods in dspdata for information on changing
this property.

The range for half the Nyquist interval is [0 pi) or
[0 pi] depending on the number of FFT points. For
the whole Nyquist interval, the range is [0 2pi).

NormalizedFrequency true Whether the frequency is normalized (true) or
not (false). This property is set automatically at
construction time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See the
normalizefreq method in dspdata for
information on changing this property.

Hpsd = dspdata.psd(Data,Frequencies) uses the power spectral density estimation data
contained in Data and Frequencies vectors.

Hpsd = dspdata.psd(...,'Fs',Fs) uses the sampling frequency Fs. Specifying Fs uses a
default set of linear frequencies (in Hz) based on Fs and sets NormalizedFrequency to false.

1 Functions

1-422

Hpsd = dspdata.psd(...,'SpectrumType',SpectrumType) specifies the interval over which
the power spectral density is calculated. For data that ranges from [0 π) or [0 π], set the
SpectrumType to onesided; for data that ranges from [0 2π), set the SpectrumType to twosided.

Hpsd = dspdata.psd(...,'CenterDC',flag) uses the value of flag to indicate whether the
zero-frequency (DC) component is centered. If flag is true, it indicates that the DC component is in
the center of the two-sided spectrum. Set the flag to false if the DC component is on the left edge
of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can apply a
method directly on the variable you assigned to your dspdata.psd object. You can use the following
methods with a dspdata.psd object.

• avgpower
• centerdc
• normalizefreq
• onesided
• plot
• twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter to true, use

Hpsd = normalizefreq(Hpsd)

For detailed information on using the methods and plotting the spectrum, see the dspdata reference
page.

Examples

Resolve Signal Components

Estimate the one-sided power spectral density of a noisy sinusoidal signal with two frequency
components.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
nfft = 2^nextpow2(length(x));
Pxx = abs(fft(x,nfft)).^2/length(x)/Fs;

Store the spectrum in a PSD data object and plot the result.

Hpsd = dspdata.psd(Pxx(1:length(Pxx)/2),'Fs',Fs);
plot(Hpsd)

 dspdata.psd

1-423

Create a two-sided spectrum and plot it.

Hpsd = dspdata.psd(Pxx,'Fs',Fs,'SpectrumType','twosided');
plot(Hpsd)

1 Functions

1-424

See Also
pburg | pcov | periodogram | pmcov | pmtm | pwelch | pyulear

Introduced before R2006a

 dspdata.psd

1-425

dspdata.pseudospectrum
Pseudospectrum dspdata object

Syntax
Hps = dspdata.pseudospectrum(Data)
Hps = dspdata.pseudospectrum(Data,Frequencies)
Hps = dspdata.pseudospectrum(...,'Fs',Fs)
Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange)
Hps = dspdata.pseudospectrum(...,'CenterDC',flag)

Description

Note The use of dspdata.pseudospectrum is not recommended. Use peig or pmusic instead.

A pseudospectrum is an indicator of the presence of sinusoidal components in a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospectrum data contained in Data, which
can be in the form of a vector or a matrix, where each column is a separate set of data. Default values
for other properties of the object are:

Property Default Value Description
Name 'Pseudospectrum' Read-only character vector
Frequencies []

type double

Vector of frequencies at which the power spectral
density is evaluated. The range of this vector
depends on the SpectrumRange value. For half, the
default range is [0, π) or [0, Fs/2) for odd length,
and [0, π] or [0, Fs/2] for even length, if Fs is
specified. For whole, it is [0, 2π) or [0, Fs).

If you do not specify Frequencies, a default vector
is created. If half the Nyquist range is selected, then
the whole number of FFT points (nFFT) for this
vector is assumed to be even.

If half the Nyquist range is selected and you
specify Frequencies, the last frequency point is
compared to the next-to-last point and to π (or Fs/2,
if Fs is specified). If the last point is closer to π (or
Fs/2) than it is to the previous point, nFFT is
assumed to be even. If it is closer to the previous
point, nFFT is assumed to be odd.

The length of the Frequencies vector must match
the length of the columns of Data.

1 Functions

1-426

Property Default Value Description
Fs 'Normalized' Sampling frequency, which is 'Normalized' if

NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults to 1.

SpectrumRange 'Half' Nyquist interval over which the pseudospectrum is
calculated. Valid values are 'Half' and 'Whole'.
See the half and whole methods in dspdata for
information on changing this property.

The interval for Half is [0 π) or [0 π] depending on
the number of FFT points, and for Whole the
interval is [0 2π).

NormalizedFrequency true Whether the frequency is normalized (true) or not
(false). This property is set automatically at
construction time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See the
normalizefreq method in dspdata for
information on changing this property.

Hps = dspdata.pseudospectrum(Data,Frequencies) uses the pseudospectrum estimation
data contained in the Data and Frequencies vectors.

Hps = dspdata.pseudospectrum(...,'Fs',Fs) uses the sampling frequency Fs. Specifying Fs
uses a default set of linear frequencies (in Hz) based on Fs and sets NormalizedFrequency to
false.

Hps = dspdata.pseudospectrum(...,'SpectrumRange',SpectrumRange) uses the
SpectrumRange argument to specify the interval over which the pseudospectrum was calculated.
For data that ranges from [0 π) or [0 π], set the SpectrumRange to half; for data that ranges from
[0 2π), set the SpectrumRange to whole.

Hps = dspdata.pseudospectrum(...,'CenterDC',flag) uses the value of flag to indicate
whether the zero-frequency (DC) component is centered. If flag is true, it indicates that the DC
component is in the center of the whole Nyquist range spectrum. Set the flag to false if the DC
component is on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can apply a
method directly on the variable you assigned to your dspdata.pseudospectrum object. You can use
the following methods with a dspdata.pseudospectrum object.

• centerdc
• halfrange
• normalizefreq
• plot
• wholerange

For example, to normalize the frequency and set the NormalizedFrequency parameter to true, use

Hps = normalizefreq(Hps)

 dspdata.pseudospectrum

1-427

For detailed information on using the methods and plotting the pseudospectrum, see the dspdata
reference page.

Examples

Store and Plot Pseudospectrum Data

Use eigenanalysis to estimate the pseudospectrum of a noisy sinusoidal signal with two frequency
components.

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*1.24e3) + cos(2*pi*t*10e3) + randn(size(t));
P = pmusic(x,4);

Create a pseudospectrum data object to store the results. Plot the pseudospectrum.

hps = dspdata.pseudospectrum(P,'Fs',Fs);

plot(hps)

See Also
peig | pmusic

1 Functions

1-428

Introduced before R2006a

 dspdata.pseudospectrum

1-429

dspfwiz
Create Simulink filter block using Realize Model panel

Syntax
dspfwiz

Description

Note You must have the Simulink product installed to use this function.

dspfwiz opens Filter Designer with the Realize Model panel displayed.

Use other panels in Filter Designer to design your filter and then use the Realize Model panel to
create your filter as a subsystem block, which is a combination of Add, Gain, and Delay blocks, in a
Simulink model.

If you also have the DSP System Toolbox software installed, you can create a Biquad Filter block or a
Discrete FIR Filter block instead of a subsystem block, by deselecting the Build model using basic
elements check box.

See Also
Apps
Filter Designer

Introduced before R2006a

1 Functions

1-430

dtw
Distance between signals using dynamic time warping

Syntax
dist = dtw(x,y)
[dist,ix,iy] = dtw(x,y)

[___] = dtw(x,y,maxsamp)

[___] = dtw(___ ,metric)

dtw(___)

Description
dist = dtw(x,y) stretches two vectors, x and y, onto a common set of instants such that dist, the
sum of the Euclidean distances between corresponding points, is smallest. To stretch the inputs, dtw
repeats each element of x and y as many times as necessary. If x and y are matrices, then dist
stretches them by repeating their columns. In that case, x and y must have the same number of rows.

[dist,ix,iy] = dtw(x,y) returns the common set of instants, or warping path, such that x(ix)
and y(iy) have the smallest possible dist between them.

The vectors ix and iy have the same length. Each contains a monotonically increasing sequence in
which the indices to the elements of the corresponding signal, x or y, are repeated the necessary
number of times.

When x and y are matrices, ix and iy are such that x(:,ix) and y(:,iy) are minimally separated.

[___] = dtw(x,y,maxsamp) restricts the warping path to be within maxsamp samples of a
straight-line fit between x and y. This syntax returns any of the output arguments of previous
syntaxes.

[___] = dtw(___ ,metric) specifies the distance metric to use in addition to any of the input
arguments in previous syntaxes.

dtw(___) without output arguments plots the original and aligned signals.

• If the signals are real vectors, the function displays the two original signals on a subplot and the
aligned signals in a subplot below the first one.

• If the signals are complex vectors, the function displays the original and aligned signals in three-
dimensional plots.

• If the signals are real matrices, the function uses imagesc to display the original and aligned
signals.

• If the signals are complex matrices, the function plots their real and imaginary parts in the top
and bottom half of each image.

 dtw

1-431

Examples

Dynamic Time Warping of Chirp and Sinusoid

Generate two real signals: a chirp and a sinusoid.

x = cos(2*pi*(3*(1:1000)/1000).^2);
y = cos(2*pi*9*(1:399)/400);

Use dynamic time warping to align the signals such that the sum of the Euclidean distances between
their points is smallest. Display the aligned signals and the distance.

dtw(x,y);

Change the sinusoid frequency to twice its initial value. Repeat the computation.

y = cos(2*pi*18*(1:399)/400);

dtw(x,y);

1 Functions

1-432

Add an imaginary part to each signal. Restore the initial sinusoid frequency. Use dynamic time
warping to align the signals by minimizing the sum of squared Euclidean distances.

x = exp(2i*pi*(3*(1:1000)/1000).^2);
y = exp(2i*pi*9*(1:399)/400);

dtw(x,y,'squared');

 dtw

1-433

Align Writing Samples

Devise a typeface that resembles the output of early computers. Use it to write the word MATLAB®.

chr = @(x)dec2bin(x')-48;

M = chr([34 34 54 42 34 34 34]);
A = chr([08 20 34 34 62 34 34]);
T = chr([62 08 08 08 08 08 08]);
L = chr([32 32 32 32 32 32 62]);
B = chr([60 34 34 60 34 34 60]);

MATLAB = [M A T L A B];

Corrupt the word by repeating random columns of the letters and varying the spacing. Show the
original word and three corrupted versions. Reset the random number generator for reproducible
results.

rng('default')

c = @(x)x(:,sort([1:6 randi(6,1,3)]));

subplot(4,1,1,'XLim',[0 60])
spy(MATLAB)
xlabel('')

1 Functions

1-434

ylabel('Original')

for kj = 2:4
 subplot(4,1,kj,'XLim',[0 60])
 spy([c(M) c(A) c(T) c(L) c(A) c(B)])
 xlabel('')
 ylabel('Corrupted')
end

Generate two more corrupted versions of the word. Align them using dynamic time warping.

one = [c(M) c(A) c(T) c(L) c(A) c(B)];
two = [c(M) c(A) c(T) c(L) c(A) c(B)];

[ds,ix,iy] = dtw(one,two);

onewarp = one(:,ix);
twowarp = two(:,iy);

Display the unaligned and aligned words.

figure

subplot(4,1,1)
spy(one)
xlabel('')
ylabel('one')

 dtw

1-435

subplot(4,1,2)
spy(two,'r')
xlabel('')
ylabel('two')

subplot(4,1,3)
spy(onewarp)
xlabel('')
ylabel('onewarp')

subplot(4,1,4)
spy(twowarp,'r')
xlabel('')
ylabel('twowarp')

Repeat the computation using the built-in functionality of dtw.

dtw(one,two);

1 Functions

1-436

Constrained Warping Path

Generate two signals consisting of two distinct peaks separated by valleys of different lengths. Plot
the signals.

x1 = [0 1 0 0 0 0 0 0 0 0 0 1 0]*.95;
x2 = [0 1 0 1 0]*.95;

subplot(2,1,1)
plot(x1)
xl = xlim;
subplot(2,1,2)
plot(x2)
xlim(xl)

 dtw

1-437

Align the signals with no restriction on the warping path. To produce perfect alignment, the function
needs to repeat only one sample of the shorter signal.

figure
dtw(x1,x2);

1 Functions

1-438

Plot the warping path and the straight-line fit between the two signals. To achieve alignment, the
function expands the trough between the peaks generously.

[d,i1,i2] = dtw(x1,x2);

figure
plot(i1,i2,'o-',[i1(1) i1(end)],[i2(1) i2(end)])

 dtw

1-439

Repeat the computation, but now constrain the warping path to deviate at most three elements from
the straight-line fit. Plot the stretched signals and the warping path.

[dc,i1c,i2c] = dtw(x1,x2,3);

subplot(2,1,1)
plot([x1(i1c);x2(i2c)]','.-')
title(['Distance: ' num2str(dc)])
subplot(2,1,2)
plot(i1c,i2c,'o-',[i1(1) i1(end)],[i2(1) i2(end)])

1 Functions

1-440

The constraint precludes the warping from concentrating too much on a small subset of samples, at
the expense of alignment quality. Repeat the calculation with a one-sample constraint.

dtw(x1,x2,1);

 dtw

1-441

Dynamic Time Warping of Speech Signals

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb

% To hear, type soundsc(mtlb,Fs)

Extract the two segments that correspond to the two instances of the /æ/ phoneme. The first one
occurs roughly between 150 ms and 250 ms, and the second one between 370 ms and 450 ms. Plot
the two waveforms.

a1 = mtlb(round(0.15*Fs):round(0.25*Fs));
a2 = mtlb(round(0.37*Fs):round(0.45*Fs));

subplot(2,1,1)
plot((0:numel(a1)-1)/Fs+0.15,a1)
title('a_1')
subplot(2,1,2)
plot((0:numel(a2)-1)/Fs+0.37,a2)
title('a_2')
xlabel('Time (seconds)')

1 Functions

1-442

% To hear, type soundsc(a1,Fs), pause(1), soundsc(a2,Fs)

Warp the time axes so that the Euclidean distance between the signals is minimized. Compute the
shared "duration" of the warped signals and plot them.

[d,i1,i2] = dtw(a1,a2);

a1w = a1(i1);
a2w = a2(i2);

t = (0:numel(i1)-1)/Fs;
duration = t(end)

duration = 0.1297

subplot(2,1,1)
plot(t,a1w)
title('a_1, Warped')
subplot(2,1,2)
plot(t,a2w)
title('a_2, Warped')
xlabel('Time (seconds)')

 dtw

1-443

% To hear, type soundsc(a1w,Fs), pause(1), sound(a2w,Fs)

Repeat the experiment with a complete word. Load a file containing the word "strong," spoken by a
woman and by a man. The signals are sampled at 8 kHz.

load('strong.mat')

% To hear, type soundsc(her,fs), pause(2), soundsc(him,fs)

Warp the time axes so that the absolute distance between the signals is minimized. Plot the original
and transformed signals. Compute their shared warped "duration."

dtw(her,him,'absolute');
legend('her','him')

1 Functions

1-444

[d,iher,ihim] = dtw(her,him,'absolute');
duration = numel(iher)/fs

duration = 0.8394

% To hear, type soundsc(her(iher),fs), pause(2), soundsc(him(ihim),fs)

Dynamic Time Warping for Handwriting Alignment

The files MATLAB1.gif and MATLAB2.gif contain two handwritten samples of the word
"MATLAB®." Load the files and align them along the x-axis using dynamic time warping.

samp1 = 'MATLAB1.gif';
samp2 = 'MATLAB2.gif';

x = double(imread(samp1));
y = double(imread(samp2));

dtw(x,y);

 dtw

1-445

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.
Data Types: single | double
Complex Number Support: Yes

y — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.
Data Types: single | double
Complex Number Support: Yes

maxsamp — Width of adjustment window
Inf (default) | positive integer

Width of adjustment window, specified as a positive integer.
Data Types: single | double

1 Functions

1-446

metric — Distance metric
'euclidean' (default) | 'absolute' | 'squared' | 'symmkl'

Distance metric, specified as 'euclidean', 'absolute', 'squared', or 'symmkl'. If X and Y are
both K-dimensional signals, then metric prescribes dmn(X,Y), the distance between the mth sample
of X and the nth sample of Y. See “Dynamic Time Warping” on page 1-447 for more information about
dmn(X,Y).

• 'euclidean' — Root sum of squared differences, also known as the Euclidean or ℓ2 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'absolute' — Sum of absolute differences, also known as the Manhattan, city block, taxicab, or
ℓ1 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n = ∑

k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'squared' — Square of the Euclidean metric, consisting of the sum of squared differences:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'symmkl' — Symmetric Kullback-Leibler metric. This metric is valid only for real and positive X
and Y:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n logxk, m− logyk, n

Output Arguments
dist — Minimum distance
positive real scalar

Minimum distance between signals, returned as a positive real scalar.

ix — Warping path for first signal
vector of indices | matrix of indices

Warping path for first signal, returned as a vector or matrix of indices.

iy — Warping path for second signal
vector of indices | matrix of indices

Warping path for second signal, returned as a vector or matrix of indices.

More About
Dynamic Time Warping

Two signals with equivalent features arranged in the same order can appear very different due to
differences in the durations of their sections. Dynamic time warping distorts these durations so that

 dtw

1-447

the corresponding features appear at the same location on a common time axis, thus highlighting the
similarities between the signals.

Consider the two K-dimensional signals

X =

x1, 1 x1, 2 ⋯ x1, M

x2, 1 x2, 2 ⋯ x2, M

⋮ ⋮ ⋱ ⋮
xK, 1 xK, 2 ⋯ xK, M

and

Y =

y1, 1 y1, 2 ⋯ y1, N

y2, 1 y2, 2 ⋯ y2, N

⋮ ⋮ ⋱ ⋮
yK, 1 yK, 2 ⋯ yK, N

,

which have M and N samples, respectively. Given dmn(X,Y), the distance between the mth sample of X
and the nth sample of Y specified in metric, dist stretches X and Y onto a common set of instants
such that a global signal-to-signal distance measure is smallest.

Initially, the function arranges all possible values of dmn(X,Y) into a lattice of the form

Then dist looks for a path through the lattice—parameterized by two sequences of the same length,
ix and iy—such that

d = ∑
m ∈ ix
n ∈ iy

dmn(X, Y)

is minimum. Acceptable dist paths start at d11(X,Y), end at dMN(X,Y), and are combinations of “chess
king” moves:

• Vertical moves: (m,n) → (m + 1,n)
• Horizontal moves: (m,n) → (m,n + 1)
• Diagonal moves: (m,n) → (m + 1,n + 1)

1 Functions

1-448

This structure ensures that any acceptable path aligns the complete signals, does not skip samples,
and does not repeat signal features. Additionally, a desirable path runs close to the diagonal line
extended between d11(X,Y) and dMN(X,Y). This extra constraint, adjusted by the maxsamp argument,
ensures that the warping compares sections of similar length and does not overfit outlier features.

This is a possible path through the lattice:

References
[1] Paliwal, K. K., Anant Agarwal, and Sarvajit S. Sinha. "A Modification over Sakoe and Chiba’s

Dynamic Time Warping Algorithm for Isolated Word Recognition." Signal Processing. Vol. 4,
1982, pp. 329–333.

[2] Sakoe, Hiroaki, and Seibi Chiba. "Dynamic Programming Algorithm Optimization for Spoken Word
Recognition." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-26,
No. 1, 1978, pp. 43–49.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
alignsignals | edr | finddelay | findsignal | xcorr

Introduced in R2016a

 dtw

1-449

dutycycle
Duty cycle of pulse waveform

Syntax
d = dutycycle(x)
d = dutycycle(x,fs)
d = dutycycle(x,t)

[d,initcross,finalcross,nextcross,midlev] = dutycycle(___)

[___] = dutycycle(___ ,Name,Value)

dutycycle(___)

d = dutycycle(tau,prf)

Description
d = dutycycle(x) returns the ratio of pulse width to pulse period for each positive-polarity pulse.
The function identifies all regions that cross the upper-state boundary of the low state and the lower-
state boundary of the high state. To determine the transitions that define each pulse, dutycycle
estimates the state levels of x by a histogram method. The low-state and high-state boundaries are
expressed as the state level plus or minus a scalar multiple of the difference between the state levels.
See “State-Level Tolerances” on page 1-457 for more details.

d = dutycycle(x,fs) specifies the sample rate at which x is sampled. The first sample instant of x
corresponds to t = 0.

d = dutycycle(x,t) specifies the instants, t, at which x is sampled.

[d,initcross,finalcross,nextcross,midlev] = dutycycle(___) with any input
arguments from previous syntaxes also returns:

• A vector, initcross, whose elements correspond to the mid-crossings (mid-reference level
instants) of the initial transition of each pulse with a corresponding nextcross.

• A vector, finalcross, whose elements correspond to the mid-crossings (mid-reference level
instants) of the final transition of each pulse with a corresponding nextcross.

• A vector, nextcross, whose elements correspond to the mid-crossings (mid-reference level
instants) of the next detected transition for each pulse.

• A scalar, midlev, that corresponds to the mid-reference level.

[___] = dutycycle(___ ,Name,Value) returns the ratio of pulse width to pulse period with
additional options specified by one or more Name,Value pair arguments.

dutycycle(___) plots the waveform, the location of the mid-reference level instants, the
associated reference levels, the state levels, and the associated lower and upper state boundaries.

d = dutycycle(tau,prf) returns the ratio of pulse width to pulse period for a pulse width of tau
seconds and a pulse repetition frequency of prf.

1 Functions

1-450

Examples

Duty Cycle of Bilevel Waveform

Determine the duty cycle of a bilevel waveform. Use the vector indices as the sample instants.

load('pulseex.mat','x')

d = dutycycle(x)

d = 0.3001

Annotate the result on a plot of the waveform.

dutycycle(x);

Duty Cycle of Bilevel Waveform with Sample Rate

Determine the duty cycle of a bilevel waveform. The sample rate is 4 MHz.

load('pulseex.mat','x','t')
fs = 1/(t(2)-t(1));

d = dutycycle(x,fs)

 dutycycle

1-451

d = 0.3001

Annotate the result on a plot of the waveform.

dutycycle(x,fs);

Duty Cycle of Bilevel Waveform with Three Pulses

Create a pulse waveform with three pulses. The sample rate is 4 MHz. Determine the initial and final
mid-reference level instants. Plot the result.

load('pulseex.mat','x')
fs = 4e6;

pulse = x(1:30);
wavef = [pulse;pulse;pulse];
t = (0:length(wavef)-1)/fs;

[~,initcross,finalcross,~,midlev] = dutycycle(wavef,t)

initcross = 2×1
10-4 ×

 0.0312
 0.1062

1 Functions

1-452

finalcross = 2×1
10-4 ×

 0.0463
 0.1213

midlev = 2.5177

Even though there are three pulses, only two pulses have corresponding subsequent transitions. Plot
the result.

plot(t,wavef)
hold on
plot([initcross finalcross],midlev*ones(2),'x','MarkerSize',10)
hold off
legend('Waveform','Initial','Final','Location','best')

Input Arguments
x — Bilevel waveform
real-valued vector

Bilevel waveform, specified as a real-valued vector.
Example: pulstran(0:0.1:10,1:2:9,@rectpuls) specifies a bilevel waveform containing five
one-second pulses.

 dutycycle

1-453

Data Types: double

fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar expressed in Hz.
Data Types: double

t — Sample instants
vector

Sample instants, specified as a vector of the same length as x.
Data Types: double

tau, prf — Pulse width and repetition frequency
scalars

Pulse width and repetition frequency, specified as scalars. Express the pulse width in seconds and the
repetition frequency in pulses per second. The product of tau and prf must be less than or equal to
one.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MidPercentReferenceLevel',90,'Tolerance',0.5 specifies that the mid-reference
level is 90% of the waveform amplitude and the tolerance around the lower- and upper-state
boundaries is 0.5%.

MidPercentReferenceLevel — Mid-reference level
50 (default) | positive scalar

Mid-reference level, specified as the comma-separated pair consisting of
'MidPercentReferenceLevel' and a positive scalar expressed as a percentage of the waveform
amplitude.
Data Types: double

Polarity — Pulse polarity
'positive' (default) | 'negative'

Pulse polarity, specified as the comma-separated pair consisting of 'Polarity' and either
'positive' or 'negative'.

• If you specify 'positive', dutycycle looks for pulses with positive-going (positive polarity)
initial transitions.

• If you specify 'negative', dutycycle looks for pulses with negative-going (negative polarity)
initial transitions.

See “Pulse Polarity” on page 1-456 for examples of positive and negative-polarity pulses.
Data Types: char

1 Functions

1-454

StateLevels — Low- and high-state levels
1-by-2 real-valued vector

Low- and high-state levels, specified as the comma-separated pair consisting of 'StateLevels' and
a 1-by-2 real-valued vector. The first element is the low-state level. The second element is the high-
state level. If you do not specify low- and high-state levels, dutycycle estimates the state levels from
the input waveform using a histogram method.
Data Types: double

Tolerance — Tolerance levels
2 (default) | positive scalar

Tolerance levels (lower- and upper-state boundaries), specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar expressed as a percentage. See “State-Level
Tolerances” on page 1-457 for more information.
Data Types: double

Output Arguments
d — Duty cycle
vector | scalar

Duty cycle, returned as a vector or scalar. The elements of d correspond to the ratio of pulse width to
pulse period for each pulse in x. d obeys 0 ≤ d ≤ 1 because the pulse width cannot exceed the pulse
period. d has length equal to the number of pulse periods in x. If you specify tau and prf as
arguments, d is a scalar.

initcross — Mid-reference level instant of initial transition
vector

Mid-reference level instants of initial transitions, returned as a vector. The elements of initcross
correspond to the mid-crossings (mid-reference level instants) of the initial transition of each pulse
with a corresponding nextcross.

finalcross — Mid-reference level instant of final transition
vector

Mid-reference level instants of final transitions, returned as a vector. The elements of finalcross
correspond to the mid-crossings (mid-reference level instants) of the final transition of each pulse
with a corresponding nextcross.

nextcross — Next transition mid-crossing
vector

Next transition mid-crossing, returned as a vector. The elements of nextcross correspond to the
mid-crossings (mid-reference level instants) of the next detected transition for each pulse.

midlev — Mid-reference level
scalar

Mid-reference level waveform value, returned as a scalar. midlevel is a scalar because in a bilevel
pulse waveform the state levels are constant.

 dutycycle

1-455

More About
Duty Cycle

The duty cycle of a bilevel pulse is the ratio of average power to peak power.

The energy in a bilevel, or rectangular, pulse is equal to the product of the peak power, Pt, and the
pulse width, τ. Devices to measure energy in a waveform operate on time scales longer than the
duration of a single pulse. Therefore, it is common to measure the average power

Pav =
Ptτ
T ,

where T is the pulse period.

The ratio of average power to peak power is the duty cycle:

D =
Ptτ/T

Pt

Pulse Polarity

The polarity of a pulse is defined by the direction of its initial transition.

If the pulse has a positive-going initial transition, the pulse has positive polarity. This figure shows a
positive polarity pulse:

Equivalently, a positive-polarity (positive-going) pulse has a terminating state more positive than the
originating state.

If the pulse has a negative-going initial transition, the pulse has negative polarity. This figure shows a
negative-polarity pulse:

Equivalently, a negative-polarity (negative-going) pulse has an originating state more positive than
the terminating state.

1 Functions

1-456

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

References
[1] Skolnik, M. I. Introduction to Radar Systems. New York, NY: McGraw-Hill, 1980.

[2] IEEE Standard on Transitions, Pulses, and Related Waveforms. IEEE Standard 181, 2003.

 dutycycle

1-457

Extended Capabilities
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

See Also
midcross | pulseperiod | pulsesep | pulsewidth

Introduced in R2012a

1 Functions

1-458

edfinfo
Get information about EDF/EDF+ file

Description
Create an edfinfo object to get information about a European Data Format (EDF) or EDF+ file.
edfinfo objects contain information such as file size, number of data records, number of signals,
and number of samples.

Creation

Syntax
info = edfinfo(filename)

Description

info = edfinfo(filename) returns an edfinfo object for the EDF or EDF+ file specified by
filename.

Input Arguments

filename — Name of EDF or EDF+ file
character vector | string scalar

Name of EDF or EDF+ file, specified as a character vector or string scalar.

Depending on the location of the file, filename can take one of these forms.

Location Form
Current folder or folder on
the MATLAB path

Specify the name of the file in filename.

Example: 'data.edf'
File in a folder If the file is not in the current folder or in a folder on the MATLAB

path, then specify the full or relative path name.

Example: 'C:\myFolder\data.edf'

Example: 'myDir\myFile.ext'

Note edfinfo does not support EyeLink® EDF files.

Data Types: char | string

 edfinfo

1-459

Properties
File Properties

Filename — File name
string scalar

This property is read-only.

File name, returned as a string scalar.
Example: "ecg_20200411_120.edf"
Data Types: string

FileModDate — Date last modified
string scalar

This property is read-only.

Date last modified, returned as a string scalar with the date and time the file was last modified.
Example: "11-Apr-2020 15:38:37"

FileSize — File size in bytes
integer scalar

This property is read-only.

File size in bytes, returned as an integer scalar.
Example: 4040992
Data Types: double

Header Properties

Version — Data format version
"0"

This property is read-only.

Data format version, returned as "0".
Data Types: string

Patient — Patient identification details
string scalar

This property is read-only.

Patient identification details, returned as a string scalar. Patient identification details can include
Patient ID, sex or gender, birth date in 'dd-MMM-yyyy' format, and name.
Example: "X F X 120 04-JUL-1982"
Data Types: string

1 Functions

1-460

Recording — Recording identification details
string scalar

This property is read-only.

Recording identification details, returned as a string scalar. Recording identification details may
include its start date and time, the ID of the technician that made the recording, and the ID of the
equipment that made the recording.
Example: "Startdate 04-JUL-1982 X X X"
Data Types: string

StartDate — Recording start date
string scalar

This property is read-only.

Recording start date, returned as a string scalar in 'dd.MM.yy' format.
Example: "04.07.82"
Data Types: string

StartTime — Recording start time
string scalar

This property is read-only.

Recording start time, returned as a string scalar in 'HH.mm.ss' format.
Example: "17.16.37"
Data Types: string

HeaderBytes — Header size in bytes
integer scalar

This property is read-only.

Header size in bytes, returned as an integer scalar. HeaderBytes is given by (256 + NumSignals ×
256) bytes. The first 256 bytes correspond to a static header and are required for all EDF and EDF+
files. The other bytes depend on the number of signals present in the data records.
Example: 2048
Data Types: double

Reserved — EDF+ interruption information
"EDF+C" | "EDF+D" | ""

This property is read-only.

EDF+ interruption information, returned as "EDF+C" or "EDF+D" for EDF+ compliant files.

• "EDF+C" — The recording is continuous: There are no interruptions and all data records are
contiguous, such that the start time of each data record coincides with the start time of the
previous record plus its duration.

 edfinfo

1-461

• "EDF+D" — The recording is discontinuous with interruptions between consecutive data records.

For files that are not EDF+ compliant, this property is an empty string ("").
Data Types: string

NumDataRecords — Number of data records in file
integer scalar

This property is read-only.

Number of data records in file, returned as an integer scalar.

Note If filename is not EDF compliant, NumDataRecords can be set to -1 when the number of
data records is unknown. If filename is EDF compliant, NumDataRecords must be set to a positive
integer. If filename has Reserved set to a nonempty string and NumDataRecords set to -1,
edfinfo throws an error.

Data Types: double

DataRecordDuration — Duration of each data record
duration scalar

This property is read-only.

Duration of each data record, returned as a duration scalar.
Data Types: duration

NumSignals — Number of signals in file
integer scalar

This property is read-only.

Number of signals in file, returned as an integer scalar.
Data Types: double

Signal Record Properties

SignalLabels — Signal names
string vector

This property is read-only.

Signal names, returned as a string vector of length NumSignals.

["Thorax 1";"Abdomen 3"]

Data Types: string

TransducerTypes — Transducer details
string vector

This property is read-only.

1 Functions

1-462

Transducer details, returned as a string vector of length NumSignals. Each element of
TransducerTypes contains details about the transducer used to obtain the corresponding signal in
SignalLabels.
Example: ["AgAgCl electrodes";"thermistor"]
Data Types: string

PhysicalDimensions — Signal data units
string vector

This property is read-only.

Signal data units, returned as a string vector of length NumSignals. Each element of
PhysicalDimensions contains the measurement units used to express the values of the
corresponding signal in SignalLabels.
Example: ["uV";"mV"]
Data Types: string

PhysicalMin — Signal minimum physical value
numeric vector

This property is read-only.

Signal minimum physical value, returned as a numeric vector of length NumSignals. Each element of
PhysicalMin contains the minimum physical value of the corresponding signal in SignalLabels.
Data Types: double

PhysicalMax — Signal maximum physical value
numeric vector

This property is read-only.

Signal maximum physical value, returned as a numeric vector of length NumSignals. Each element
of PhysicalMax contains the maximum physical value of the corresponding signal in
SignalLabels.
Data Types: double

DigitalMin — Signal minimum digital value
numeric vector

This property is read-only.

Signal minimum digital value, returned as a numeric vector of length NumSignals. Each element of
DigitalMin contains the minimum digital value of the corresponding signal in SignalLabels.
Data Types: double

DigitalMax — Signal maximum digital value
numeric vector

This property is read-only.

Signal maximum digital value, returned as a numeric vector of length NumSignals. Each element of
DigitalMax contains the maximum digital value of the corresponding signal in SignalLabels.

 edfinfo

1-463

Data Types: double

NumSamples — Number of samples in signal
numeric vector

This property is read-only.

Number of samples in signal, returned as a numeric vector of length NumSignals. Each element of
NumSamples contains the number of samples in the corresponding signal in SignalLabels.
Data Types: double

Prefilter — Signal data units
string vector

This property is read-only.

Signal data units, returned as a string vector of length NumSignals. Each element of Prefilter
contains details about the filters, if any, used to preprocess the corresponding signal in
SignalLabels.
Example: ["HP:10Hz LP:80Hz N:60Hz";"HP:0.1Hz LP:90Hz N:60Hz"]
Data Types: string

SignalReserved — Additional signal information
string vector

This property is read-only.

Additional signal information, returned as a string vector of length NumSignals. Each element of
SignalReserved contains additional information, if any, about the corresponding signal in
SignalLabels.
Data Types: string

Annotations — Annotations present in signal records
timetable

This property is read-only.

Annotations present in signal records, returned as a timetable containing these variables:

• Onset — Time at which the annotation occurred, expressed as a duration indicating the number
of seconds elapsed since the start time of the file.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

Data Types: table

Examples

1 Functions

1-464

Get Information About EDF File

Use the edfinfo function to create an edfinfo object containing information about the file
example.edf.

info = edfinfo('example.edf')

info =
 edfinfo with properties:

 Filename: "example.edf"
 FileModDate: "30-Oct-2020 12:27:26"
 FileSize: 31488
 Version: "0"
 Patient: "Patient 7"
 Recording: "Startdate not recorded"
 StartDate: "10.10.20"
 StartTime: "12.02.18"
 HeaderBytes: 768
 Reserved: ""
 NumDataRecords: 6
 DataRecordDuration: 10 sec
 NumSignals: 2
 SignalLabels: [2x1 string]
 TransducerTypes: [2x1 string]
 PhysicalDimensions: [2x1 string]
 PhysicalMin: [2x1 double]
 PhysicalMax: [2x1 double]
 DigitalMin: [2x1 double]
 DigitalMax: [2x1 double]
 Prefilter: [2x1 string]
 NumSamples: [2x1 double]
 SignalReserved: [2x1 string]
 Annotations: [0x2 timetable]

Display this information about the second signal in the file:

• Its name
• The physical units in which the data is expressed
• The minimum and maximum physical values of the data
• The number of samples it contains

nsig = 2;

disp([info.SignalLabels(nsig) info.PhysicalDimensions(nsig) ...
 info.PhysicalMin(nsig) info.PhysicalMax(nsig) info.NumSamples(nsig)])

 "ECG2" "mV" "-229.048" "229.041" "1280"

Tips
You can convert an edfinfo object to a MATLAB structure using the get function. For example:

info = edf('example.edf');
strc = get(info)

 edfinfo

1-465

References
[1] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for

Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[2] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
datetime | duration | edfread | get | timetable

External Websites
European Data Format

Introduced in R2020b

1 Functions

1-466

https://www.edfplus.info/index.html

edfwrite
Create or modify EDF or EDF+ file

Description
Create an edfwrite object to write or modify a European Data Format (EDF) or EDF+ file.

Creation

Syntax
edfw = edfwrite(filename)
edfw = edfwrite(filename,hdr,sigdata)
edfw = edfwrite(filename,hdr,annotationslist)
edfw = edfwrite(filename,hdr,sigdata,annotationslist)
edfw = edfwrite(___ ,Name,Value)

Description

edfw = edfwrite(filename) creates an edfwrite object for an existing EDF or EDF+ file
specified by filename.

edfw = edfwrite(filename,hdr,sigdata) creates an edfwrite object and a new EDF or EDF
+ file with signal data, sigdata. File properties are specified in the header structure, hdr.

edfw = edfwrite(filename,hdr,annotationslist) creates an edfwrite object and a new
EDF or EDF+ file with annotations, annotationslist.

edfw = edfwrite(filename,hdr,sigdata,annotationslist) creates an edfwrite object
and a new EDF or EDF+ file with signal data and annotations.

edfw = edfwrite(___ ,Name,Value) sets “Properties” on page 1-468 using name-value
arguments. You can specify DataRecordTimes, AnnotationsEncoding, and InputSampleType.

Input Arguments

filename — Name of EDF or EDF+ file
character vector | string scalar

Name of EDF or EDF+ file, specified as a character vector or string scalar.

Depending on the location of the file, filename can take one of these forms.

Location Form
Current folder or folder on
the MATLAB path

Specify the name of the file in filename.

Example: 'data.edf'

 edfwrite

1-467

Location Form
File in a folder If the file is not in the current folder or in a folder on the MATLAB

path, then specify the full or relative path name.

Example: 'C:\myFolder\data.edf'

Example: 'myDir\myFile.ext'

Note edfwrite does not support EyeLink EDF files.

Data Types: char | string

hdr — Header
structure

Header details, specified as a structure. See edfheader for more information.
Data Types: struct

sigdata — Signal data
matrix | cell array

Signal data, specified as a numeric matrix with one or more columns or a cell array of numeric
vectors.
Data Types: double | cell

annotationslist — Annotations
timetable

Annotations, specified as a timetable containing these variables:

• Onset — Time at which the annotation occurred, expressed as a duration indicating the number
of seconds elapsed since the start time of the file. Use Onset to specify the rowTimes in the
timetable.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

Data Types: table

Properties
File Properties

Filename — File name
string scalar

This property is read-only.

File name, returned as a string scalar.
Example: "ecg_20200411_120.edf"

1 Functions

1-468

Data Types: string

FileType — File type
"EDF" | "EDF+"

File type, returned as "EDF" or "EDF+".
Data Types: string

FileModDate — Date last modified
string scalar

This property is read-only.

Date last modified, returned as a string scalar with the date and time the file was last modified.
Example: "11-Apr-2020 15:38:37"

FileSize — File size in bytes
integer scalar

This property is read-only.

File size in bytes, returned as an integer scalar.
Example: 4040992
Data Types: double

Header Properties

Version — Data format version
"0"

This property is read-only.

Data format version, returned as "0".
Data Types: string

Patient — Patient identification details
string scalar

This property is read-only.

Patient identification details, returned as a string scalar. Patient identification details can include
Patient ID, sex or gender, birth date in 'dd-MMM-yyyy' format, and name.
Example: "X F X 120 04-JUL-1982"
Data Types: string

Recording — Recording identification details
string scalar

This property is read-only.

 edfwrite

1-469

Recording identification details, returned as a string scalar. Recording identification details may
include its start date and time, the ID of the technician that made the recording, and the ID of the
equipment that made the recording.
Example: "Startdate 04-JUL-1982 X X X"
Data Types: string

StartDate — Recording start date
string scalar

This property is read-only.

Recording start date, returned as a string scalar in 'dd.MM.yy' format.
Example: "04.07.82"
Data Types: string

StartTime — Recording start time
string scalar

This property is read-only.

Recording start time, returned as a string scalar in 'HH.mm.ss' format.
Example: "17.16.37"
Data Types: string

HeaderBytes — Header size in bytes
integer scalar

This property is read-only.

Header size in bytes, returned as an integer scalar. HeaderBytes is given by (256 + NumSignals ×
256) bytes. The first 256 bytes correspond to a static header and are required for all EDF and EDF+
files. The other bytes depend on the number of signals present in the data records.
Example: 2048
Data Types: double

Reserved — EDF+ interruption information
"EDF+C" | "EDF+D" | ""

This property is read-only.

EDF+ interruption information, returned as "EDF+C" or "EDF+D" for EDF+ compliant files.

• "EDF+C" — The recording is continuous: There are no interruptions and all data records are
contiguous, such that the start time of each data record coincides with the start time of the
previous record plus its duration.

• "EDF+D" — The recording is discontinuous with interruptions between consecutive data records.

For files that are not EDF+ compliant, this property is an empty string ("").
Data Types: string

1 Functions

1-470

NumDataRecords — Number of data records in file
integer scalar

This property is read-only.

Number of data records in file, returned as an integer scalar.

Note If filename is not EDF compliant, NumDataRecords can be set to -1 when the number of
data records is unknown. If filename is EDF compliant, NumDataRecords must be set to a positive
integer. If filename has Reserved set to a nonempty string and NumDataRecords set to -1,
edfinfo throws an error.

Data Types: double

DataRecordDuration — Duration of each data record
duration scalar

This property is read-only.

Duration of each data record, returned as a duration scalar.
Data Types: duration

NumSignals — Number of signals in file
integer scalar

This property is read-only.

Number of signals in file, returned as an integer scalar.
Data Types: double

DataRecordTimes — Start time of each data record
duration vector

Start time of each data record, returned as a duration vector. DataRecordTimes must be specified
for an EDF+ file with discontinuous record start times. The vector must be equal in length to
NumDataRecords.
Data Types: duration

Signal Properties

SignalLabels — Signal names
string vector

This property is read-only.

Signal names, returned as a string vector of length NumSignals.

["Thorax 1";"Abdomen 3"]

Data Types: string

TransducerTypes — Transducer details
string vector

 edfwrite

1-471

This property is read-only.

Transducer details, returned as a string vector of length NumSignals. Each element of
TransducerTypes contains details about the transducer used to obtain the corresponding signal in
SignalLabels.
Example: ["AgAgCl electrodes";"thermistor"]
Data Types: string

PhysicalDimensions — Signal data units
string vector

This property is read-only.

Signal data units, returned as a string vector of length NumSignals. Each element of
PhysicalDimensions contains the measurement units used to express the values of the
corresponding signal in SignalLabels.
Example: ["uV";"mV"]
Data Types: string

PhysicalMin — Signal minimum physical value
numeric vector

This property is read-only.

Signal minimum physical value, returned as a numeric vector of length NumSignals. Each element of
PhysicalMin contains the minimum physical value of the corresponding signal in SignalLabels.
Data Types: double

PhysicalMax — Signal maximum physical value
numeric vector

This property is read-only.

Signal maximum physical value, returned as a numeric vector of length NumSignals. Each element
of PhysicalMax contains the maximum physical value of the corresponding signal in
SignalLabels.
Data Types: double

DigitalMin — Signal minimum digital value
numeric vector

This property is read-only.

Signal minimum digital value, returned as a numeric vector of length NumSignals. Each element of
DigitalMin contains the minimum digital value of the corresponding signal in SignalLabels.
Data Types: double

DigitalMax — Signal maximum digital value
numeric vector

This property is read-only.

1 Functions

1-472

Signal maximum digital value, returned as a numeric vector of length NumSignals. Each element of
DigitalMax contains the maximum digital value of the corresponding signal in SignalLabels.
Data Types: double

Prefilter — Signal data units
string vector

This property is read-only.

Signal data units, returned as a string vector of length NumSignals. Each element of Prefilter
contains details about the filters, if any, used to preprocess the corresponding signal in
SignalLabels.
Example: ["HP:10Hz LP:80Hz N:60Hz";"HP:0.1Hz LP:90Hz N:60Hz"]
Data Types: string

NumSamples — Number of samples in signal
numeric vector

This property is read-only.

Number of samples in signal, returned as a numeric vector of length NumSignals. Each element of
NumSamples contains the number of samples in the corresponding signal in SignalLabels.
Data Types: double

SignalReserved — Additional signal information
string vector

This property is read-only.

Additional signal information, returned as a string vector of length NumSignals. Each element of
SignalReserved contains additional information, if any, about the corresponding signal in
SignalLabels.
Data Types: string

InputSampleType — Input sample type of signal data
"digital" (default) | "physical"

Input sample type of signal data, returned as "digital" or "physical". The function defaults to
"digital" and writes the signal data into the file with no digital scaling. If 'InputSampleType' is
set to "physical", then edfwrite applies digital scaling to the signal data.
Data Types: string

Annotation Properties

Annotations — Annotations present in signal records
timetable

This property is read-only.

Annotations present in signal records, returned as a timetable containing these variables:

 edfwrite

1-473

• Onset — Time at which the annotation occurred, expressed as a duration indicating the number
of seconds elapsed since the start time of the file.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

Data Types: table

AnnotationsEncoding — Encoding format
"US-ASCII" (default) | "UTF-8" | "LATIN1"

Encoding format used to write annotations into the file, returned as "US-ASCII", "UTF-8", or
"LATIN1".
Data Types: string

Object Functions
addAnnotations Add annotations to EDF or EDF+ file
addSignals Add new signals to EDF or EDF+ file
deleteAnnotations Delete annotations from EDF or EDF+ file
deleteSignals Delete signals from EDF or EDF+ file
modifyAnnotations Modify annotations in EDF or EDF+ file
modifyHeader Modify header details of EDF or EDF+ file
modifySignals Modify signals in EDF or EDF+ file

Examples

Create EDF+ File with Annotations

Load EMGdata.mat into the workspace. The file contains eight channels of surface electromyography
(EMG) data [1] recorded from eight arm muscles. The data is available at www.sce.carleton.ca/
faculty/chan/index.php?page=matlab. The sample rate is 1000 Hz. Plot the signals.

load EMGdata

fs = 1000;
t = 0:1/fs:(size(data,1)-1)/fs;
stackedplot(t,data)

1 Functions

1-474

https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab
https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab

The bursts of increased signal amplitude correspond to different forearm motions that last 3 seconds
each. EMGindex.mat contains the type of motion and the start index (sample) of each motion in two
variables: motion and start_index. The motion types are:

1 Hand open
2 Hand close
3 Wrist flexion
4 Wrist extension
5 Supination
6 Pronation
7 Rest

Load the data into the workspace.

load EMGindex

Create a timetable of annotations.

1 Use Onset to specify the row times. Onset contains the start index of each motion in seconds.
2 Annotations specifies the types of motion as a string array.
3 Duration specifies the duration of each motion in seconds.

Onset = seconds(start_index./fs);
Annotations = string(motion);

 edfwrite

1-475

Duration = seconds(ones(length(Onset),1)*3);

annotationslist = timetable(Onset,Annotations,Duration);

Use edfheader to create a header structure for the EDF+ file and set the properties. See
edfheader for more information.

hdr = edfheader("EDF+");
hdr.NumDataRecords = 1;
hdr.DataRecordDuration = seconds(length(data(:,1))/fs);
hdr.NumSignals = 8;
hdr.SignalLabels = ["F1" "F2" "F3" "F4" "F5" "F6" "F7" "B1"];
hdr.PhysicalDimensions = repelem("mV",8);
hdr.PhysicalMin = min(data);
hdr.PhysicalMax = max(data);
hdr.DigitalMin = [-32768 -32768 -32768 -32768 -32768 -32768 -32768 -32768];
hdr.DigitalMax = [32767 32767 32767 32767 32767 32767 32767 32767];

Write an EDF+ file containing the header structure, signal data, and annotations. Specify the input
sample type as physical. The file is saved in the current working directory.

edfw = edfwrite("armEMG.edf",hdr,data,annotationslist,'InputSampleType',"physical");

Display information about the file.

edfinfo("armEMG.edf")

ans =
 edfinfo with properties:

 Filename: "armEMG.edf"
 FileModDate: "01-Sep-2021 11:09:45"
 FileSize: 4803836
 Version: "0"
 Patient: "1234567 F 01-Sep-2021 Patient_1"
 Recording: "Startdate 01-Sep-2021 MW_1234567 MW_Inv_01 MW_Eq_01"
 StartDate: "01.09.21"
 StartTime: "11.09.44"
 HeaderBytes: 2560
 Reserved: "EDF+C"
 NumDataRecords: 1
 DataRecordDuration: 300.03 sec
 NumSignals: 8
 SignalLabels: [8x1 string]
 TransducerTypes: [8x1 string]
 PhysicalDimensions: [8x1 string]
 PhysicalMin: [8x1 double]
 PhysicalMax: [8x1 double]
 DigitalMin: [8x1 double]
 DigitalMax: [8x1 double]
 Prefilter: [8x1 string]
 NumSamples: [8x1 double]
 SignalReserved: [8x1 string]
 Annotations: [28x2 timetable]

You can use EDF File Analyzer to view the signals and annotations stored in the file. Use the Signal
Separation option to separate the signals for better visualization.

1 Functions

1-476

Delete the EDF+ file. Comment out this code if you want to keep the file.

delete armEMG.edf

Tips
• To create an EDF+ file containing only annotations, specify NumDataRecords and NumSignals

as 0, DataRecordDuration as a duration scalar with value 0, and all signal properties as empty.
• Launch the EDF File Analyzer app to visualize the signals in your EDF or EDF+ file.

References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox".

Paper presented at 30th Conference of the Canadian Medical & Biological Engineering
Society, Toronto, Canada, 2007.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

 edfwrite

1-477

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

1 Functions

1-478

https://www.edfplus.info/index.html

addAnnotations
Add annotations to EDF or EDF+ file

Syntax
edfw = addAnnotations(edfw,tsal)

Description
edfw = addAnnotations(edfw,tsal) adds the annotations in tsal to the European Data Format
(EDF) or EDF+ file.

Examples

Add Annotations to EDF File

Create a new EDF file that contains a header and a random 10-sample signal.

sig = randn(10,1);
hdr = edfheader("EDF");
hdr.NumSignals = 1;
hdr.NumDataRecords = 1;
hdr.PhysicalMin = min(sig);
hdr.PhysicalMax = max(sig);
hdr.DigitalMin = -32768;
hdr.DigitalMax = 32768;

edfw = edfwrite("random.edf",hdr,sig,"InputSampleType","physical");

Create a timetable that contains three annotations which occur at 2, 3, and 7 seconds. Specify the
annotation strings as "Two", "Three", and "Seven". Each annotation duration is 1 second.

Onset = seconds([2;3;7]);
Annotations = ["Two" "Three" "Seven"]';
Duration = seconds(ones(3,1));

tsal = timetable(Onset,Annotations,Duration)

tsal=3×2 timetable
 Onset Annotations Duration
 _____ ___________ ________

 2 sec "Two" 1 sec
 3 sec "Three" 1 sec
 7 sec "Seven" 1 sec

Add the annotations to edfw. Use edfread to read the data and annotations present in the file. Plot
the data and add red vertical lines at each annotation onset.

edfw = addAnnotations(edfw,tsal);
[data,anns] = edfread("random.edf");

 addAnnotations

1-479

plot(data.Signal_1{1})
xline(seconds(anns.Onset),'r')

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

tsal — List of timestamped annotations
timetable

List of timestamped annotations, specified as a timetable containing these variables:

• Onset — Time at which the annotation occurred, expressed as a duration indicating the number
of seconds elapsed since the start time of the file. Use Onset to specify the RowTimes in the
timetable.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

1 Functions

1-480

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

References
[1] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for

Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[2] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

 addAnnotations

1-481

https://www.edfplus.info/index.html

addSignals
Add new signals to EDF or EDF+ file

Syntax
edfw = addSignals(edfw,signallabels,signaldata)
edfw = addSignals(___ ,Name,Value)

Description
edfw = addSignals(edfw,signallabels,signaldata) adds new signals to the European Data
Format (EDF) or EDF+ file with labels in signallabels and data in signaldata.

edfw = addSignals(___ ,Name,Value) specifies additional options using name-value pairs. For
example, 'DigitalMin',-2048,'DigitalMax',2048 specifies the digital minimum and digital
maximum values of sigdata.

Examples

Add Signal to EDF+ File

Load a labeledSignalSet into the workspace. heartrates contains two electrocardiogram (ECG)
signals from the MIT-BIH Arrhythmia Database [1]. The sample rate is 250 Hz.

load HeartRates

Create an EDF+ file that contains a header and the first signal in the labeled signal set (y200).

sig1 = getSignal(heartrates,1);
sig1 = sig1.y200;

hdr = edfheader("EDF+");
hdr.SignalLabels = "y200";
hdr.NumDataRecords = 1;
hdr.PhysicalMin = min(sig1);
hdr.PhysicalMax = max(sig1);

edfw = edfwrite("ECG.edf",hdr,sig1,"InputSampleType","physical");

Retrieve the second signal from heartrates and add it to the EDF+ file with signal label y203.
Specify the physical minimum and maximum values of the second signal.

sig2 = getSignal(heartrates,2);
sig2 = sig2.y203;
sig2Label = "y203";

edfw = addSignals(edfw,sig2Label,sig2,'PhysicalMin',min(sig2),'PhysicalMax',max(sig2));

Use edfinfo to view the file properties. The number of signals in the header record is 2.

edfinfo("ECG.edf")

1 Functions

1-482

ans =
 edfinfo with properties:

 Filename: "ECG.edf"
 FileModDate: "01-Sep-2021 10:57:19"
 FileSize: 28814
 Version: "0"
 Patient: "1234567 F 01-Sep-2021 Patient_1"
 Recording: "Startdate 01-Sep-2021 MW_1234567 MW_Inv_01 MW_Eq_01"
 StartDate: "01.09.21"
 StartTime: "10.57.19"
 HeaderBytes: 1024
 Reserved: "EDF+C"
 NumDataRecords: 1
 DataRecordDuration: 1 sec
 NumSignals: 2
 SignalLabels: [2x1 string]
 TransducerTypes: [2x1 string]
 PhysicalDimensions: [2x1 string]
 PhysicalMin: [2x1 double]
 PhysicalMax: [2x1 double]
 DigitalMin: [2x1 double]
 DigitalMax: [2x1 double]
 Prefilter: [2x1 string]
 NumSamples: [2x1 double]
 SignalReserved: [2x1 string]
 Annotations: [0x2 timetable]

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

signallabels — Signal names
string vector | cell array of character vectors

Signal names, specified as a string vector or cell array of character vectors. The number of signal
names must equal the number of input signals in signaldata.
Data Types: string

signaldata — Input signal data
numeric matrix | cell array of numeric vectors

Input signal data, specified as a numeric matrix or cell array of numeric vectors. The number of
samples in each signal must be a multiple of the number of data records in NumDataRecords.
Specify signaldata as a numeric matrix when all input signals have the same sample rate. If input
signals have different sample rates or lengths, specify signaldata as a cell array of numeric
vectors.

 addSignals

1-483

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PhysicalMin',-5,'PhysicalMax',5 specifies the physical minimum and physical
maximum values of the input signal as -5 and 5, respectively.

PhysicalMin — Signal minimum physical value
numeric vector

Signal minimum physical value, specified as a numeric vector of length NumSignals. The signal
physical minimum value must be less than the corresponding signal physical maximum value.
PhysicalMin must be specified when InputSampleType is set to 'digital'. If the input sample
type is 'physical' and PhysicalMin is not specified, then the function uses the minimum value of
each signal as the physical minimum value.
Data Types: double

PhysicalMax — Signal maximum physical value
numeric vector

Signal maximum physical value, specified as a numeric vector of length NumSignals. The signal
physical maximum value must be greater than the corresponding signal physical minimum value.
PhysicalMax must be specified when InputSampleType is set to 'digital'. If the input sample
type is 'physical' and PhysicalMax is not specified, then the function uses the maximum value of
each signal as the physical maximum value.
Data Types: double

DigitalMin — Signal digital minimum value
numeric vector

Signal digital minimum value, specified as a numeric vector of length NumSignals. The signal digital
minimum value must be less than the corresponding signal digital maximum value. DigitalMin
values are based on the analog-to-digital converter used to generate signaldata. If not specified,
the signal digital minimum value defaults to -32768.
Data Types: double

DigitalMax — Signal digital maximum value
numeric vector

Signal digital maximum value, specified as a numeric vector of length NumSignals. The signal digital
maximum value must be greater than the corresponding signal digital minimum value. DigitalMax
values are based on the analog-to-digital converter used to generate signaldata. If not specified,
the signal digital maximum value defaults to 32767.
Data Types: double

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

1 Functions

1-484

EDF or EDF+ file, returned as an edfwrite object.

References
[1] Moody, G.B., and R.G. Mark. “The Impact of the MIT-BIH Arrhythmia Database.” IEEE Engineering

in Medicine and Biology Magazine 20, no. 3 (June 2001): 45–50. https://doi.org/
10.1109/51.932724.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

 addSignals

1-485

https://www.edfplus.info/index.html

deleteAnnotations
Delete annotations from EDF or EDF+ file

Syntax
edfw = deleteAnnotations(edfw,annotationindices)
edfw = deleteAnnotations(edfw)

Description
edfw = deleteAnnotations(edfw,annotationindices) deletes the annotations at the indices
specified in annotationindices from the European Data Format (EDF) or EDF+ file.

edfw = deleteAnnotations(edfw) deletes all the annotations present in edfw.

Examples

Delete Annotations from EDF+ File

Load an edfwrite object into the workspace that contains a timetable with 28 annotations. Each
annotation corresponds to the onset of one of six arm motions or a rest period:

• Hand open – "1"
• Hand close – "2"
• Wrist flexion – "3"
• Wrist extension – "4"
• Supination – "5"
• Pronation – "6"
• Rest – "7"

load edfw

Delete the rest periods ("7") from edfw and view the annotations timetable. There are 22 annotations
remaining and no instances of rest.

idx = find(edfw.Annotations.Annotations == "7");
edfw = deleteAnnotations(edfw,idx);
edfw.Annotations

ans=22×2 timetable
 Onset Annotations Duration
 __________ ___________ ________

 12.257 sec "3" 3 sec
 32.32 sec "6" 3 sec
 40.449 sec "1" 3 sec
 51.202 sec "2" 3 sec
 70.404 sec "4" 3 sec

1 Functions

1-486

 79.84 sec "1" 3 sec
 89.327 sec "4" 3 sec
 109.26 sec "2" 3 sec
 118.8 sec "1" 3 sec
 128.8 sec "6" 3 sec
 138.42 sec "5" 3 sec
 157.55 sec "4" 3 sec
 166.78 sec "3" 3 sec
 176.71 sec "5" 3 sec
 196.42 sec "1" 3 sec
 206.31 sec "3" 3 sec
 ⋮

Create a region-of-interest (ROI) table that contains the remaining annotations. Convert the duration
arrays to double arrays.

anns = edfw.Annotations;
region = seconds([anns.Onset anns.Onset+anns.Duration]);
label = anns.Annotations;
roi = table(region,label)

roi=22×2 table
 region label
 ________________ _____

 12.257 15.257 "3"
 32.32 35.32 "6"
 40.449 43.449 "1"
 51.202 54.202 "2"
 70.404 73.404 "4"
 79.84 82.84 "1"
 89.327 92.327 "4"
 109.25 112.25 "2"
 118.81 121.81 "1"
 128.8 131.8 "6"
 138.42 141.42 "5"
 157.55 160.55 "4"
 166.78 169.78 "3"
 176.71 179.71 "5"
 196.43 199.43 "1"
 206.31 209.31 "3"
 ⋮

Load the electromyography (EMG) data [1] related to the annotations. The data is available at
www.sce.carleton.ca/faculty/chan/index.php?page=matlab. The sample rate is 1000 Hz. Create a
signal variable that contains only the first channel of data.

load EMGdata
fs = 1000;
x = data(:,1);

Create a signal mask for the regions of interest and motion labels. Plot the EMG signal along with the
annotation regions.

msk = signalMask(roi,"SampleRate",fs);
plotsigroi(msk,x)

 deleteAnnotations

1-487

https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

annotationindices — Annotation indices
numeric vector

Annotation indices, specified as a numeric vector. The values in annotationindices must be row
indices of the Annotations property.
Data Types: double

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

1 Functions

1-488

References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox".

Paper presented at 30th Conference of the Canadian Medical & Biological Engineering
Society, Toronto, Canada, 2007.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

 deleteAnnotations

1-489

https://www.edfplus.info/index.html

deleteSignals
Delete signals from EDF or EDF+ file

Syntax
edfw = deleteSignals(edfw,signallabels)
edfw = deleteSignals(edfw)

Description
edfw = deleteSignals(edfw,signallabels) deletes the signals specified in signallabels
from the European Data Format (EDF) or EDF+ file.

edfw = deleteSignals(edfw) deletes all the signals from the EDF or EDF+ file.

Examples

Delete Signal from EDF+ File

Load edfw.mat into the workspace. The edfwrite object contains electromyography (EMG) data [1]
from eight different arm muscles. The data is available at www.sce.carleton.ca/faculty/chan/
index.php?page=matlab. Display the number of signals and the signal labels.

load edfw
edfw.NumSignals

ans = 8

edfw.SignalLabels

ans = 8x1 string
 "F1"
 "F2"
 "F3"
 "F4"
 "F5"
 "F6"
 "F7"
 "B1"

Delete signal B1 from edfw. Display the number of signals and the signal labels.

edfw = deleteSignals(edfw,"B1");
edfw.NumSignals

ans = 7

edfw.SignalLabels

ans = 7x1 string
 "F1"

1 Functions

1-490

https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab
https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab

 "F2"
 "F3"
 "F4"
 "F5"
 "F6"
 "F7"

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

signallabels — Signal names
string vector

Signal names, specified as a string vector.
Data Types: string

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

Note When a signal is deleted, the recording becomes discontinuous and the Reserved property of
the EDF or EDF+ file is converted to EDF+D.

References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox".

Paper presented at 30th Conference of the Canadian Medical & Biological Engineering
Society, Toronto, Canada, 2007.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

 deleteSignals

1-491

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

1 Functions

1-492

https://www.edfplus.info/index.html

modifyAnnotations
Modify annotations in EDF or EDF+ file

Syntax
edfw = modifyAnnotations(edfw,annotationindices,tsal)

Description
edfw = modifyAnnotations(edfw,annotationindices,tsal) modifies annotations in edfw
with the annotations in tsal at the indices specified in annotationindices.

Examples

Modify Annotations for Heart Rate Signal

Load a labeledSignalSet into the workspace. heartrates contains two electrocardiogram (ECG)
signals from the MIT-BIH Arrhythmia Database [1] and a labels table for each signal. The sample rate
is 250 Hz.

load HeartRates

Create an annotations timetable using the label values for the first signal in the labeled signal set.

labels = getLabelValues(heartrates,1,'QRSregions')

labels=41×2 table
 ROILimits Value
 _______________ _____

 0.556 0.724 QRS
 1.304 1.4 QRS
 1.82 1.976 QRS
 2.628 2.724 QRS
 3.092 3.292 QRS
 3.916 4.02 QRS
 4.384 4.564 QRS
 5.184 5.272 QRS
 5.668 5.844 QRS
 6.428 6.516 QRS
 6.876 7.048 QRS
 7.688 7.784 QRS
 8.192 8.416 QRS
 9.092 9.208 QRS
 9.592 9.768 QRS
 10.34 10.428 QRS
 ⋮

Onset = seconds(labels.ROILimits(:,1));
Annotations = string(labels.Value);

 modifyAnnotations

1-493

Duration = seconds(labels.ROILimits(:,2) - labels.ROILimits(:,1));

tsal = timetable(Onset,Annotations,Duration);

Create a new EDF+ file that contains a header, the first ECG signal in the labeled signal set, and the
annotations.

sig = getSignal(heartrates,1);
sig = sig.y200;

hdr = edfheader("EDF+");
hdr.SignalLabels = "y200";
hdr.NumDataRecords = 1;
hdr.PhysicalMin = min(sig);
hdr.PhysicalMax = max(sig);

edfw = edfwrite("heartrate1.edf",hdr,sig,tsal,"InputSampleType","physical");

Modify the annotation at every odd index to "skip". Display the modified annotations in edfw.

mtsal = tsal(1:2:end,:);
mtsal.Annotations = repelem("skip",21)';

idx = 1:2:numel(tsal(:,1));
edfw = modifyAnnotations(edfw,idx,mtsal);
edfw.Annotations

ans=41×2 timetable
 Onset Annotations Duration
 _________ ___________ _________

 0.556 sec "skip" 0.168 sec
 1.304 sec "QRS" 0.096 sec
 1.82 sec "skip" 0.156 sec
 2.628 sec "QRS" 0.096 sec
 3.092 sec "skip" 0.2 sec
 3.916 sec "QRS" 0.104 sec
 4.384 sec "skip" 0.18 sec
 5.184 sec "QRS" 0.088 sec
 5.668 sec "skip" 0.176 sec
 6.428 sec "QRS" 0.088 sec
 6.876 sec "skip" 0.172 sec
 7.688 sec "QRS" 0.096 sec
 8.192 sec "skip" 0.224 sec
 9.092 sec "QRS" 0.116 sec
 9.592 sec "skip" 0.176 sec
 10.34 sec "QRS" 0.088 sec
 ⋮

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

1 Functions

1-494

annotationindices — Annotation indices
numeric vector

Annotation indices, specified as a numeric vector. The values in annotationindices must be row
indices of the Annotations property.
Data Types: double

tsal — List of timestamped annotations
timetable

List of timestamped annotations, specified as a timetable containing these variables:

• Onset — Time at which the annotation occurred, expressed as a duration indicating the number
of seconds elapsed since the start time of the file. Use Onset to specify the RowTimes in the
timetable.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

The number of rows in tsal must be equal to the number of elements in annotationindices.

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

References
[1] Moody, G.B., and R.G. Mark. “The Impact of the MIT-BIH Arrhythmia Database.” IEEE Engineering

in Medicine and Biology Magazine 20, no. 3 (June 2001): 45–50. https://doi.org/
10.1109/51.932724.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

 modifyAnnotations

1-495

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

1 Functions

1-496

https://www.edfplus.info/index.html

modifyHeader
Modify header details of EDF or EDF+ file

Syntax
edfw = modifyHeader(edfw,hdr)

Description
edfw = modifyHeader(edfw,hdr) modifies header fields in edfw using the header specified in
the structure hdr.

Examples

Modify Header Record

Create a header record for an EDF file and specify the patient identification, recording information,
and start time.

hdr = edfheader("EDF");
hdr.Patient = "001 M 2020";
hdr.Recording = "This is the original header record";
hdr.StartTime = "00.00.01"

hdr = struct with fields:
 Patient: "001 M 2020"
 Recording: "This is the original header record"
 StartDate: "01.09.21"
 StartTime: "00.00.01"
 Reserved: ""
 NumDataRecords: -1
 DataRecordDuration: 1 sec
 NumSignals: []
 SignalLabels: [0x0 string]
 TransducerTypes: [0x0 string]
 PhysicalDimensions: [0x0 string]
 PhysicalMin: []
 PhysicalMax: []
 DigitalMin: []
 DigitalMax: []
 Prefilter: [0x0 string]
 SignalReserved: [0x0 string]

Create a new EDF file that contains the header record and a random 10-sample signal. Specify in hdr
the number of signals and the signal physical minimum and maximum values. Set the input sample
type as physical.

sig = randn(10,1);
hdr.NumSignals = 1;
hdr.PhysicalMin = min(sig);

 modifyHeader

1-497

hdr.PhysicalMax = max(sig);
edfw = edfwrite("file.edf",hdr,sig,"InputSampleType","physical");

Create a new header structure with modified patient, recording, and start time information.

newhdr.Patient = "002 F 2020";
newhdr.Recording = "This is a test";
newhdr.StartTime = "11.11.10";

Modify the original header record in file with the new information in newhdr. Display the file
properties.

edfw = modifyHeader(edfw,newhdr);
edfinfo("file.edf")

ans =
 edfinfo with properties:

 Filename: "file.edf"
 FileModDate: "01-Sep-2021 11:37:18"
 FileSize: 532
 Version: "0"
 Patient: "002 F 2020"
 Recording: "This is a test"
 StartDate: "01.09.21"
 StartTime: "11.11.10"
 HeaderBytes: 512
 Reserved: ""
 NumDataRecords: -1
 DataRecordDuration: 1 sec
 NumSignals: 1
 SignalLabels: "Signal_1"
 TransducerTypes: ""
 PhysicalDimensions: ""
 PhysicalMin: -2.2588
 PhysicalMax: 3.5784
 DigitalMin: 0
 DigitalMax: 0
 Prefilter: ""
 NumSamples: 10
 SignalReserved: ""
 Annotations: [0x2 timetable]

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

hdr — Header
structure

Header, specified as a structure. hdr can contain one or more of these fields:

1 Functions

1-498

• Patient
• Recording
• StartDate
• StartTime
• SignalLabels
• TransducerTypes
• PhysicalDimensions
• PhysicalMin
• PhysicalMax
• DigitalMin
• DigitalMax
• Prefilter
• SignalReserved

See edfheader for more information about the possible fields in the header structure.
Data Types: struct

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

References
[1] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for

Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[2] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

 modifyHeader

1-499

https://www.edfplus.info/index.html

Introduced in R2021a

1 Functions

1-500

modifySignals
Modify signals in EDF or EDF+ file

Syntax
edfw = modifySignals(edfw,signaldata)
edfw = modifySignals(___ ,Name,Value)

Description
edfw = modifySignals(edfw,signaldata) modifies all signals present in the European Data
Format (EDF) or EDF+ file with the new signals in signaldata.

edfw = modifySignals(___ ,Name,Value) specifies additional options using name-value
arguments. For example, 'PhysicalMin',-3,'PhysicalMax',6 specifies the signal physical
minimum value as –3 and the physical maximum value as 6.

Examples

Modify Signals in EDF+ File

Load EMGdata.mat into the workspace. The file contains eight channels of electromyography (EMG)
data [1] recorded from eight arm muscles. The data is available at www.sce.carleton.ca/faculty/chan/
index.php?page=matlab. The sample rate is 1000 Hz. Plot the first four channels in data.

load EMGdata
fs = 1000;
t = 0:1/fs:(size(data,1)-1)/fs;
plot(t,data(:,1:4))
xlabel('Seconds')
ylabel('mV')

 modifySignals

1-501

https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab
https://www.sce.carleton.ca/faculty/chan/index.php?page=matlab

Create an EDF+ file that contains a header and signal data from channels 1-4 in data. See
edfheader for more information about creating a header structure.

sig = data(:,1:4);
hdr = edfheader("EDF+");
hdr.NumSignals = 4;
hdr.NumDataRecords = 1;
hdr.PhysicalMin = min(sig);
hdr.PhysicalMax = max(sig);
hdr.DigitalMin = repelem(-32768,4);
hdr.DigitalMax = repelem(32767,4);

edfw = edfwrite("EMG.edf",hdr,sig,"InputSampleType","physical");

Modify the signals in edfw with the data from channels 5-8 in data. Use edfread to read the data in
EMG.edf and plot the signals.

modsig = data(:,5:8);
edfw = modifySignals(edfw,modsig);

x = edfread("EMG.edf");
for i = 1:4
 y = x.(i){1};
 plot(t,y)
 xlabel('Seconds')
 ylabel('mV')
 hold on
end

1 Functions

1-502

Input Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, specified as an edfwrite object.

signaldata — Input signal data
numeric matrix | cell array of numeric vectors

Input signal data, specified as a numeric matrix or cell array of numeric vectors. The number of
samples in each signal must be a multiple of the number of data records in NumDataRecords.

Note Specify signaldata as a numeric matrix when all input signals have the same sample rate. If
input signals have different sample rates or lengths, specify signaldata as a cell array of numeric
vectors.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 modifySignals

1-503

Example: 'SelectedSignals',["F1" "B1"],'SelectedDataRecords',[1 2] instructs
modifySignals to modify the first and second data records of signals F1 and B1.

SelectedSignals — Signal names
string vector | cell array of character vectors

Signal names, specified as a string vector or cell array of character vectors. modifySignals
modifies the data of the signals with names specified by SelectedSignals.
Data Types: char | string

SelectedDataRecords — Data records
numeric vector

Data records, specified as a numeric vector. modifySignals modifies all the signals in the data
records specified by the record indices in SelectedDataRecords.
Data Types: double

PhysicalMin — Signal minimum physical value
numeric vector

Signal minimum physical value, specified as a numeric vector of length NumSignals. The signal
physical minimum value must be less than the corresponding signal physical maximum value. Specify
PhysicalMin only when the entire signal is modified. If not specified, the function uses the existing
physical minimum value of the corresponding signal.
Data Types: double

PhysicalMax — Signal maximum physical value
numeric vector

Signal maximum physical value, specified as a numeric vector of length NumSignals. The signal
physical maximum value must be greater than the corresponding signal physical minimum value.
Specify PhysicalMax only when the entire signal is modified. If not specified, the function uses the
existing physical maximum value of the corresponding signal.
Data Types: double

DigitalMin — Signal digital minimum value
numeric vector

Signal digital minimum value, specified as a numeric vector of length NumSignals. The signal digital
minimum value must be less than the corresponding signal digital maximum value. DigitalMin
values are based on the analog-to-digital converter used to generate signaldata. If not specified,
the signal digital minimum value defaults to -32768.
Data Types: double

DigitalMax — Signal digital maximum value
numeric vector

Signal digital maximum value, specified as a numeric vector of length NumSignals. The signal digital
maximum value must be greater than the corresponding signal digital minimum value. DigitalMax
values are based on the analog-to-digital converter used to generate signaldata. If not specified,
the signal digital maximum value defaults to 32767.

1 Functions

1-504

Data Types: double

Output Arguments
edfw — EDF or EDF+ file
edfwrite object

EDF or EDF+ file, returned as an edfwrite object.

References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox".

Paper presented at 30th Conference of the Canadian Medical & Biological Engineering
Society, Toronto, Canada, 2007.

[2] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for
Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[3] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

Functions
edfheader | edfread

External Websites
European Data Format

Introduced in R2021a

 modifySignals

1-505

https://www.edfplus.info/index.html

edfheader
Create header structure for EDF or EDF+ file

Syntax
hdr = edfheader(filetype)

Description
hdr = edfheader(filetype) creates a header structure that can be used to create European
Data Format (EDF) or EDF+ files with edfwrite.

Examples

Create Header Record

Create a header record for an EDF+ file and specify the recording information. Display the header
properties.

hdr = edfheader("EDF+");
hdr.Patient = "P42Dory F";
hdr.Recording = "AJMS Device2";
hdr.StartDate = "27.12.1993";
hdr.StartTime = "04.22.24";
hdr.Reserved = "EDF+C";
hdr.NumDataRecords = 1;
hdr.DataRecordDuration = seconds(4.22)

hdr = struct with fields:
 Patient: "P42Dory F"
 Recording: "AJMS Device2"
 StartDate: "27.12.1993"
 StartTime: "04.22.24"
 Reserved: "EDF+C"
 NumDataRecords: 1
 DataRecordDuration: 4.22 sec
 NumSignals: []
 SignalLabels: [0x0 string]
 TransducerTypes: [0x0 string]
 PhysicalDimensions: [0x0 string]
 PhysicalMin: []
 PhysicalMax: []
 DigitalMin: []
 DigitalMax: []
 Prefilter: [0x0 string]
 SignalReserved: [0x0 string]

1 Functions

1-506

Create Header and Write EDF File with Signal Data

Create a header record for a new EDF file.

hdr = edfheader("EDF");

Generate two random 1000-sample signals containing integers in the range [–24000, 32767] and add
random noise to the second signal. Plot both signals.

sigdata = randi([-24000 32767],1000,2);
sigdata(:,2) = sigdata(:,2) + 0.7*randn(1000,1);
plot(sigdata)

Specify header properties based on the two digital signals you created. The digital minimum and
maximum values correspond to the extreme values that can occur, so specify these values as –32768
and 32767.

hdr.NumSignals = 2;
hdr.NumDataRecords = 1;
hdr.PhysicalMin = [-3200 -3200];
hdr.PhysicalMax = [3200 3200];
hdr.DigitalMin = [-32768 -32768];
hdr.DigitalMax = [32767 32767];

Write a new EDF file with the header structure and the random data. View the file properties.

edfw = edfwrite("rand.edf",hdr,sigdata);
edfinfo("rand.edf")

 edfheader

1-507

ans =
 edfinfo with properties:

 Filename: "rand.edf"
 FileModDate: "01-Sep-2021 11:10:01"
 FileSize: 4768
 Version: "0"
 Patient: "1234567 F 01-Sep-2021 Patient_1"
 Recording: "Startdate 01-Sep-2021 MW_1234567 MW_Inv_01 MW_Eq_01"
 StartDate: "01.09.21"
 StartTime: "11.10.00"
 HeaderBytes: 768
 Reserved: ""
 NumDataRecords: 1
 DataRecordDuration: 1 sec
 NumSignals: 2
 SignalLabels: [2x1 string]
 TransducerTypes: [2x1 string]
 PhysicalDimensions: [2x1 string]
 PhysicalMin: [2x1 double]
 PhysicalMax: [2x1 double]
 DigitalMin: [2x1 double]
 DigitalMax: [2x1 double]
 Prefilter: [2x1 string]
 NumSamples: [2x1 double]
 SignalReserved: [2x1 string]
 Annotations: [0x2 timetable]

Specify a new patient identification record, change the recording start time to 21:12:00, and specify
a label for each signal. Display the header structure to see the modified properties.

hdr.Patient = "20210410 F 27-JUL-2017";
hdr.SignalLabels = ["sig1" "sig2"];
hdr.StartTime = "21.12.00"

hdr = struct with fields:
 Patient: "20210410 F 27-JUL-2017"
 Recording: "Startdate 01-Sep-2021 MW_1234567 MW_Inv_01 MW_Eq_01"
 StartDate: "01.09.21"
 StartTime: "21.12.00"
 Reserved: ""
 NumDataRecords: 1
 DataRecordDuration: 1 sec
 NumSignals: 2
 SignalLabels: ["sig1" "sig2"]
 TransducerTypes: [0x0 string]
 PhysicalDimensions: [0x0 string]
 PhysicalMin: [-3200 -3200]
 PhysicalMax: [3200 3200]
 DigitalMin: [-32768 -32768]
 DigitalMax: [32767 32767]
 Prefilter: [0x0 string]
 SignalReserved: [0x0 string]

1 Functions

1-508

Input Arguments
filetype — File type
"EDF" | "EDF+"

File type, specified as "EDF" or "EDF+".
Data Types: string

Output Arguments
hdr — Header
structure

Header record, returned as a structure with these fields:

Field Description
Patient Patient identification details, returned as a string scalar. Patient

identification details can include Patient ID, sex or gender, birth date in
'dd-MMM-yyyy' format, and name.

Recording Recording identification details, returned as a string scalar. Recording
identification details may include its start date and time, the ID of the
technician that made the recording, and the ID of the equipment that made
the recording.

StartDate Recording start date, returned as a string scalar in 'dd.MM.yy' format.
StartTime Recording start time, returned as a string scalar in 'HH.mm.ss' format.
Reserved EDF+ interruption information, returned as "EDF+C" or "EDF+D" for EDF

+ compliant files.

• "EDF+C" — The recording is continuous. There are no interruptions
and all data records are contiguous, such that the start time of each
data record coincides with the start time of the previous record plus its
duration.

• "EDF+D" — The recording is discontinuous with interruptions between
consecutive data records.

For files that are not EDF+ compliant, this property is an empty string
("").

NumDataRecords Number of data records in file, returned as an integer scalar.

Note If filename is not EDF compliant, NumDataRecords can be set to
-1 when the number of data records is unknown. If filename is EDF
compliant, NumDataRecords must be set to a positive integer. If
filename has Reserved set to a nonempty string and NumDataRecords
set to -1, edfinfo throws an error.

DataRecordDuration Duration of each data record, returned as a duration scalar.
NumSignals Number of signals in file, returned as an integer scalar.

 edfheader

1-509

Field Description
SignalLabels Signal names, returned as a string vector of length NumSignals.

Note If SignalLabels is not specified, edfwrite uses the default label
"Signal_i" for the ith signal.

TransducerTypes Transducer details, returned as a string vector of length NumSignals.
Each element of TransducerTypes contains details about the transducer
used to obtain the corresponding signal in SignalLabels.

PhysicalDimensions Signal data units, returned as a string vector of length NumSignals. Each
element of PhysicalDimensions contains the measurement units used to
express the values of the corresponding signal in SignalLabels.

PhysicalMin Signal minimum physical value, returned as a numeric vector of length
NumSignals. Each element of PhysicalMin contains the minimum
physical value of the corresponding signal in SignalLabels.

PhysicalMax Signal maximum physical value, returned as a numeric vector of length
NumSignals. Each element of PhysicalMax contains the maximum
physical value of the corresponding signal in SignalLabels.

DigitalMin Signal minimum digital value, returned as a numeric vector of length
NumSignals. Each element of DigitalMin contains the minimum digital
value of the corresponding signal in SignalLabels.

DigitalMax Signal maximum digital value, returned as a numeric vector of length
NumSignals. Each element of DigitalMax contains the maximum digital
value of the corresponding signal in SignalLabels.

Prefilter Signal data units, returned as a string vector of length NumSignals. Each
element of Prefilter contains details about the filters, if any, used to
preprocess the corresponding signal in SignalLabels.

SignalReserved Additional signal information, returned as a string vector of length
NumSignals. Each element of SignalReserved contains additional
information, if any, about the corresponding signal in SignalLabels.

References
[1] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for

Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[2] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
Apps
EDF File Analyzer

Objects
edfwrite | edfinfo

1 Functions

1-510

Functions
edfread

External Websites
European Data Format

Introduced in R2021a

 edfheader

1-511

https://www.edfplus.info/index.html

EDF File Analyzer
View EDF or EDF+ files

Description
The EDF File Analyzer app is an interactive tool for visualizing and analyzing data stored in a
European Data Format (EDF) or EDF+ file. In the app, you can import an EDF or EDF+ file, plot
signals, and view properties and annotations.

Open the EDF File Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter edfFileAnalyzer.

1 Functions

1-512

Examples
• “Create EDF+ File with Annotations” on page 1-474

Programmatic Use
edfFileAnalyzer opens the EDF File Analyzer app.

See Also
Objects
edfinfo | edfwrite

Functions
edfheader | edfread

Topics
“Create EDF+ File with Annotations” on page 1-474

Introduced in R2021a

 EDF File Analyzer

1-513

edfread
Read data from EDF/EDF+ file

Syntax
data = edfread(filename)
data = edfread(filename,Name,Value)

[data,annotations] = edfread(___)

Description
data = edfread(filename) reads the European Data Format (EDF) or EDF+ file specified in
filename into a timetable, data.

data = edfread(filename,Name,Value) reads the file into a timetable with additional options
specified by one or more name-value pair arguments.

[data,annotations] = edfread(___) also returns the annotations present in the data records.

Examples

Read EDF File into Timetable

Read data from the EDF file example.edf into a timetable. The file contains two signals, ECG and
ECG2. Each signal contains six data records, and each data record has a duration of 10 seconds.

tt = edfread('example.edf')

tt=6×2 timetable
 Record Time ECG ECG2
 ___________ _______________ _______________

 0 sec {1280x1 double} {1280x1 double}
 10 sec {1280x1 double} {1280x1 double}
 20 sec {1280x1 double} {1280x1 double}
 30 sec {1280x1 double} {1280x1 double}
 40 sec {1280x1 double} {1280x1 double}
 50 sec {1280x1 double} {1280x1 double}

Create an edfinfo object containing information about example.edf. Verify that the signals have
the expected names. Extract the sample rates of the signals using the “DataRecordDuration” on page
1-0 and “NumSamples” on page 1-0 properties of the object.

info = edfinfo('example.edf');

info.SignalLabels

ans = 2x1 string
 "ECG"

1 Functions

1-514

 "ECG2"

fs = info.NumSamples/seconds(info.DataRecordDuration)

fs = 2×1

 128
 128

Plot the first record of the first signal. For more information about accessing data in tables, see
“Access Data in Tables”.

recnum = 1;
signum = 1;
t = (0:info.NumSamples(signum)-1)/fs(signum);
y = tt.(signum){recnum};

plot(t,y)
legend(strcat("Record ",int2str(recnum),", Signal ",info.SignalLabels(signum)))
hold on

Extract and plot the fifth record of the second signal.

recnum = 5;
signum = 2;
t = (0:info.NumSamples(signum)-1)/fs(signum);
y = tt.(signum){recnum};

plot(t,y, ...
 'DisplayName',strcat("Record ",int2str(recnum),", Signal ",info.SignalLabels(signum)))
hold off
xlabel('t (seconds)')

 edfread

1-515

Read Subset of EDF File

Create an edfinfo object to obtain information about the EDF file example.edf. Extract the
number of records and the names of the variables contained in the file.

info = edfinfo('example.edf');

nrec = info.NumDataRecords

nrec = 6

vars = info.SignalLabels

vars = 2x1 string
 "ECG"
 "ECG2"

Read the second and fifth records corresponding to the variable ECG2. Return the signals as
timetables with row times corresponding to signal sample times. Express the time information as
datetime arrays.

data = edfread('example.edf', ...
 'SelectedDataRecords',[2 5],'SelectedSignals',"ECG2", ...
 'DataRecordOutputType','timetable','TimeOutputType','datetime')

1 Functions

1-516

data=2×1 timetable
 Record Time ECG2
 ____________________ __________________

 10-Oct-2020 12:02:28 {1280x1 timetable}
 10-Oct-2020 12:02:58 {1280x1 timetable}

Change the name of the row times to "Date and Time" and the name of the variable to
"Electrocardiogram".

data.Properties.DimensionNames = ["Date and Time" "Variables"];
data.Properties.VariableNames = "Electrocardiogram";

data

data=2×1 timetable
 Date and Time Electrocardiogram
 ____________________ __________________

 10-Oct-2020 12:02:28 {1280x1 timetable}
 10-Oct-2020 12:02:58 {1280x1 timetable}

Input Arguments
filename — Name of EDF or EDF+ file
character vector | string scalar

Name of EDF or EDF+ file, specified as a character vector or string scalar.

Depending on the location of the file, filename can take one of these forms.

Location Form
Current folder or folder on
the MATLAB path

Specify the name of the file in filename.

Example: 'data.edf'
File in a folder If the file is not in the current folder or in a folder on the MATLAB

path, then specify the full or relative path name.

Example: 'C:\myFolder\data.edf'

Example: 'myDir\myFile.ext'

Note edfread does not support EyeLink EDF files.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 edfread

1-517

Example: 'SelectedSignals',["Thorax" "Abdomen"],'SelectedDataRecords',[2
7],'TimeOutputType','datetime' instructs edfread to read the second and seventh data
records corresponding to the Thorax and Abdomen signals and return the time information as
datetime arrays.

SelectedSignals — Names of signals to read
string vector | cell array of character vectors

Names of signals to read, specified as the comma-separated pair consisting of 'SelectedSignals'
and a string vector or a cell array of character vectors.

• 'SelectedSignals' must be a subset of the signal names contained in the file. To get the names
of all the signals in the file, create an edfinfo object and use the SignalLabels property.

• If this argument is not specified, edfread reads all the signals in the file.

Example: Both ["Thorax 1" "Abdomen 3"] and {'Thorax 1' 'Abdomen 3'} specify Thorax 1
and Abdomen 3 as the signals to read from a file.
Data Types: char | string

SelectedDataRecords — Indices of records to read
1:height(edfread(filename)) (default) | vector of positive integers

Indices of records to read, specified as the comma-separated pair consisting of
'SelectedDataRecords' and a vector of positive integers. The integers in the vector must be
unique and strictly increasing.

• 'SelectedDataRecords' must be a subset of the data records contained in the file. To see how
many records are in the file, create an edfinfo object and use the NumDataRecords property.
Alternatively, read the whole file and use the MATLAB function height.

• If this argument is not specified, edfread reads all the data records in the file.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DataRecordOutputType — Data output type
'vector' (default) | 'timetable'

Data output type, specified as the comma-separated pair consisting of 'DataRecordOutputType'
and either 'vector' or 'timetable'.

• 'vector' — Return the signals in data as vectors.
• 'timetable' — Return the signals in data as timetables with row times corresponding to signal

sample times.

Data Types: char | string

TimeOutputType — Time output type
'duration' (default) | 'datetime'

Time output type, specified as the comma-separated pair consisting of 'TimeOutputType' and
either 'duration' or 'datetime'.

• 'duration' — Return the time information in data as duration arrays.
• 'datetime' — Return the time information in data as datetime arrays.

1 Functions

1-518

Data Types: char | string

Output Arguments
data — Output data
timetable

Output data, returned as a timetable. Each row of data corresponds to a record, and each variable of
data corresponds to a signal.

• If 'DataRecordOutputType' is specified as 'vector', the signal segment for each data record
is returned as a vector.

• If 'DataRecordOutputType' is specified as 'timetable', the signal segment for each data
record is returned as a timetable with row times corresponding to signal sample times.

Each row time of data contains the start time of the corresponding data record.

• If 'TimeOutputType' is set to 'duration', the start time of each record is relative to the start
time of the file recording.

• If 'TimeOutputType' is set to 'datetime', the start time of each record is the absolute start
time.

annotations — Record annotations
timetable

Record annotations, returned as a timetable. The timetable contains these variables:

• Onset — Time at which the annotation occurred. The data type of Onset depends on the value
specified for 'TimeOutputType'.

• Annotations — A string that contains the annotation text.
• Duration — A duration scalar that indicates the duration of the event described by the

annotation. If the file does not specify an annotation duration, this variable is returned as NaN.

References
[1] Kemp, Bob, Alpo Värri, Agostinho C. Rosa, Kim D. Nielsen, and John Gade. “A Simple Format for

Exchange of Digitized Polygraphic Recordings.” Electroencephalography and Clinical
Neurophysiology 82, no. 5 (May 1992): 391–93. https://doi.org/
10.1016/0013-4694(92)90009-7.

[2] Kemp, Bob, and Jesus Olivan. "European Data Format 'plus' (EDF+), an EDF Alike Standard
Format for the Exchange of Physiological Data." Clinical Neurophysiology 114, no. 9 (2003):
1755–1761. https://doi.org/10.1016/S1388-2457(03)00123-8.

See Also
datetime | duration | edfinfo | get | timetable

External Websites
European Data Format

 edfread

1-519

https://www.edfplus.info/index.html

Introduced in R2020b

1 Functions

1-520

edr
Edit distance on real signals

Syntax
dist = edr(x,y,tol)
[dist,ix,iy] = edr(x,y,tol)

[___] = edr(x,y,maxsamp)

[___] = edr(___ ,metric)

edr(___)

Description
dist = edr(x,y,tol) returns the “Edit Distance on Real Signals” on page 1-532 between
sequences x and y. edr returns the minimum number of elements that must be removed from x, y, or
both x and y, so that the sum of Euclidean distances between the remaining signal elements lies
within the specified tolerance, tol.

[dist,ix,iy] = edr(x,y,tol) returns the warping path such that x(ix) and y(iy) have the
smallest possible dist between them. When x and y are matrices, ix and iy are such that x(:,ix)
and y(:,iy) are minimally separated.

[___] = edr(x,y,maxsamp) restricts the insertion operations so that the warping path remains
within maxsamp samples of a straight-line fit between x and y. This syntax returns any of the output
arguments of previous syntaxes.

[___] = edr(___ ,metric) specifies the distance metric to use in addition to any of the input
arguments in previous syntaxes. metric can be one of 'euclidean', 'absolute', 'squared', or
'symmkl'.

edr(___) without output arguments plots the original and aligned signals.

• If the signals are real vectors, the function displays the two original signals on a subplot and the
aligned signals in a subplot below the first one.

• If the signals are complex vectors, the function displays the original and aligned signals in three-
dimensional plots.

• If the signals are real matrices, the function uses imagesc to display the original and aligned
signals.

• If the signals are complex matrices, the function plots their real and imaginary parts in the top
and bottom half of each image.

Examples

 edr

1-521

Edit Distance Between Chirp and Sinusoid with Outliers

Generate two real signals: a chirp and a sinusoid. Add a clearly outlying section to each signal.

x = cos(2*pi*(3*(1:1000)/1000).^2);
y = cos(2*pi*9*(1:399)/400);

x(400:410) = 7;
y(100:115) = 7;

Warp the signals so that the edit distance between them is smallest. Specify a tolerance of 0.1. Plot
the aligned signals, both before and after the warping, and output the distance between them.

tol = 0.1;
edr(x,y,tol)

ans = 617

Change the sinusoid frequency to twice its initial value. Repeat the computation.

y = cos(2*pi*18*(1:399)/400);
y(100:115) = 7;

edr(x,y,tol);

1 Functions

1-522

Add an imaginary part to each signal. Restore the initial sinusoid frequency. Align the signals by
minimizing the sum of squared Euclidean distances.

x = exp(2i*pi*(3*(1:1000)/1000).^2);
y = exp(2i*pi*9*(1:399)/400);

x(400:405) = 5+3j;
x(405:410) = 7;

y(100:107) = 3j;
y(108:115) = 7-3j;

edr(x,y,tol,'squared');

 edr

1-523

Edit Distance and Warping Path

Generate two signals consisting of two distinct peaks separated by valleys of different lengths. Plot
the signals.

x1 = [0 1 0 1 0]*.95;
x2 = [0 1 0 0 0 0 0 0 0 0 1 0]*.95;

subplot(2,1,1)
plot(x1)
xlim([0 12])
subplot(2,1,2)
plot(x2)
xlim([0 12])

1 Functions

1-524

Compute the edit distance between the signals. Set a small tolerance so that the only matches are
between equal samples.

tol = 0.1;

figure
edr(x1,x2,tol);

 edr

1-525

The distance between the signals is 7. To align them, it is necessary to remove the seven central zeros
of x2 or add seven zeros to x1.

Compute the D matrix, whose bottom-right element corresponds to the edit distance. For the
definition of D, see “Edit Distance on Real Signals” on page 1-532.

cnd = (abs(x1'-x2))>tol;
D = zeros(length(x1)+1,length(x2)+1);
D(1,2:end) = 1:length(x2);
D(2:end,1) = 1:length(x1);

for h = 2:length(x1)+1
 for k = 2:length(x2)+1
 D(h,k) = min([D(h-1,k)+1 ...
 D(h,k-1)+1 ...
 D(h-1,k-1)+cnd(h-1,k-1)]);
 end
end

D

D = 6×13

 0 1 2 3 4 5 6 7 8 9 10 11 12
 1 0 1 2 3 4 5 6 7 8 9 10 11
 2 1 0 1 2 3 4 5 6 7 8 9 10
 3 2 1 0 1 2 3 4 5 6 7 8 9

1 Functions

1-526

 4 3 2 1 1 2 3 4 5 6 7 7 8
 5 4 3 2 1 1 2 3 4 5 6 7 7

Compute and display the warping path that aligns the signals.

[d,i1,i2] = edr(x1,x2,tol);

E = zeros(length(x1),length(x2));

for k = 1:length(i1)
 E(i1(k),i2(k)) = NaN;
end

E

E = 5×12

 NaN 0 0 0 0 0 0 0 0 0 0 0
 0 NaN 0 0 0 0 0 0 0 0 0 0
 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0
 0 0 0 0 0 0 0 0 0 0 NaN 0
 0 0 0 0 0 0 0 0 0 0 0 NaN

Repeat the computation, but now constrain the warping path to deviate at most two elements from
the diagonal. Plot the stretched signals and the warping path. In the second plot, set the matrix
columns to run along the x-axis.

[dc,i1c,i2c] = edr(x1,x2,tol,2);

subplot(2,1,1)
plot([x1(i1c);x2(i2c)]','.-')
title(['Distance: ' num2str(dc)])
subplot(2,1,2)
plot(i2c,i1c,'o-',[i2(1) i2(end)],[i1(1) i1(end)])
axis ij
title('Warping Path')

 edr

1-527

The constraint results in a smaller edit distance but distorts the signals. If the constraint cannot be
met, then edr returns NaN for the distance. See this by forcing the warping path to deviate at most
one element from the diagonal.

[dc,i1c,i2c] = edr(x1,x2,tol,1);

subplot(2,1,1)
plot([x1(i1c);x2(i2c)]','.-')
title(['Distance: ' num2str(dc)])
subplot(2,1,2)
plot(i2c,i1c,'o-',[i2(1) i2(end)],[i1(1) i1(end)])
axis ij
title('Warping Path')

1 Functions

1-528

Align Blotched Handwriting Samples

The files MATLAB1.gif and MATLAB2.gif contain two handwritten samples of the word
"MATLAB®." Load the files. Add outliers by blotching the data.

samp1 = 'MATLAB1.gif';
samp2 = 'MATLAB2.gif';

x = double(imread(samp1));
y = double(imread(samp2));

x(15:20,54:60) = 4000;
y(15:20,84:96) = 4000;

Align the handwriting samples along the x-axis using the edit distance. Specify a tolerance of 450.

edr(x,y,450);

 edr

1-529

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.
Data Types: single | double
Complex Number Support: Yes

y — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix.
Data Types: single | double
Complex Number Support: Yes

tol — Tolerance
positive scalar

Tolerance, specified as a positive scalar.
Data Types: single | double

1 Functions

1-530

maxsamp — Width of adjustment window
Inf (default) | positive integer

Width of adjustment window, specified as a positive integer.
Data Types: single | double

metric — Distance metric
'euclidean' (default) | 'absolute' | 'squared' | 'symmkl'

Distance metric, specified as 'euclidean', 'absolute', 'squared', or 'symmkl'. If X and Y are
both K-dimensional signals, then metric prescribes dmn(X,Y), the distance between the mth sample
of X and the nth sample of Y.

• 'euclidean' — Root sum of squared differences, also known as the Euclidean or ℓ2 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'absolute' — Sum of absolute differences, also known as the Manhattan, city block, taxicab, or
ℓ1 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n = ∑

k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'squared' — Square of the Euclidean metric, consisting of the sum of squared differences:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'symmkl' — Symmetric Kullback-Leibler metric. This metric is valid only for real and positive X
and Y:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n logxk, m− logyk, n

Output Arguments
dist — Minimum distance
positive real scalar

Minimum distance between signals, returned as a positive real scalar.

ix,iy — Warping path
vectors of indices

Warping path, returned as vectors of indices. ix and iy have the same length. Each vector contains a
monotonically increasing sequence in which the indices to the elements of the corresponding signal,
x or y, are repeated the necessary number of times.

 edr

1-531

More About
Edit Distance on Real Signals

Two signals with equivalent features arranged in the same order can appear very different due to
differences in the durations of their sections. edr distorts these durations so that the corresponding
features appear at the same location on a common time axis, thus highlighting the similarities
between the signals. The criterion used to perform the distortion is designed to be robust to outliers.

Consider the two K-dimensional signals

X =

x1, 1 x1, 2 ⋯ x1, M

x2, 1 x2, 2 ⋯ x2, M

⋮ ⋮ ⋱ ⋮
xK, 1 xK, 2 ⋯ xK, M

and

Y =

y1, 1 y1, 2 ⋯ y1, N

y2, 1 y2, 2 ⋯ y2, N

⋮ ⋮ ⋱ ⋮
yK, 1 yK, 2 ⋯ yK, N

,

which have M and N samples, respectively. Given dmn(X,Y), the distance between the mth sample of X
and the nth sample of Y specified in metric, the edr function stretches X and Y onto a common set
of instants such that the edit distance between the signals is smallest.

Given ε, a real number that is the tolerance specified in tol, declare that the mth sample of X and
the nth sample of Y match if dmn(X,Y) < ε. If two samples, m and n, do not match, you can make them
match in any of three ways:

1 Remove m from the first signal, such as when the next sample does match n. This removal is
equivalent to adding m to the second signal and obtaining two consecutive matches.

2 Lengthen the first signal by adding in position a sample that matches n and displacing the rest of
the samples by one location. This addition is equivalent to removing the unmatched n from the
second signal.

3 Substitute m with n in the first signal, or, equivalently, remove both m and n.

The edit distance is the total number of these operations that are needed to make the two signals
match. This number is not unique. To compute the smallest possible edit distance between X and Y,
start from these facts:

1 Two empty signals have zero distance between them.
2 The distance between an empty signal and a signal with L samples is L, because that is the

number of samples that must be added to the empty signal to recover the other one. Equivalently,
L is the number of samples that must be removed from an L-sample signal to empty it.

Create an (M + 1)-by-(N + 1) matrix, D, such that:

1 D1,1 = 0.
2 Dm,1 = m – 1 for m = 2, …, M + 1.

1 Functions

1-532

3 D1,n = n – 1 for n = 2, …, N + 1.
4 For m, n > 1,

Dm, n = min

Dm− 1, n + 1
Dm, n− 1 + 1

Dm− 1, n− 1 +
0 dm, n(X, Y) ≤ ε
1 dm, n(X, Y) > ε

.

The smallest edit distance between X and Y is then DM+1,N+1.

The warping path through D that results in this smallest edit distance is parameterized by two
sequences of the same length, ix and iy, and is a combination of “chess king” moves:

• Vertical moves: (m,n) → (m + 1,n) corresponds to removing a sample from X or adding a sample to
Y. Each move increases the edit distance by 1.

• Horizontal moves: (m,n) → (m,n + 1) corresponds to removing a sample from Y or adding a sample
to X. Each move increases the edit distance by 1.

• Diagonal moves: (m,n) → (m + 1,n + 1) corresponds to a match if dm,n(X,Y) ≤ ε or corresponds to
removing one sample from each signal if dm,n(X,Y) > ε. Matches do not increase the distance.
Removals increase it by 1.

This structure ensures that any acceptable path aligns the complete signals, does not skip samples,
and does not repeat signal features. Additionally, a desirable path runs close to the diagonal line
extended between d1,1(X,Y) and dM,N(X,Y). This extra constraint, adjusted by the maxsamp argument,
ensures that the warping compares sections of similar length.

The penalty for making two samples match is independent of the difference in value between the
samples. Two samples that differ by a little more than the tolerance incur the same penalty as two
samples that are markedly different. For that reason, the edit distance is not affected by outliers.
Conversely, repeating samples to align two signals has a cost, which is not the case with dynamic
time warping.

References
[1] Chen, Lei, M. Tamer Özsu, and Vincent Oria. "Robust and Fast Similarity Search for Moving

Object Trajectories." Proceedings of 24th ACM International Conference on Management of
Data (SIGMOD ‘05). 2005, pp. 491–502.

[2] Paliwal, K. K., Anant Agarwal, and Sarvajit S. Sinha. "A Modification over Sakoe and Chiba’s
Dynamic Time Warping Algorithm for Isolated Word Recognition." Signal Processing. Vol. 4,
1982, pp. 329–333.

[3] Sakoe, Hiroaki, and Seibi Chiba. "Dynamic Programming Algorithm Optimization for Spoken Word
Recognition." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-26,
No. 1, 1978, pp. 43–49.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 edr

1-533

See Also
alignsignals | dtw | finddelay | findsignal | xcorr

Introduced in R2016b

1 Functions

1-534

ellip
Elliptic filter design

Syntax
[b,a] = ellip(n,Rp,Rs,Wp)
[b,a] = ellip(n,Rp,Rs,Wp,ftype)

[z,p,k] = ellip(___)
[A,B,C,D] = ellip(___)

[___] = ellip(___ ,'s')

Description
[b,a] = ellip(n,Rp,Rs,Wp) returns the transfer function coefficients of an nth-order lowpass
digital elliptic filter with normalized passband edge frequency Wp. The resulting filter has Rp decibels
of peak-to-peak passband ripple and Rs decibels of stopband attenuation down from the peak
passband value.

[b,a] = ellip(n,Rp,Rs,Wp,ftype) designs a lowpass, highpass, bandpass, or bandstop elliptic
filter, depending on the value of ftype and the number of elements of Wp. The resulting bandpass
and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-543 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = ellip(___) designs a lowpass, highpass, bandpass, or bandstop digital elliptic filter
and returns its zeros, poles, and gain. This syntax can include any of the input arguments in previous
syntaxes.

[A,B,C,D] = ellip(___) designs a lowpass, highpass, bandpass, or bandstop digital elliptic filter
and returns the matrices that specify its state-space representation.

[___] = ellip(___ ,'s') designs a lowpass, highpass, bandpass, or bandstop analog elliptic
filter with passband edge angular frequency Wp, Rp decibels of passband ripple, and Rs decibels of
stopband attenuation.

Examples

Lowpass Elliptic Transfer Function

Design a 6th-order lowpass elliptic filter with 5 dB of passband ripple, 40 dB of stopband attenuation,
and a passband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 . 6π
rad/sample. Plot its magnitude and phase responses. Use it to filter a 1000-sample random signal.

[b,a] = ellip(6,5,40,0.6);
freqz(b,a)

 ellip

1-535

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Bandstop Elliptic Filter

Design a 6th-order elliptic bandstop filter with normalized edge frequencies of 0 . 2π and 0 . 6π rad/
sample, 5 dB of passband ripple, and 50 dB of stopband attenuation. Plot its magnitude and phase
responses. Use it to filter random data.

[b,a] = ellip(3,5,50,[0.2 0.6],'stop');
freqz(b,a)

1 Functions

1-536

dataIn = randn(1000,1);
dataOut = filter(b,a,dataIn);

Highpass Elliptic Filter

Design a 6th-order highpass elliptic filter with a passband edge frequency of 300 Hz, which, for data
sampled at 1000 Hz, corresponds to 0 . 6π rad/sample. Specify 3 dB of passband ripple and 50 dB of
stopband attenuation. Plot the magnitude and phase responses. Convert the zeros, poles, and gain to
second-order sections for use by fvtool.

[z,p,k] = ellip(6,3,50,300/500,'high');
sos = zp2sos(z,p,k);
fvtool(sos,'Analysis','freq')

 ellip

1-537

Bandpass Elliptic Filter

Design a 20th-order elliptic bandpass filter with a lower passband frequency of 500 Hz and a higher
passband frequency of 560 Hz. Specify a passband ripple of 3 dB, a stopband attenuation of 40 dB,
and a sample rate of 1500 Hz. Use the state-space representation. Design an identical filter using
designfilt.

[A,B,C,D] = ellip(10,3,40,[500 560]/750);
d = designfilt('bandpassiir','FilterOrder',20, ...
 'PassbandFrequency1',500,'PassbandFrequency2',560, ...
 'PassbandRipple',3, ...
 'StopbandAttenuation1',40,'StopbandAttenuation2',40, ...
 'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);
fvt = fvtool(sos,d,'Fs',1500);
legend(fvt,'ellip','designfilt')

1 Functions

1-538

Comparison of Analog IIR Lowpass Filters

Design a 5th-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2π
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

n = 5;
f = 2e9;

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] = zp2tf(zb,pb,kb);
[hb,wb] = freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passband
ripple. Compute its frequency response.

[z1,p1,k1] = cheby1(n,3,2*pi*f,'s');
[b1,a1] = zp2tf(z1,p1,k1);
[h1,w1] = freqs(b1,a1,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.

 ellip

1-539

[z2,p2,k2] = cheby2(n,30,2*pi*f,'s');
[b2,a2] = zp2tf(z2,p2,k2);
[h2,w2] = freqs(b2,a2,4096);

Design a 5th-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2*pi*f,'s');
[be,ae] = zp2tf(ze,pe,ke);
[he,we] = freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))
hold on
plot(w1/(2e9*pi),mag2db(abs(h1)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))
axis([0 4 -40 5])
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')
legend('butter','cheby1','cheby2','ellip')

The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.

1 Functions

1-540

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Rp — Peak-to-peak passband ripple
positive scalar

Peak-to-peak passband ripple, specified as a positive scalar expressed in decibels.

If your specification, ℓ, is in linear units, you can convert it to decibels using Rp = 40 log10((1+ℓ)/(1–
ℓ)).
Data Types: double

Rs — Stopband attenuation
positive scalar

Stopband attenuation down from the peak passband value, specified as a positive scalar expressed in
decibels.

If your specification, ℓ, is in linear units, you can convert it to decibels using Rs = –20 log10ℓ.
Data Types: double

Wp — Passband edge frequency
scalar | two-element vector

Passband edge frequency, specified as a scalar or a two-element vector. The passband edge frequency
is the frequency at which the magnitude response of the filter is –Rp decibels. Smaller values of
passband ripple, Rp, and larger values of stopband attenuation, Rs, both result in wider transition
bands.

• If Wp is a scalar, then ellip designs a lowpass or highpass filter with edge frequency Wp.

If Wp is the two-element vector [w1 w2], where w1 < w2, then ellip designs a bandpass or
bandstop filter with lower edge frequency w1 and higher edge frequency w2.

• For digital filters, the passband edge frequencies must lie between 0 and 1, where 1 corresponds
to the Nyquist rate—half the sample rate or π rad/sample.

For analog filters, the passband edge frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop'

Filter type, specified as one of the following:

 ellip

1-541

• 'low' specifies a lowpass filter with passband edge frequency Wp. 'low' is the default for scalar
Wp.

• 'high' specifies a highpass filter with passband edge frequency Wp.
• 'bandpass' specifies a bandpass filter of order 2n if Wp is a two-element vector. 'bandpass' is

the default when Wp has two elements.
• 'stop' specifies a bandstop filter of order 2n if Wp is a two-element vector.

Output Arguments
b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

• For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B(z)
A(z) = b(1)+b(2) z−1 +⋯+ b(n+1) z−n

a(1)+a(2) z−1 +⋯+ a(n+1) z−n .

• For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B(s)
A(s) = b(1) sn + b(2) sn− 1 +⋯+ b(n+1)

a(1) sn + a(2) sn− 1 +⋯+ a(n+1)
.

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

• For digital filters, the transfer function is expressed in terms of z, p, and k as

H(z) = k (1 − z(1) z−1) (1 − z(2) z−1)⋯(1 − z(n) z−1)
(1 − p(1) z−1) (1 − p(2) z−1)⋯(1 − p(n) z−1)

.

• For analog filters, the transfer function is expressed in terms of z, p, and k as

H(s) = k (s− z(1)) (s− z(2))⋯(s− z(n))
(s− p(1)) (s− p(2))⋯(s− p(n)) .

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then A is m × m, B is m × 1, C is 1 × m, and D
is 1 × 1.

• For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

1 Functions

1-542

x(k + 1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) .

• For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

ẋ = A x + B u
y = C x + D u .

Data Types: double

More About
Limitations

Numerical Instability of Transfer Function Syntax

In general, use the [z,p,k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z,p,k] output with zp2sos. If you design the filter using the [b,a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

n = 6;
Rp = 0.1;
Rs = 80;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,a] = ellip(n,Rp,Rs,Wn,ftype); % This filter is unstable

% Zero-Pole-Gain design
[z,p,k] = ellip(n,Rp,Rs,Wn,ftype);
sos = zp2sos(z,p,k);

% Plot and compare the results
hfvt = fvtool(b,a,sos,'FrequencyScale','log');
legend(hfvt,'TF Design','ZPK Design')

 ellip

1-543

Algorithms
Elliptic filters offer steeper rolloff characteristics than Butterworth or Chebyshev filters, but are
equiripple in both the passband and the stopband. In general, elliptic filters meet given performance
specifications with the lowest order of any filter type.

ellip uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the function ellipap.
2 It converts the poles, zeros, and gain into state-space form.
3 If required, it uses a state-space transformation to convert the lowpass filter to a bandpass,

highpass, or bandstop filter with the desired frequency constraints.
4 For digital filter design, it uses bilinear to convert the analog filter into a digital filter through

a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the
analog filters and the digital filters to have the same frequency response magnitude at Wp or w1
and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-544

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besself | butter | cheby1 | cheby2 | designfilt | ellipap | ellipord | filter | sosfilt

Introduced before R2006a

 ellip

1-545

ellipap
Elliptic analog lowpass filter prototype

Syntax
[z,p,k] = ellipap(n,Rp,Rs)

Description
[z,p,k] = ellipap(n,Rp,Rs) returns the zeros, poles, and gain of an order n elliptic analog
lowpass filter prototype, with Rp dB of ripple in the passband, and a stopband Rs dB down from the
peak value in the passband. The zeros and poles are returned in length n column vectors z and p and
the gain in scalar k. If n is odd, z is length n - 1. The transfer function in factored zero-pole form is

H(s) = z(s)
p(s) = k

(s− z1)(s− z2)…(s− zN)
(s− p1)(s− p2)…(s− pM)

Elliptic filters offer steeper rolloff characteristics than Butterworth and Chebyshev filters, but they
are equiripple in both the passband and the stopband. Of the four classical filter types, elliptic filters
usually meet a given set of filter performance specifications with the lowest filter order.

ellipap sets the passband edge angular frequency ω0 of the elliptic filter to 1 for a normalized
result. The passband edge angular frequency is the frequency at which the passband ends and the
filter has a magnitude response of 10-Rp/20.

Algorithms
ellipap uses the algorithm outlined in [1]. It employs ellipke to calculate the complete elliptic
integral of the first kind and ellipj to calculate Jacobi elliptic functions.

References

[1] Parks, T. W., and C. S. Burrus. Digital Filter Design. New York: John Wiley & Sons, 1987, chap. 7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besselap | buttap | cheb1ap | cheb2ap | ellip

1 Functions

1-546

Introduced before R2006a

 ellipap

1-547

ellipord
Minimum order for elliptic filters

Syntax
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)
[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s')

Description
[n,Wn] = ellipord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital elliptic filter with no
more than Rp dB of passband ripple and at least Rs dB of attenuation in the stopband. Wp and Ws, are
respectively, the passband and stopband edge frequencies of the filter, normalized from 0 to 1, where
1 corresponds to π rad/sample. The scalar (or vector) of corresponding cutoff frequencies, Wn, is also
returned. To design an elliptic filter, use the output arguments n and Wn as inputs to ellip.

[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff frequencies Wn for
an analog elliptic filter. Specify the frequencies Wp and Ws in radians per second. The passband or the
stopband can be infinite.

Examples

Lowpass Elliptic Filter Order

For 1000 Hz data, design a lowpass filter with less than 3 dB of ripple in the passband, defined from 0
to 40 Hz, and at least 60 dB of ripple in the stopband, defined from 150 Hz to the Nyquist frequency,
500 Hz. Find the filter order and cutoff frequency.

Wp = 40/500;
Ws = 150/500;
Rp = 3;
Rs = 60;
[n,Wp] = ellipord(Wp,Ws,Rp,Rs)

n = 4

Wp = 0.0800

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = ellip(n,Rp,Rs,Wp);
sos = zp2sos(z,p,k);
freqz(sos,512,1000)
title(sprintf('n = %d Elliptic Lowpass Filter',n))

1 Functions

1-548

Bandpass Elliptic Filter Order

Design a bandpass filter with a passband from 60 Hz to 200 Hz with at most 3 dB of ripple and at
least 40 dB attenuation in the stopbands. Specify a sampling rate of 1 kHz. Have the stopbands be 50
Hz wide on both sides of the passband. Find the filter order and cutoff frequencies.

Wp = [60 200]/500;
Ws = [50 250]/500;
Rp = 3;
Rs = 40;

[n,Wp] = ellipord(Wp,Ws,Rp,Rs)

n = 5

Wp = 1×2

 0.1200 0.4000

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = ellip(n,Rp,Rs,Wp);
sos = zp2sos(z,p,k);

 ellipord

1-549

freqz(sos,512,1000)
title(sprintf('n = %d Elliptic Bandpass Filter',n))

Input Arguments
Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1, with 1 corresponding to the normalized Nyquist frequency, π rad/sample.

• If Wp and Ws are both scalars and Wp < Ws, then ellipord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1 and the passband ranges from 0
to Wp.

• If Wp and Ws are both scalars and Wp > Ws, then ellipord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws and the passband ranges from
Wp to 1.

• If Wp and Ws are both vectors and the interval specified by Ws contains the one specified by Wp
(Ws(1) < Wp(1) < Wp(2) < Ws(2)), then ellipord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws(1) and from Ws(2) to 1. The
passband ranges from Wp(1) to Wp(2).

• If Wp and Ws are both vectors and the interval specified by Wp contains the one specified by Ws
(Wp(1) < Ws(1) < Ws(2) < Wp(2)), then ellipord returns the order and cutoff frequencies of a

1 Functions

1-550

bandstop filter. The stopband of the filter ranges from Ws(1) to Ws(2). The passband ranges from
0 to Wp(1) and from Wp(2) to 1.

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripple in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and
1, with 1 corresponding to the normalized Nyquist frequency, π rad/sample.
Data Types: single | double

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar expressed in dB.
Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar expressed in dB.
Data Types: single | double

Output Arguments
n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Wn — Cutoff frequencies
scalar | vector

Cutoff frequencies, returned as a scalar or vector.

Algorithms
ellipord uses the elliptic lowpass filter order prediction formula described in [1]. The function
performs its calculations in the analog domain for both the analog and digital cases. For the digital
case, it converts the frequency parameters to the s-domain before estimating the order and natural
frequencies, and then converts them back to the z-domain.

ellipord initially develops a lowpass filter prototype by transforming the passband frequencies of
the desired filter to 1 rad/s (for low and highpass filters) and to –1 and 1 rad/s (for bandpass and
bandstop filters). It then computes the minimum order required for a lowpass filter to meet the
stopband specification.

 ellipord

1-551

References
[1] Rabiner, Lawrence R., and B. Gold. Theory and Application of Digital Signal Processing.

Englewood Cliffs, NJ: Prentice Hall, 1975.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheb1ord | cheb2ord | ellip

Introduced before R2006a

1 Functions

1-552

emd
Empirical mode decomposition

Syntax
[imf,residual] = emd(x)
[imf,residual,info] = emd(x)
[___] = emd(___ ,Name,Value)

emd(___)

Description
[imf,residual] = emd(x) returns intrinsic mode functions imf and residual signal residual
corresponding to the empirical mode decomposition of x. Use emd to decompose and simplify
complicated signals into a finite number of intrinsic mode functions required to perform Hilbert
spectral analysis.

[imf,residual,info] = emd(x) returns additional information info on IMFs and residual signal
for diagnostic purposes.

[___] = emd(___ ,Name,Value) performs the empirical mode decomposition with additional
options specified by one or more Name,Value pair arguments.

emd(___) plots the original signal, IMFs, and residual signal as subplots in the same figure.

Examples

Perform Empirical Mode Decomposition and Visualize Hilbert Spectrum of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
plot(t,X)
xlabel('Time(s)')

 emd

1-553

The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To create the Hilbert spectrum plot, you need the intrinsic mode functions (IMFs) of the signal.
Perform empirical mode decomposition to compute the IMFs and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,'Interpolation','pchip');

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by adding the 'Display',0 name value pair.

Create the Hilbert spectrum plot using the imf components obtained using empirical mode
decomposition.

hht(imf,fs)

1 Functions

1-554

The frequency versus time plot is a sparse plot with a vertical color bar indicating the instantaneous
energy at each point in the IMF. The plot represents the instantaneous frequency spectrum of each
component decomposed from the original mixed signal. Three IMFs appear in the plot with a distinct
change in frequency at 1 second.

Zero Crossings and Extrema in Intrinsic Mode Function of Sinusoid

This trigonometric identity presents two different views of the same physical signal:

5
2cos2πf1t + 1

4 cos2π f1 + f2 t + cos2π f1− f2 t = 2 + cos2πf2t cos2πf1t.

Generate two sinusoids, s and z, such that s is the sum of three sine waves and z is a single sine
wave with a modulated amplitude. Verify that the two signals are equal by calculating the infinity
norm of their difference.

t = 0:1e-3:10;
omega1 = 2*pi*100;
omega2 = 2*pi*20;
s = 0.25*cos((omega1-omega2)*t) + 2.5*cos(omega1*t) + 0.25*cos((omega1+omega2)*t);
z = (2+cos(omega2/2*t).^2).*cos(omega1*t);

norm(s-z,Inf)

ans = 3.2729e-13

 emd

1-555

Plot the sinusoids and select a 1-second interval starting at 2 seconds.

plot(t,[s' z'])
xlim([2 3])
xlabel('Time (s)')
ylabel('Signal')

Obtain the spectrogram of the signal. The spectrogram shows three distinct sinusoidal components.
Fourier analysis sees the signals as a superposition of sine waves.

pspectrum(s,1000,'spectrogram','TimeResolution',4)

1 Functions

1-556

Use emd to compute the intrinsic mode functions (IMFs) of the signal and additional diagnostic
information. The function by default outputs a table that indicates the number of sifting iterations,
the relative tolerance, and the sifting stop criterion for each IMF. Empirical mode decomposition sees
the signal as z.

[imf,~,info] = emd(s);

The number of zero crossings and local extrema differ by at most one. This satisfies the necessary
condition for the signal to be an IMF.

info.NumZerocrossing - info.NumExtrema

ans = 1

Plot the IMF and select a 0.5-second interval starting at 2 seconds. The IMF is an AM signal because
emd views the signal as amplitude modulated.

plot(t,imf)
xlim([2 2.5])
xlabel('Time (s)')
ylabel('IMF')

 emd

1-557

Compute Intrinsic Mode Functions of Vibration Signal

Simulate a vibration signal from a damaged bearing. Perform empirical mode decomposition to
visualize the IMFs of the signal and look for defects.

A bearing with a pitch diameter of 12 cm has eight rolling elements. Each rolling element has a
diameter of 2 cm. The outer race remains stationary as the inner race is driven at 25 cycles per
second. An accelerometer samples the bearing vibrations at 10 kHz.

fs = 10000;
f0 = 25;
n = 8;
d = 0.02;
p = 0.12;

1 Functions

1-558

The vibration signal from the healthy bearing includes several orders of the driving frequency.

t = 0:1/fs:10-1/fs;
yHealthy = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t)/5;

A resonance is excited in the bearing vibration halfway through the measurement process.

yHealthy = (1+1./(1+linspace(-10,10,length(yHealthy)).^4)).*yHealthy;

The resonance introduces a defect in the outer race of the bearing that results in progressive wear.
The defect causes a series of impacts that recur at the ball pass frequency outer race (BPFO) of the
bearing:

BPFO = 1
2nf0 1 − d

pcosθ ,

where f0 is the driving rate, n is the number of rolling elements, d is the diameter of the rolling
elements, p is the pitch diameter of the bearing, and θ is the bearing contact angle. Assume a contact
angle of 15° and compute the BPFO.

ca = 15;
bpfo = n*f0/2*(1-d/p*cosd(ca));

Use the pulstran function to model the impacts as a periodic train of 5-millisecond sinusoids. Each
3 kHz sinusoid is windowed by a flat top window. Use a power law to introduce progressive wear in
the bearing vibration signal.

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;

 emd

1-559

wImpact = flattopwin(length(tImpact))'/10;
xImpact = sin(2*pi*fImpact*tImpact).*wImpact;

tx = 0:1/bpfo:t(end);
tx = [tx; 1.3.^tx-2];

nWear = 49000;
nSamples = 100000;
yImpact = pulstran(t,tx',xImpact,fs)/5;
yImpact = [zeros(1,nWear) yImpact(1,(nWear+1):nSamples)];

Generate the BPFO vibration signal by adding the impacts to the healthy signal. Plot the signal and
select a 0.3-second interval starting at 5.0 seconds.

yBPFO = yImpact + yHealthy;

xLimLeft = 5.0;
xLimRight = 5.3;
yMin = -0.6;
yMax = 0.6;

plot(t,yBPFO)

hold on
[limLeft,limRight] = meshgrid([xLimLeft xLimRight],[yMin yMax]);
plot(limLeft,limRight,'--')
hold off

1 Functions

1-560

Zoom in on the selected interval to visualize the effect of the impacts.

xlim([xLimLeft xLimRight])

Add white Gaussian noise to the signals. Specify a noise variance of 1/1502.

rn = 150;
yGood = yHealthy + randn(size(yHealthy))/rn;
yBad = yBPFO + randn(size(yHealthy))/rn;

plot(t,yGood,t,yBad)
xlim([xLimLeft xLimRight])
legend('Healthy','Damaged')

 emd

1-561

Use emd to perform an empirical mode decomposition of the healthy bearing signal. Compute the first
five intrinsic mode functions (IMFs). Use the 'Display' name-value pair to show a table with the
number of sifting iterations, the relative tolerance, and the sifting stop criterion for each IMF.

imfGood = emd(yGood,'MaxNumIMF',5,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 3 | 0.017132 | SiftMaxRelativeTolerance
 2 | 3 | 0.12694 | SiftMaxRelativeTolerance
 3 | 6 | 0.14582 | SiftMaxRelativeTolerance
 4 | 1 | 0.011082 | SiftMaxRelativeTolerance
 5 | 2 | 0.03463 | SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use emd without output arguments to visualize the first three modes and the residual.

emd(yGood,'MaxNumIMF',5)

1 Functions

1-562

Compute and visualize the IMFs of the defective bearing signal. The first empirical mode reveals the
high-frequency impacts. This high-frequency mode increases in energy as the wear progresses. The
third mode shows the resonance in the vibration signal.

imfBad = emd(yBad,'MaxNumIMF',5,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 2 | 0.041274 | SiftMaxRelativeTolerance
 2 | 3 | 0.16695 | SiftMaxRelativeTolerance
 3 | 3 | 0.18428 | SiftMaxRelativeTolerance
 4 | 1 | 0.037177 | SiftMaxRelativeTolerance
 5 | 2 | 0.095861 | SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

emd(yBad,'MaxNumIMF',5)

 emd

1-563

The next step in the analysis is to compute the Hilbert spectrum of the extracted IMFs. For more
details, see the “Compute Hilbert Spectrum of Vibration Signal” on page 1-1002 example.

Visualize Residual and Intrinsic Mode Functions of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
plot(t,X)
xlabel('Time(s)')

1 Functions

1-564

The mixed signal contains sinusoidal waves with different amplitude and frequency values.

Perform empirical mode decomposition to plot the intrinsic mode functions and residual of the signal.
Since the signal is not smooth, specify 'pchip' as the interpolation method.

emd(X,'Interpolation','pchip','Display',1)

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 2 | 0.026352 | SiftMaxRelativeTolerance
 2 | 2 | 0.0039573 | SiftMaxRelativeTolerance
 3 | 1 | 0.024838 | SiftMaxRelativeTolerance
 4 | 2 | 0.05929 | SiftMaxRelativeTolerance
 5 | 2 | 0.11317 | SiftMaxRelativeTolerance
 6 | 2 | 0.12599 | SiftMaxRelativeTolerance
 7 | 2 | 0.13802 | SiftMaxRelativeTolerance
 8 | 3 | 0.15937 | SiftMaxRelativeTolerance
 9 | 2 | 0.15923 | SiftMaxRelativeTolerance
Decomposition stopped because the number of extrema in the residual signal is less than the 'MaxNumExtrema' value.

 emd

1-565

emd generates an interactive plot with the original signal, the first 3 IMFs, and the residual. The table
generated in the command window indicates the number of sift iterations, the relative tolerance, and
the sift stop criterion for each generated IMF. You can hide the table by removing the 'Display'
name-value pair or specifying it as 0.

Right-click on the white space in the plot to open the IMF selector window. Use IMF selector to
selectively view the generated IMFs, the original signal, and the residual.

1 Functions

1-566

Select the IMFs to be displayed from the list. Choose whether to display the original signal and
residual on the plot.

The selected IMFs are now displayed on the plot.

 emd

1-567

Use the plot to visualize individual components decomposed from the original signal along with the
residual. Note that the residual is computed for the total number of IMFs, and does not change based
on the IMFs selected in the IMF selector window.

Input Arguments
x — Time-domain signal
vector | timetable

Time-domain signal, specified as a real-valued vector, or a single-variable timetable with a single
column. If x is a timetable, x must contain increasing, finite row times.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumIMF',5

SiftRelativeTolerance — Cauchy-type convergence criterion
0.2 (default) | positive scalar

Cauchy-type convergence criterion, specified as the comma-separated pair consisting of
'SiftRelativeTolerance' and a positive scalar. SiftRelativeTolerance is one of the sifting

1 Functions

1-568

stop criteria, that is, sifting stops when the current relative tolerance is less than
SiftRelativeTolerance. For more information, see “Sift Relative Tolerance” on page 1-572.

SiftMaxIterations — Maximum number of sifting iterations
100 (default) | positive scalar integer

Maximum number of sifting iterations, specified as the comma-separated pair consisting of
'SiftMaxIterations' and a positive scalar integer. SiftMaxIterations is one of the sifting stop
criteria, that is, sifting stops when the current number of iterations is larger than
SiftMaxIterations.

SiftMaxIterations can be specified using only positive whole numbers.

MaxNumIMF — Maximum number of IMFs extracted
10 (default) | positive scalar integer

Maximum number of IMFs extracted, specified as the comma-separated pair consisting of
'MaxNumIMF' and a positive scalar integer. MaxNumIMF is one of the decomposition stop criteria,
that is, decomposition stops when number of IMFs generated is equal to MaxNumIMF.

MaxNumIMF can be specified using only positive whole numbers.

MaxNumExtrema — Maximum number of extrema in the residual signal
1 (default) | positive scalar integer

Maximum number of extrema in the residual signal, specified as the comma-separated pair consisting
of 'MaxNumExtrema' and a positive scalar integer. MaxNumExtrema is one of the decomposition stop
criteria, that is, decomposition stops when number of extrema is less than MaxNumExtrema.

MaxNumExtrema can be specified using only positive whole numbers.

MaxEnergyRatio — Signal to residual energy ratio
20 (default) | scalar

Signal to residual energy ratio, specified as the comma-separated pair consisting of
'MaxEnergyRatio' and a scalar. MaxEnergyRatio is the ratio of the energy of the signal at the
beginning of sifting and the average envelope energy. MaxEnergyRatio is one of the decomposition
stop criteria, that is, decomposition stops when current energy ratio is larger than MaxEnergyRatio.
For more information, see “Energy Ratio” on page 1-573.

Interpolation — Interpolation method for envelope construction
'spline' (default) | 'pchip'

Interpolation method for envelope construction, specified as the comma-separated pair consisting of
'Interpolation' and either 'spline' or 'pchip'.

Specify Interpolation as:

• 'spline', if x is a smooth signal
• 'pchip', if x is a nonsmooth signal

'spline' interpolation method uses cubic splines, while 'pchip' uses piecewise-cubic Hermite
interpolating polynomials.

 emd

1-569

Display — Toggle information display in the command window
0 (default) | 1

Toggle information display in the command window, specified as the comma-separated pair consisting
of 'Display' and either 0 or 1. The table generated in the command window indicates the number
of sift iterations, the relative tolerance, and the sift stop criterion for each generated IMF. Specify
Display as 1 to show the table or 0 to hide the table.

Output Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode function (IMF), returned as a matrix or timetable. Each IMF is an amplitude and
frequency modulated signal with positive and slowly varying envelopes. To perform spectral analysis
of a signal, you can apply the Hilbert-Huang transform to its IMFs. See hht and “Intrinsic Mode
Functions” on page 1-572.

imf is returned as:

• A matrix whose each column is an imf, when x is a vector
• A timetable, when x is a single data column timetable

residual — Residual of the signal
column vector | single data column timetable

Residual of the signal, returned as a column vector or a single data column timetable. residual
represents the portion of the original signal x not decomposed by emd.

residual is returned as:

• A column vector, when x is a vector.
• A single data column timetable, when x is a single data column timetable.

info — Additional information for diagnostics
structure

Additional information for diagnostics, returned as a structure with the following fields:

• NumIMF — Number of IMFs extracted

NumIMF is a vector from 1 to N, where N is the number of IMFs. If no IMFs are extracted, NumIMF
is empty.

• NumExtrema — Number of extrema in each IMF

NumExtrema is a vector equal in length to the number of IMFs. The kth element of NumExtrema
is the number of extrema found in the kth IMF. If no IMFs are extracted, NumExtrema is empty.

• NumZerocrossing — Number of zero crossings in each IMF

Number of zero crossings in each IMF. NumZerocrossing is a vector equal in length to the
number of IMFs. The kth element of NumZerocrossing is the number of zero crossings in the kth
IMF. If no IMFs are extracted, NumZerocrossing is empty.

1 Functions

1-570

• NumSifting — Number of sifting iterations used to extract each IMF

NumSifting is a vector equal in length to the number of IMFs. The kth element of NumSifting
is the number of sifting iterations used in the extraction of the kth IMF. If no IMFs are extracted,
NumSifting is empty.

• MeanEnvelopeEnergy — Energy of the mean of the upper and lower envelopes obtained for each
IMF

If UE is the upper envelope and LE is the lower envelope, MeanEnvelopeEnergy is mean(((LE
+UL)/2).^2). MeanEnvelopeEnergy is a vector equal in length to the number of IMFs. The kth
element of MeanEnvelopeEnergy is the mean envelope energy for the kth IMF. If no IMFs are
extracted, MeanEnvelopeEnergy is empty.

• RelativeTolerance — Final relative tolerance of the residual for each IMF

The relative tolerance is defined as the ratio of the squared 2-norm of the difference between the
residual from the previous sifting step and the residual from the current sifting step to the
squared 2-norm of the residual from the ith sifting step. The sifting process stops when
RelativeTolerance is less than SiftRelativeTolerance. For additional information, see
“Sift Relative Tolerance” on page 1-572. RelativeTolerance is a vector equal in length to the
number of IMFs. The kth element of RelativeTolerance is the final relative tolerance obtained
for the kth IMF. If no IMFs are extracted, RelativeTolerance is empty.

More About
Empirical Mode Decomposition

The empirical mode decomposition (EMD) algorithm decomposes a signal x(t) into intrinsic mode
functions (IMFs) and a residual in an iterative process. The core component of the algorithm involves
sifting a function x(t) to obtain a new function Y(t):

• First find the local minima and maxima of x(t).
• Then use the local extrema to construct lower and upper envelopes s−(t) and s+(t), respectively, of

x(t). Form the mean of the envelopes, m(t).
• Subtract the mean from x(t) to obtain the residual: Y(t) = x(t) − m(t).

An overview of the decomposition is as follows:

1 To begin, let r0(t) = x(t), where x(t) is the initial signal, and let i = 0.
2 Before sifting, check ri(t):

a Find the total number (TN) of local extrema of ri(t).
b Find the energy ratio (ER) of ri(t) (see “Energy Ratio” on page 1-573).

3 If (ER > MaxEnergyRatio) or (TN < MaxNumExtrema) or (number of IMFs > MaxNumIMF) then
stop the decomposition.

4 Let ri,Prev(t) = ri(t).
5 Sift ri,Prev(t) to obtain ri,Cur(t).
6 Check ri,Cur(t)

a Find the relative tolerance (RT) of ri,Cur(t) (see “Sift Relative Tolerance” on page 1-572).

 emd

1-571

b Get current sift iteration number (IN).
7 If (RT < SiftRelativeTolerance) or (IN > SiftMaxIterations) then stop sifting. An IMF

has been found: IMFi(t) = ri,Cur(t). Otherwise, let ri,Prev(t) = ri,Cur(t) and go to Step 5.
8 Let ri+1(t) = ri(t) − ri,Cur(t).
9 Let i = i + 1. Return to Step 2.

For additional information, see [1] and [3].

Intrinsic Mode Functions

The EMD algorithm decomposes, via an iterative sifting process, a signal x(t) into IMFs imfi(t) and a
residual rN(t):

X t = ∑
i = 1

N
IMFi t + rN t

When first introduced by Huang et al. [1], an IMF was defined to be a function with two
characteristics:

• The number of local extrema — the total number of local minima and local maxima — and the
number of zero crossings differ by at most one.

• The mean value of the upper and lower envelopes constructed from the local extrema is zero.

However, as noted in [4], sifting until a strict IMF is obtained can result in IMFs that have no physical
significance. Specifically, sifting until the number of zero crossings and local extrema differ by at
most one can result in pure-tone like IMFs, in other words, functions very similar to what would be
obtained by projection on the Fourier basis. This situation is precisely what EMD strives to avoid,
preferring AM-FM modulated components for their physical significance.

Reference [4] proposes options to obtain physically meaningful results. The emd function relaxes the
original IMF definition by using “Sift Relative Tolerance” on page 1-572, a Cauchy-type stop
criterion. The emd function iterates to extract natural AM-FM modes. The IMFs generated may fail to
satisfy the local extrema-zero crossings criteria. See “Zero Crossings and Extrema in Intrinsic Mode
Function of Sinusoid” on page 1-555.

Sift Relative Tolerance

Sift Relative Tolerance is a Cauchy-type stop criterion proposed in [4]. Sifting stops when current
relative tolerance is less than SiftRelativeTolerance. The current relative tolerance is defined as

Relative Tolerance ≜
rprev t − rcur t 2

2

rprev t 2
2 .

Because the Cauchy criterion does not directly count the number of zero crossings and local extrema,
it is possible that the IMFs returned by the decomposition do not satisfy the strict definition of an
intrinsic mode function. In those cases, you can try reducing the value of the
SiftRelativeTolerance from its default value. See [4] for a detailed discussion of stopping
criteria. The reference also discusses the advantages and disadvantages of insisting on strictly
defined IMFs in empirical mode decomposition.

1 Functions

1-572

Energy Ratio

Energy ratio is the ratio of the energy of the signal at the beginning of sifting and the average
envelope energy [2]. Decomposition stops when current energy ratio is larger than
MaxEnergyRatio. For the ith IMF, the energy ratio is defined as

Energy Ratio ≜ 10log10
X t 2
ri t 2

.

References
[1] Huang, Norden E., Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-

Chyuan Yen, Chi Chao Tung, and Henry H. Liu. “The Empirical Mode Decomposition and the
Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.” Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, no.
1971 (March 8, 1998): 903–95. https://doi.org/10.1098/rspa.1998.0193.

[2] Rato, R.T., M.D. Ortigueira, and A.G. Batista. “On the HHT, Its Problems, and Some Solutions.”
Mechanical Systems and Signal Processing 22, no. 6 (August 2008): 1374–94. https://doi.org/
10.1016/j.ymssp.2007.11.028.

[3] Rilling, Gabriel, Patrick Flandrin, and Paulo Gonçalves. "On Empirical Mode Decomposition and
Its Algorithms." IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing 2003.
NSIP-03. Grado, Italy. 8–11.

[4] Wang, Gang, Xian-Yao Chen, Fang-Li Qiao, Zhaohua Wu, and Norden E. Huang. “On Intrinsic Mode
Function.” Advances in Adaptive Data Analysis 02, no. 03 (July 2010): 277–93. https://doi.org/
10.1142/S1793536910000549.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetables are not supported for code generation.
• If supplied, the interpolation method specified using the 'Interpolation' name-value pair must

be a compile-time constant.

See Also
Functions
hht | vmd

Apps
Signal Multiresolution Analyzer

Topics
“Time-Frequency Gallery”

 emd

1-573

Introduced in R2018a

1 Functions

1-574

enbw
Equivalent noise bandwidth

Syntax
bw = enbw(window)
bw = enbw(window,fs)

Description
bw = enbw(window) returns the two-sided equivalent noise bandwidth, bw, for a uniformly sampled
window, window. The equivalent noise bandwidth is normalized by the noise power per frequency
bin.

bw = enbw(window,fs) returns the two-sided equivalent noise bandwidth, bw, in Hz.

Examples

Equivalent Noise Bandwidth of Hamming Window

Determine the equivalent noise bandwidth of a Hamming window 1000 samples in length.

bw = enbw(hamming(1000))

bw = 1.3638

Equivalent Noise Bandwidth of Flat Top Window

Determine the equivalent noise bandwidth in Hz of a flat top window 10000 samples in length. The
sample rate is 44.1 kHz.

bw = enbw(flattopwin(10000),44.1e3)

bw = 16.6285

Equivalent Rectangular Noise Bandwidth

Obtain the equivalent rectangular noise bandwidth of a Von Hann window and overlay the equivalent
rectangular bandwidth on the window's magnitude spectrum. The window is 1000 samples in length
and the sampling frequency is 10 kHz.

Set the sampling frequency, create the window, and obtain the discrete Fourier transform of the
window with 0 frequency in the center of the spectrum.

 enbw

1-575

Fs = 10000;
win = hann(1000);
windft = fftshift(fft(win));

Obtain the equivalent (rectangular) noise bandwidth of the Von Hann window.

bw = enbw(hann(1000),Fs)

bw = 15.0150

Plot the squared-magnitude DFT of the window and use the equivalent noise bandwidth to overlay the
equivalent rectangle. The two-sided bandwidth is split evenly across the spectrum.

freq = -(Fs/2):Fs/length(win):Fs/2-(Fs/length(win));
maxgain = 20*log10(abs(windft(length(win)/2+1)));

plot(freq,20*log10(abs(windft)))
hold on
plot(bw/2*[-1 -1 1 1],[-40 maxgain maxgain -40],'--')
hold off

xlabel('Hz')
ylabel('dB')
axis([-60 60 -40 60])

1 Functions

1-576

Input Arguments
window — Window vector
real-valued row or column vector

Uniformly sampled window vector, specified as a row or column vector with real-valued elements.
Example: hamming(1000)
Data Types: double | single

fs — Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar.

Output Arguments
bw — Equivalent noise bandwidth
positive scalar

Equivalent noise bandwidth, specified as a positive scalar.
Data Types: double | single

More About
Equivalent Noise Bandwidth

The equivalent noise bandwidth of a window is the width of a rectangle whose area contains the same
total power as the window. The height of the rectangle is the peak squared magnitude of the
window’s Fourier transform.

Assuming a sampling interval of 1, the total energy for the window, w(n), can be expressed in the
frequency or time-domain as

∫−1/2
1/2

W(f) 2df = ∑
n

w(n) 2 .

The peak magnitude of the window’s spectrum occurs at f = 0. This is given by

W(0) 2 = ∑
n

w(n)
2

.

To find the width of the equivalent rectangular bandwidth, divide the area by the height.

∫−1/2
1/2

W(f) 2df

W(0) 2 =
∑
n

w(n) 2

∑
n

w(n)
2 .

See “Equivalent Rectangular Noise Bandwidth” on page 1-575 for an example that plots the
equivalent rectangular bandwidth over the magnitude spectrum of a von Hann window.

 enbw

1-577

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bandpower | sfdr

Introduced in R2013a

1 Functions

1-578

envelope
Signal envelope

Syntax
[yupper,ylower] = envelope(x)

[yupper,ylower] = envelope(x,fl,'analytic')
[yupper,ylower] = envelope(x,wl,'rms')
[yupper,ylower] = envelope(x,np,'peak')

envelope(___)

Description
[yupper,ylower] = envelope(x) returns the upper and lower envelopes of the input sequence,
x, as the magnitude of its analytic signal. The analytic signal of x is found using the discrete Fourier
transform as implemented in hilbert. The function initially removes the mean of x and adds it back
after computing the envelopes. If x is a matrix, then envelope operates independently over each
column of x.

[yupper,ylower] = envelope(x,fl,'analytic') returns the envelopes of x determined using
the magnitude of its analytic signal. The analytic signal is computed by filtering x with a Hilbert FIR
filter of length fl. This syntax is used if you specify only two arguments.

[yupper,ylower] = envelope(x,wl,'rms') returns the upper and lower root-mean-square
envelopes of x. The envelopes are determined using a sliding window of length wl samples.

[yupper,ylower] = envelope(x,np,'peak') returns the upper and lower peak envelopes of x.
The envelopes are determined using spline interpolation over local maxima separated by at least np
samples.

envelope(___) with no output arguments plots the signal and its upper and lower envelopes. This
syntax accepts any of the input arguments from previous syntaxes.

Examples

Analytic Envelopes of Chirp

Generate a quadratic chirp modulated by a Gaussian. Specify a sample rate of 2 kHz and a signal
duration of 2 seconds.

t = 0:1/2000:2-1/2000;
q = chirp(t-2,4,1/2,6,'quadratic',100,'convex').*exp(-4*(t-1).^2);
plot(t,q)

 envelope

1-579

Compute the upper and lower envelopes of the chirp using the analytic signal.

[up,lo] = envelope(q);
hold on
plot(t,up,t,lo,'linewidth',1.5)
legend('q','up','lo')
hold off

1 Functions

1-580

The signal is asymmetric due to the nonzero mean.

Use envelope without output arguments to plot the signal and envelopes as a function of sample
number.

envelope(q)

 envelope

1-581

Analytic Envelopes of Multichannel Signal Using Filter

Create a two-channel signal sampled at 1 kHz for 3 seconds:

• One channel is an exponentially decaying sinusoid. Specify a frequency of 7 Hz and a time
constant of 2 seconds.

• The other channel is a time-displaced Gaussian-modulated chirp with a DC value of 2. Specify an
initial chirp frequency of 30 Hz that decays to 5 Hz after 2 seconds.

Plot the signal.

t = 0:1/1000:3;
q1 = sin(2*pi*7*t).*exp(-t/2);
q2 = chirp(t,30,2,5).*exp(-(2*t-3).^2)+2;
q = [q1;q2]';

plot(t,q)

1 Functions

1-582

Compute the upper and lower envelopes of the signal. Use a Hilbert filter with a length of 100. Plot
the channels and the envelopes. Use solid lines for the upper envelopes and dashed lines for the
lower envelopes.

[up,lo] = envelope(q,100,'analytic');
hold on
plot(t,up,'-',t,lo,'--')
hold off

 envelope

1-583

Call envelope without output arguments to produce a plot of the signal and its envelopes as a
function of sample number. Increase the filter length to 300 to obtain a smoother shape. The
'analytic' flag is the default when you specify two input arguments.

envelope(q,300)

1 Functions

1-584

Moving RMS Envelopes of Audio Recording

Compute and plot the moving RMS envelopes of a recording of a train whistle. Use a window with a
length of 150 samples.

load('train')

envelope(y,150,'rms')

 envelope

1-585

Peak Envelopes of Speech Signal

Plot the upper and lower peak envelopes of a speech signal smoothed over 30-sample intervals.

load('mtlb')

envelope(mtlb,30,'peak')

1 Functions

1-586

Envelope of Asymmetric Sequence

Create and plot a signal that resembles the initial detection of a light pulse propagating through a
dispersive medium.

t = 0.5:-1/100:-2.49;
z = airy(t*10).*exp(-t.^2);

plot(z)

 envelope

1-587

Determine the envelopes of the sequence using the magnitude of its analytic signal. Plot the
envelopes.

envelope(z)

1 Functions

1-588

Compute the analytic envelope of the signal using a 50-tap Hilbert filter.

envelope(z,50,'analytic')

 envelope

1-589

Compute the RMS envelope of the signal using a 40-sample moving window. Plot the result.

envelope(z,40,'rms')

1 Functions

1-590

Determine the peak envelopes. Use spline interpolation with not-a-knot conditions over local maxima
separated by at least 10 samples.

envelope(z,10,'peak')

 envelope

1-591

Input Arguments
x — Input sequence
vector | matrix

Input sequence, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is
a matrix, then envelope computes the envelope estimates independently for each column. All
elements of x must be finite.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

fl — Hilbert filter length
positive integer scalar

Hilbert filter length, specified as a positive integer scalar. The filter is created by windowing an ideal
brick-wall filter with a Kaiser window of length fl and shape parameter β = 8.
Data Types: single | double

wl — Window length
positive integer scalar

Window length, specified as a positive integer scalar.

1 Functions

1-592

Data Types: single | double

np — Peak separation
positive integer scalar

Peak separation, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
yupper,ylower — Upper and lower signal envelopes
vectors | matrices

Upper and lower signal envelopes, returned as vectors or matrices.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Plotting is supported for simulation only. It is not supported in standalone code.

See Also
findpeaks | hilbert | movmax | movmean | movmin | rms

Topics
“Envelope Extraction”

Introduced in R2015b

 envelope

1-593

envspectrum
Envelope spectrum for machinery diagnosis

Syntax
es = envspectrum(x,fs)
es = envspectrum(xt)

es = envspectrum(___ ,Name,Value)

[es,f,env,t] = envspectrum(___)

envspectrum(___)

Description
es = envspectrum(x,fs) returns the envelope spectrum of a signal x sampled at a rate fs. If x is
a matrix, then the function computes the envelope spectrum independently for each column and
returns the result in the corresponding column of es.

es = envspectrum(xt) returns the envelope spectrum of a signal stored in the MATLAB timetable
xt.

es = envspectrum(___ ,Name,Value) specifies additional options for any of the previous
syntaxes using name-value pair arguments. Options include the algorithm used to compute the
envelope signal and the frequency band over which to estimate the spectrum.

[es,f,env,t] = envspectrum(___) returns f, a vector of frequencies at which es is computed;
env, the envelope signal; and t, the times at which env is computed.

envspectrum(___) with no output arguments plots the envelope signal and the envelope spectrum
in the current figure.

Examples

Envelope Spectrum of Vibration Signals

Simulate two vibration signals, one from a healthy bearing and one from a damaged bearing.
Compute and compare their envelope spectra.

A bearing with a pitch diameter of 12 cm has eight rolling elements. Each rolling element has a
diameter of 2 cm. The outer race remains stationary as the inner race is driven at 25 cycles per
second. An accelerometer samples the bearing vibrations at 10 kHz.

fs = 10000;
f0 = 25;
n = 8;
d = 0.02;
p = 0.12;

1 Functions

1-594

The vibration signal from the healthy bearing includes several orders of the driving frequency. Plot
0.1 second of data.

t = 0:1/fs:1-1/fs;
z = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t)/5;

plot(t,z)
xlim([0.4 0.5])

 envspectrum

1-595

A defect in the outer race of the bearing causes a series of 5 millisecond impacts on the bearing.
Eventually, those impacts result in bearing wear. The impacts occur at the ball pass frequency outer
race (BPFO) of the bearing,

BPFO = 1
2nf0 1 − d

pcosθ ,

where f0 is the driving rate, n is the number of rolling elements, d is the diameter of the rolling
elements, p is the pitch diameter of the bearing, and θ is the bearing contact angle. Assume a contact
angle of zero and compute the BPFO.

ca = 0;
bpfo = n*f0/2*(1-d/p*cos(ca))

bpfo = 83.3333

Model each impact as a 3 kHz sinusoid windowed by a flat top window. Make the impact periodic by
convolving it with a comb function. Plot 0.1 second of data.

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;
xImpact = sin(2*pi*fImpact*tImpact).*flattopwin(length(tImpact))'/10;

xComb = zeros(size(t));
xComb(1:fs/bpfo:end) = 1;

x = conv(xComb,xImpact,'same')/3;

1 Functions

1-596

plot(t,x+z)
xlim([0.4 0.5])

Add white Gaussian noise to the signals. Specify a noise variance of 1/30². Plot 0.1 second of data.

yGood = z + randn(size(z))/30;
yBad = x+z + randn(size(z))/30;
plot(t,yGood,t,yBad)
xlim([0.4 0.5])
legend('Healthy','Damaged')

 envspectrum

1-597

Compute and plot the envelope signals and spectra.

envspectrum([yGood' yBad'],fs)
xlim([0 10*bpfo]/1000)

1 Functions

1-598

Compare the peak locations to the frequencies of harmonics of the BPFO. The BPFO harmonics in the
envelope spectrum are a sign of bearing wear.

harmImpact = (1:10)*bpfo;
[X,Y] = meshgrid(harmImpact,ylim);

hold on
plot(X/1000,Y,':k')
legend('Healthy','Damaged','BPFO harmonics')
hold off

 envspectrum

1-599

Compute the Welch spectra of the signals. Specify a frequency resolution of 5 Hz.

figure
pspectrum([yGood' yBad'],fs,'FrequencyResolution',5)
legend('Healthy','Damaged')

1 Functions

1-600

At the low end of the spectrum, the driving frequency and its orders obscure other features. The
spectrum of the healthy bearing and the spectrum of the damaged bearing are indistinguishable.

xlim([0 10*bpfo]/1000)

 envspectrum

1-601

The spectrum of the faulty bearing shows BPFO harmonics modulated by the impact frequency.

xlim((bpfo*[-10 10]+fImpact)/1000)

1 Functions

1-602

Envelope Spectrum of Timetable

Generate a two-channel signal that resembles the vibration signals from a bearing that completes a
rotation every 10 milliseconds. The signal is sampled at 10 kHz for 0.2 seconds, which corresponds to
20 bearing rotations.

fs = 10000;
tmax = 20;
mlt = 0.01;
t = 0:1/fs:mlt-1/fs;

During each 10-millisecond interval:

• The first channel is a damped sinusoid with damping constant 700 and sinusoid frequency 600 Hz.
• The second channel is another damped sinusoid with damping constant 800 and sinusoid

frequency 500 Hz. The second channel lags the first channel by 5 milliseconds.

Plot the signal.

y1 = sin(2*pi*600*t).*exp(-700*t);
y2 = sin(2*pi*500*t).*exp(-800*t);
y2 = [y2(51:100) y2(1:50)];

T = (0:1/fs:mlt*tmax-1/fs)';

 envspectrum

1-603

Y = repmat([y1;y2],1,tmax)';

plot(T,Y)

Create a duration array using the time interval T. Construct a timetable with the duration array and
the two-channel signal.

dt = seconds(T);
ttb = timetable(dt,Y);

Use envspectrum with no output arguments to display the envelope signal and envelope spectrum of
the two channels. Compute the spectrum on the whole Nyquist interval, excluding 100 Hz intervals at
the ends.

envspectrum(ttb,'Band',[100 4900])

1 Functions

1-604

The envelope spectra of the signals have peaks at integer multiples of the repetition rate of 1/0.01 =
0.1 kHz. This is just as expected. envspectrum removes the high-frequency sinusoidal components
and focuses on the lower-frequency repetition behavior. This is why the envelope spectrum is a useful
tool for the analysis of rotational machinery.

Compute the envelope signal and the times at which it is computed. Check the types of the output
variables.

[~,~,ttbenv,ttbt] = envspectrum(ttb,'Band',[100 4900]);
whos ttb*

 Name Size Bytes Class Attributes

 ttb 2000x1 48977 timetable
 ttbenv 2000x1 48985 timetable
 ttbt 2000x1 16002 duration

The time vector is of duration type, like the time values of the input timetable. The output timetable
has the same size as the input timetable.

Store each channel of the input timetable as a separate variable. Compute the envelope signal and
the time vector. Check the output types.

btb = timetable(dt,Y(:,1),Y(:,2));

[~,~,btbenv,btbt] = envspectrum(btb,'Band',[100 4900]);
whos btb*

 envspectrum

1-605

 Name Size Bytes Class Attributes

 btb 2000x2 49199 timetable
 btbenv 2000x2 49219 timetable
 btbt 2000x1 16002 duration

The output timetable has the same size as the input timetable.

Envelope Spectrum of Modulated Pulses

Generate a signal sampled at 1 kHz for 5 seconds. The signal consists of 0.01-second rectangular
pulses that repeat every T = 0.25 second. Amplitude modulate the signal onto a sinusoid of carrier
frequency 150 Hz.

fs = 1e3;
tmax = 5;

t = 0:1/fs:tmax;
y = pulstran(t,0:0.25:tmax,'rectpuls',0.01);

fc = 150;
z = modulate(y,fc,fs);

Plot the original and modulated signals. Show only the first few cycles.

plot(t,y,t,z,'-')
grid on
axis([0 1 -1.1 1.1])

1 Functions

1-606

Compute the envelope and envelope spectrum of the signal. Determine the signal envelope using
complex demodulation. Compute the envelope spectrum on a 20 Hz interval centered at the carrier
frequency.

[q,f,e,te] = envspectrum(z,fs,'Method','demod','Band',[fc-10 fc+10]);

Plot the envelope signal and the envelope spectrum. Zoom in on the interval from 0 to 50 Hz.

subplot(2,1,1)
plot(te,e)
xlabel('Time')
title('Envelope')

subplot(2,1,2)
plot(f,q)
xlim([0 50])
xlabel('Frequency')
title('Envelope Spectrum')

 envspectrum

1-607

The envelope signal has the same period in time, T = 0.25 second, as the original signal. The
envelope spectrum has pulses at 1 / T = 4 Hz.

Repeat the computation, but now use the hilbert function to compute the envelope. Bandpass-filter
the signal using a 10th-order finite impulse response (FIR) filter. Plot the envelope signal and
envelope spectrum using the built-in functionality of envspectrum.

envspectrum(z,fs,'Method','hilbert','FilterOrder',10)

1 Functions

1-608

Embed the signal in white Gaussian noise of variance 1/3. Plot the result.

zn = z + randn(size(z))/3;

plot(t,zn,'-')
grid on
axis([0 1 -1.1 1.1])

 envspectrum

1-609

Compute and display the envelope signal and envelope spectrum. Compute the envelope spectrum
using complex demodulation on a 10 Hz interval centered at the carrier frequency. Zoom in on the
interval from 0 to 50 Hz.

envspectrum(zn,fs,'Band',[fc-5 fc+5])
xlim([0 50])

1 Functions

1-610

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or a matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then envspectrum computes the envelope spectrum independently for each column and
returns the result in the corresponding column of es.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.
Data Types: single | double

xt — Input timetable
timetable

 envspectrum

1-611

Input timetable. xt must contain increasing finite row times. If xt represents a multichannel signal,
then it must have either a single variable containing a matrix or multiple variables consisting of
vectors.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,2)) specifies a two-channel, random variable
sampled at 1 Hz for 4 seconds.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Method','hilbert','FilterOrder',30,'Band',[0 fs/4] computes the envelope
spectrum between 0 and one-half the Nyquist frequency using a 30th-order bandpass filter and
computing the envelope of the analytic signal.

Method — Algorithm for computing the envelope signal
'demod' (default) | 'hilbert'

Algorithm for computing the envelope signal, specified as the comma-separated pair consisting of
'Method' and either 'hilbert' or 'demod'. See “Algorithms” on page 1-613 for more
information.

Band — Frequency band to compute envelope spectrum
[fs/4 fs*3/8] (default) | two-element vector

Frequency band to compute envelope spectrum, specified as the comma-separated pair consisting of
'Band' and a two-element vector of strictly increasing values between 0 and the Nyquist frequency.
Data Types: single | double
Complex Number Support: Yes

FilterOrder — FIR filter order
50 (default) | positive integer scalar

FIR filter order, specified as the comma-separated pair consisting of 'FilterOrder' and a positive
integer scalar.

• If 'Method' is 'hilbert', then this argument specifies the order of an FIR bandpass filter.
• If 'Method' is 'demod', then this argument specifies the order of an FIR lowpass filter.

Data Types: single | double

Output Arguments
es — Envelope spectrum
vector | matrix

Envelope spectrum, returned as a vector or matrix.

1 Functions

1-612

f — Frequencies
vector

Frequencies at which the envelope spectrum is computed, returned as a vector.

env — Envelope signal
vector | matrix | timetable

Envelope signal, returned as a vector, matrix, or timetable.

If the input to envspectrum is a timetable, then env is also a timetable. The time values of env have
the same format as the time values of the input timetable.

• If the input is a timetable with a single variable containing a matrix, then env has a single variable
containing a matrix.

• If the input is a timetable with multiple variables consisting of vectors, then env has multiple
variables consisting of vectors.

t — Time values
vector

Time values at which the envelope signal is computed, returned as a vector.

If the input to envspectrum is a timetable, then t has the same format as the time values of the
input timetable.

Algorithms
envspectrum initially removes the DC bias from the input signal, x, and then computes the envelope
signal.

• If 'Method' is set to 'hilbert', the function:

1 Bandpass-filters the signal. The FIR filter has an order specified by 'FilterOrder' and
cutoff frequencies at ba(1) and ba(2), where ba is a frequency band specified using
'Band'.

2 Computes the analytic signal using the hilbert function.
3 Computes the envelope signal as the absolute value of the analytic signal.

• If 'Method' is set to 'demod', the function:

1 Performs complex demodulation of the signal. The signal is multiplied by exp(j2πf0t), where f0
= (ba(1) + ba(2))/2.

2 Lowpass-filters the demodulated signal to compute the analytic signal. The FIR filter has an
order specified by 'FilterOrder' and a cutoff frequency of (ba(2) – ba(1))/2.

3 Computes the envelope signal as twice the absolute value of the analytic signal.

After computing the envelope signal, the function removes the DC bias from the envelope and
computes the envelope spectrum using the FFT.

 envspectrum

1-613

References
[1] Randall, Robert Bond. Vibration-Based Condition Monitoring. Chichester, UK: John Wiley & Sons,

2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
envelope | hilbert | orderspectrum

Topics
“Vibration Analysis of Rotating Machinery”
“Rolling Element Bearing Fault Diagnosis” (Predictive Maintenance Toolbox)

Introduced in R2017b

1 Functions

1-614

equiripple
Equiripple single-rate FIR filter from specification object

Syntax
hd = design(d,'equiripple')
hd = design(d,'equiripple',Name,Value)

Description
hd = design(d,'equiripple') designs an equiripple FIR digital filter using the specifications
supplied in the object d. Equiripple filter designs minimize the maximum ripple in the passbands and
stopbands.

hd = design(d,'equiripple',Name,Value) returns an equiripple FIR filter where you specify
design options as Name,Value pairs.

To determine the available design options, use designopts with the specification object and the
design method as input arguments as shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line help system. For example, to
get specific information about using equiripple with d, the specification object, enter the following
at the MATLAB prompt.

help(d,'equiripple')

Examples

Lowpass Equiripple Filter

Create a lowpass equiripple filter. Assume the data is sampled at 10 kHz. The passband frequency is
500 Hz and the stopband frequency of 700 Hz. The desired passband ripple is 1 dB with 60 dB of
stopband attenuation. Use FVTool to display the magnitude response of the filter.

Fs = 10000;

Hd = fdesign.lowpass('Fp,Fst,Ap,Ast',500,700,1,60,Fs);
d = design(Hd,'equiripple');

fvtool(d)

 equiripple

1-615

Design a lowpass equiripple filter with direct-form transposed structure and a density factor of 20.

df = design(Hd,'equiripple','FilterStructure','dffirt','DensityFactor',20);

fvtool(df)

1 Functions

1-616

See Also
Apps
Filter Designer

Functions
designfilt | fdesign

Introduced in R2009a

 equiripple

1-617

eqtflength
Equalize lengths of transfer function numerator and denominator

Syntax
[b,a] = eqtflength(num,den)
[b,a,n,m] = eqtflength(num,den)

Description
[b,a] = eqtflength(num,den) modifies the vector num or the vector den so that the resulting
output vectors b and a have the same length. b and a represent the same discrete-time transfer
function as num and den, but are of equal length.

[b,a,n,m] = eqtflength(num,den) returns the numerator order n and the denominator order m,
not including any trailing zeros.

Examples

Equalize Transfer Function Numerator and Denominator Lengths

Consider the following discrete-time SISO transfer function model:

H(z) = 2z−2

4 + 3z−2− z−3 .

Equalize the numerator and denominator polynomial lengths. Determine the polynomial orders.

num = [0 0 2];
den = [4 0 3 -1];

[b,a,n,m] = eqtflength(num,den)

b = 1×4

 0 0 2 0

a = 1×4

 4 0 3 -1

n = 2

m = 3

Visualize the poles and zeros of the transfer function.

zplane(b,a)

1 Functions

1-618

Convert the transfer function with equalized numerator and denominator to state-space form. b and a
must have equal lengths to find the state-space representation of the discrete-time transfer function.

[A,B,C,D] = tf2ss(b,a)

A = 3×3

 0 -0.7500 0.2500
 1.0000 0 0
 0 1.0000 0

B = 3×1

 1
 0
 0

C = 1×3

 0 0.5000 0

D = 0

 eqtflength

1-619

Input Arguments
num — Numerator coefficients
vector

Numerator polynomial coefficients of discrete-time transfer function, specified as a vector.
Data Types: double
Complex Number Support: Yes

den — Denominator coefficients
vector

Denominator polynomial coefficients of discrete-time transfer function, specified as a vector.
Data Types: double
Complex Number Support: Yes

Output Arguments
b — Numerator coefficients
row vector

Numerator polynomial coefficients of discrete-time transfer function, returned as a row vector. b has
the same length as a.

a — Denominator coefficients
row vector

Denominator polynomial coefficients of discrete-time transfer function, returned as a row vector. a
has the same length as b.

n — Numerator order
integer

Numerator order, returned as an integer. Any trailing zeros in b are excluded when computing n.

m — Denominator order
integer

Denominator order, returned as an integer. Any trailing zeros in a are excluded when computing m.

Tips
• Use eqtflength to obtain a numerator and denominator of equal length before applying transfer

function conversion functions such as tf2ss and tf2zp to discrete-time models.

Algorithms
eqtflength(num,den) appends zeros to either num or den as necessary. eqtflength removes any
trailing zeros that num and den have in common.

1 Functions

1-620

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tf2ss | tf2zp

Introduced before R2006a

 eqtflength

1-621

falltime
Fall time of negative-going bilevel waveform transitions

Syntax
f = falltime(x)
f = falltime(x,fs)
f = falltime(x,t)
[f,lt,ut] = falltime(___)
[f,lt,ut,ll,ul] = falltime(___)
[___] = falltime(___ ,Name,Value)
falltime(___)

Description
f = falltime(x) returns a vector f containing the time each transition of the bilevel waveform x
takes to cross from the 10% reference level to the 90% reference level (See “Percent Reference
Levels” on page 1-628). To determine the transitions, falltime estimates the state levels of the
input waveform using a histogram method. falltime identifies all regions that cross the lower-state
boundary of the high state and the upper-state boundary of the low state. The low-state and high-
state boundaries are expressed as the state level plus or minus a multiple of the difference between
the state levels (See “State-Level Tolerances” on page 1-628). Because falltime uses interpolation,
f may contain values that do not correspond to sampling instants of the bilevel waveform x.

f = falltime(x,fs) specifies the sample rate in hertz. The sample rate determines the sample
instants corresponding to the elements in x. The first sample instant in x corresponds to t=0.
Because falltime uses interpolation, f may contain values that do not correspond to sampling
instants of the bilevel waveform x.

f = falltime(x,t) specifies the sample instants t as a vector with the same number of elements
as x.

[f,lt,ut] = falltime(___) returns vectors lt and ut whose elements correspond to the time
instants where x crosses the lower- and upper- percent reference levels. You can use this output
syntax with any of the previous input syntaxes.

[f,lt,ut,ll,ul] = falltime(___) returns the levels ll and ul corresponding to the lower-
and upper-percent reference levels.

[___] = falltime(___ ,Name,Value) returns the fall times with additional options specified by
one or more Name,Value pair arguments.

falltime(___) plots the signal and darkens the regions of each transition where fall time is
computed. The plot marks the lower and upper crossings and the associated reference levels. The
state levels and the associated lower- and upper-state boundaries are also displayed.

Examples

1 Functions

1-622

Fall Time of Bilevel Waveform

Determine the fall time in samples for a 2.3 V clock waveform.

Load the 2.3 V clock data. Determine the fall time in samples. Use the default 10% and 90% percent
reference levels. Plot the waveform and annotate the fall time.

load('negtransitionex.mat','x')

falltime(x)

ans = 0.7200

Fall Time with 20% and 80% Reference Levels

Determine the fall time in a 2.3 V clock waveform sampled at 4 MHz. Compute the fall time using the
20% and 80% reference levels.

Load the 2.3 V clock data with sampling instants. Determine the fall time using 20% and 80%
reference levels. Plot the waveform and annotate the fall time.

load('negtransitionex.mat','x','t')

falltime(x,'PercentReferenceLevels',[20 80])

 falltime

1-623

ans = 0.5400

Falltime, Reference-Level Instants, and Reference Levels

Determine the fall time, reference-level instants, and reference levels in a 2.3 V clock waveform
sampled at 4 MHz.

Load the 2.3 V clock waveform along with the sampling instants.

load('negtransitionex.mat','x','t')

Determine the fall time, reference-level instants, and reference levels.

[f,lt,ut,ll,ul] = falltime(x,t);

Plot the waveform with the upper and lower reference levels and reference level instants. Show that
the fall time is the difference between the lower- and upper-reference level instants.

plot(t,x)

xlabel('Seconds')
ylabel('Volts')

hold on

1 Functions

1-624

plot([lt ut],[ll ul],'ro')
hold off

fprintf('Rise time is %g seconds.',lt-ut)

Rise time is 1.8e-07 seconds.

Input Arguments
x — Bilevel waveform
real vector

Bilevel waveform, specified as a real-valued vector.

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar in hertz.

t — sample instants
real vector

Sample instants, specified as a vector. The length of t must equal the length of the bilevel waveform
x.

 falltime

1-625

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PercentReferenceLevels — Reference levels as a percentage of the waveform amplitude
[10 90] (default) | two-element positive row vector

Reference levels as a percentage of the waveform amplitude, specified as the comma-separated pair
consisting of 'PercentReferenceLevels'and a two-element positive row vector. The elements of
the row vector correspond to the lower and upper percent reference levels. The high state level is
defined to be 100 percent, and the low state level is defined to be 0 percent. See “Percent Reference
Levels” on page 1-628 for more details.

StateLevels — Low and high state levels
two-element positive row vector

Low and high state levels, specified as the comma-separated pair consisting of 'StateLevels' and
a two-element positive row vector. The first and second elements of the vector correspond to the low
and high state levels.

Tolerance — Lower- and upper- state boundaries
2 (default) | real positive scalar

Lower- and upper-state boundaries, specified as the comma-separated pair consisting of
'Tolerance' and a real positive scalar as a percentage value. See “State-Level Tolerances” on page
1-628 for more information on this name-value pair.

Output Arguments
f — Duration of negative-going transition
vector

Duration of negative-going transition, returned as a vector. If you specify the sample rate fs or the
sample instants t fall times are in seconds. If you do not specify a sample rate or sample instants, fall
times are in samples.

lt — Lower reference-level crossing instants
vector

Lower reference-level crossing instants, returned as a vector. The vector lt contains the time
instants when the negative-going transition crosses the lower reference level. By default, the lower
reference level is the 10% reference level. You can change the default reference levels by specifying
the 'PercentReferenceLevels' name-value pair.

ut — Upper reference-level crossing instants
vector

Upper reference-level crossing instants, returned as a vector. The vector ut contains the time
instants when the negative-going transition crosses the upper reference level. By default, the upper
reference level is the 90% reference level. You can change the default reference levels by specifying
the 'PercentReferenceLevels' name-value pair.

1 Functions

1-626

ll — Lower reference level
real numeric scalar

Lower reference level in waveform amplitude units, returned as a real numeric scalar. ll is a vector
containing the waveform values corresponding to the lower reference level in each negative-going
transition. By default, the lower reference level is the 10% reference level. You can change the
default reference levels by specifying the 'PercentReferenceLevels' name-value pair.

ul — Upper reference level
real numeric scalar

Upper reference level in waveform amplitude units, returned as a real numeric scalar. ul is a vector
containing the waveform values corresponding to the upper reference level in each negative-going
transition. By default, the upper reference level is the 90% reference level. You can change the
default reference levels by specifying the 'PercentReferenceLevels' name-value pair.

More About
Negative-Going Transition

A negative-going transition in a bilevel waveform is a transition from the high-state level to the low-
state level. If the waveform is differentiable in the neighborhood of the transition, an equivalent
definition is a transition with a negative first derivative. This figure shows a negative-going transition.

 falltime

1-627

In the preceding figure, the amplitude values of the waveform are not displayed because a negative-
going transition does not depend on the actual waveform values. A negative-going transition is
defined by the direction of the transition.

Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent reference level. The waveform
value corresponding to the upper percent reference level is

S1 + U
100(S2− S1) .

If L is the lower percent reference level, the waveform value corresponding to the lower percent
reference level is

S1 + L
100(S2− S1) .

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

1 Functions

1-628

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003, pp. 15–
17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
risetime | slewrate | statelevels

Introduced in R2012a

 falltime

1-629

fftfilt
FFT-based FIR filtering using overlap-add method

Syntax
y = fftfilt(b,x)
y = fftfilt(b,x,n)
y = fftfilt(d,x)
y = fftfilt(d,x,n)
y = fftfilt(gpuArrayb,gpuArrayX,n)

Description
y = fftfilt(b,x) filters the data in vector x with the filter described by coefficient vector b.

y = fftfilt(b,x,n) uses n to determine the length of the FFT.

y = fftfilt(d,x) filters the data in vector x with a digitalFilter object d.

y = fftfilt(d,x,n) uses n to determine the length of the FFT.

y = fftfilt(gpuArrayb,gpuArrayX,n) filters the data in the gpuArray object gpuArrayX with
the FIR filter coefficients in the gpuArray stored in gpuArrayb.

Examples

fftfilt and filter for Short and Long Filters

Verify that filter is more efficient for smaller operands and fftfilt is more efficient for large
operands. Filter 106 random numbers with two random filters: a short one, with 20 taps, and a long
one, with 2000. Use tic and toc to measure the execution times. Repeat the experiment 100 times
to improve the statistics.

rng default

N = 100;

shrt = 20;
long = 2000;

tfs = 0;
tls = 0;
tfl = 0;
tll = 0;

for kj = 1:N

 x = rand(1,1e6);

 bshrt = rand(1,shrt);

1 Functions

1-630

 tic
 sfs = fftfilt(bshrt,x);
 tfs = tfs+toc/N;

 tic
 sls = filter(bshrt,1,x);
 tls = tls+toc/N;

 blong = rand(1,long);

 tic
 sfl = fftfilt(blong,x);
 tfl = tfl+toc/N;

 tic
 sll = filter(blong,1,x);
 tll = tll+toc/N;

end

Compare and display the average times.

fprintf('%4d-tap filter averages: fftfilt: %f s; filter: %f s\n',shrt,tfs,tls)

 20-tap filter averages: fftfilt: 0.286945 s; filter: 0.007112 s

fprintf('%4d-tap filter averages: fftfilt: %f s; filter: %f s\n',long,tfl,tll)

2000-tap filter averages: fftfilt: 0.068324 s; filter: 0.095550 s

Overlap-Add Filtering on the GPU

This example requires Parallel Computing Toolbox™ software. Refer to “GPU Support by Release”
(Parallel Computing Toolbox) for a list of supported GPUs.

Create a signal consisting of a sum of sine waves in white Gaussian additive noise. The sine wave
frequencies are 2.5, 5, 10, and 15 kHz. The sampling frequency is 50 kHz.

Fs = 50e3;
t = 0:1/Fs:10-(1/Fs);
x = cos(2*pi*2500*t) + 0.5*sin(2*pi*5000*t) + 0.25*cos(2*pi*10000*t)+ ...
 0.125*sin(2*pi*15000*t) + randn(size(t));

Design a lowpass FIR equiripple filter using designfilt.

d = designfilt('lowpassfir','SampleRate',Fs, ...
 'PassbandFrequency',5500,'StopbandFrequency',6000, ...
 'PassbandRipple',0.5,'StopbandAttenuation',50);
B = d.Coefficients;

Filter the data on the GPU using the overlap-add method. Put the data on the GPU using gpuArray.
Return the output to the MATLAB® workspace using gather and plot the power spectral density
estimate of the filtered data.

 fftfilt

1-631

y = fftfilt(gpuArray(B),gpuArray(x));
periodogram(gather(y),rectwin(length(y)),length(y),50e3)

Input Arguments
b — Filter coefficients
vector | matrix

Filter coefficients, specified as a vector. If b is a matrix, fftfilt applies the filter in each column of
b to the signal vector x.

x — Input data
vector | matrix

Input data, specified as a vector. If x is a matrix, fftfilt filters its columns. If b and x are both
matrices with the same number of columns, the ith column of b is used to filter the ith column of x.
fftfilt works for both real and complex inputs.

n — FFT length
positive integer

FFT length, specified as a positive integer. By default, fftfilt chooses an FFT length and a data
block length that guarantee efficient execution time.

1 Functions

1-632

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate d based on
frequency-response specifications.

gpuArrayb, gpuArrayX — GPU arrays
gpuArray

GPU arrays, specified as a gpuArray object. gpuArrayb contains the filter coefficients, and
gpuArrayX is the input data. See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox)
for details on gpuArray objects. Using fftfilt with gpuArray objects requires Parallel Computing
Toolbox software. Refer to “GPU Support by Release” (Parallel Computing Toolbox) for a list of
supported GPUs. The filtered data, y, is a gpuArray object. See “Overlap-Add Filtering on the GPU”
on page 1-631 for an example of overlap-add filtering on the GPU.

Output Arguments
y — Output data
vector | matrix | gpuArray

Output data, returned as a vector, matrix or gpuArray object.

More About
Comparison to filter function

When the input signal is relatively large, fftfilt is faster than filter.

filter performs N multiplications for each sample in x, where N is the filter length. fftfilt
performs 2 FFT operations — the FFT of the signal block of length L plus the inverse FT of the
product of the FFTs — at the cost of 1

2Llog2L where L is the block length. It then performs L point-
wise multiplications for a total cost of L + Llog2L = L(1 + log2L) multiplications. The cost ratio is
therefore L(1 + log2L)/(NL) = (1 + log2L)/N which is approximately log2L / N.

Therefore, fftfilt is faster when log2L is less than N.

Algorithms
fftfilt filters data using the efficient FFT-based method of overlap-add [1], a frequency domain
filtering technique that works only for FIR filters by combining successive frequency domain filtered
blocks of an input sequence. The operation performed by fftfilt is described in the time domain by
the difference equation:

y(n) = b(1)x(n) + b(2)x(n− 1) +⋯+ b(nb + 1)x(n− nb)

An equivalent representation is the Z-transform or frequency domain description:

Y(z) = b(1) + b(2)z−1 +⋯+ b(nb + 1)z−nb X(z)

fftfilt uses fft to implement the overlap-add method. fftfilt breaks an input sequence x into
length L data blocks, where L must be greater than the filter length N.

 fftfilt

1-633

and convolves each block with the filter b by

y = ifft(fft(x(i:i+L-1),nfft).*fft(b,nfft));

where nfft is the FFT length. fftfilt overlaps successive output sections by n-1 points, where n
is the length of the filter, and sums them.

fftfilt chooses the key parameters L and nfft in different ways, depending on whether you
supply an FFT length n for the filter and signal. If you do not specify a value for n (which determines
FFT length), fftfilt chooses these key parameters automatically:

• If length(x) is greater than length(b), fftfilt chooses values that minimize the number of
blocks times the number of flops per FFT.

• If length(b) is greater than or equal to length(x), fftfilt uses a single FFT of length

2^nextpow2(length(b) + length(x) - 1)

This computes

y = ifft(fft(B,nfft).*fft(X,nfft))

If you supply a value for n, fftfilt chooses an FFT length, nfft, of 2^nextpow2(n) and a data
block length of nfft - length(b) + 1. If n is less than length(b), fftfilt sets n to length(b).

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd

Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

digitalFilter objects are not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

digitalFilter objects are not supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

1 Functions

1-634

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
conv | designfilt | digitalFilter | filter | filtfilt

Introduced before R2006a

 fftfilt

1-635

fillgaps
Fill gaps using autoregressive modeling

Syntax
y = fillgaps(x)
y = fillgaps(x,maxlen)
y = fillgaps(x,maxlen,order)

fillgaps(___)

Description
y = fillgaps(x) replaces any NaNs present in a signal x with estimates extrapolated from forward
and reverse autoregressive fits of the remaining samples. If x is a matrix, then the function treats
each column as an independent channel.

y = fillgaps(x,maxlen) specifies the maximum number of samples to use in the estimation. Use
this argument when your signal is not well characterized throughout its range by a single
autoregressive process.

y = fillgaps(x,maxlen,order) specifies the order of the autoregressive model used to
reconstruct the gaps.

fillgaps(___) with no output arguments plots the original samples and the reconstructed signal.
This syntax accepts any input arguments from previous syntaxes.

Examples

Fill Gaps in Audio File

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®." Play the sound.

load mtlb

% To hear, type soundsc(mtlb,Fs)

Simulate a situation in which a noisy transmission channel corrupts parts of the signal irretrievably.
Introduce gaps of random length roughly every 500 samples. Reset the random number generator for
reproducible results.

rng default

gn = 3;

mt = mtlb;

gl = randi([300 600],gn,1);

1 Functions

1-636

for kj = 1:gn
 mt(kj*1000+randi(100)+(1:gl(kj))) = NaN;
end

Plot the original and corrupted signals. Offset the corrupted signal for ease of display. Play the signal
with the gaps.

plot([mtlb mt+4])
legend('Original','Corrupted')

% To hear, type soundsc(mt,Fs)

Reconstruct the signal using an autoregressive process. Use fillgaps with the default settings. Plot
the original and reconstructed signals, again using an offset. Play the reconstructed signal.

lb = fillgaps(mt);

plot([mtlb lb+4])
legend('Original','Reconstructed')

 fillgaps

1-637

% To hear, type soundsc(lb,Fs)

Fill Gaps in Two-Dimensional Data

Load a file that contains depth measurements of a mold used to mint a United States penny. The data,
taken at the National Institute of Standards and Technology, are sampled on a 128-by-128 grid.

load penny

Draw a contour plot with 25 copper-colored contour lines.

nc = 25;

contour(P,nc)
colormap copper
axis ij square

1 Functions

1-638

Introduce four 10-by-10 gaps into the data. Draw a contour plot of the corrupted signal.

P(50:60,80:90) = NaN;
P(100:110,20:30) = NaN;
P(100:110,100:110) = NaN;
P(20:30,110:120) = NaN;

contour(P,nc)
colormap copper
axis ij square

 fillgaps

1-639

Use fillgaps to reconstruct the data, treating each column as an independent channel. Specify an
8th-order autoregressive model extrapolated from 30 samples at each end. Draw a contour plot of the
reconstruction.

q = fillgaps(P,30,8);

contour(q,nc)
colormap copper
axis ij square

1 Functions

1-640

Fill Gaps in Function

Generate a function that consists of the sum of two sinusoids and a Lorentzian curve. The function is
sampled at 200 Hz for 2 seconds. Plot the result.

x = -1:0.005:1;

f = 1./(1+10*x.^2)+sin(2*pi*3*x)/10+cos(25*pi*x)/10;

plot(x,f)

 fillgaps

1-641

Insert gaps at intervals (-0.8,-0.6), (-0.2,0.1), and (0.4,0.7).

h = f;

h(x>-0.8 & x<-0.6) = NaN;
h(x>-0.2 & x< 0.1) = NaN;
h(x> 0.4 & x< 0.7) = NaN;

Fill the gaps using the default settings of fillgaps. Plot the original and reconstructed functions.

y = fillgaps(h);

plot(x,f,'.',x,y)
legend('Original','Reconstructed')

1 Functions

1-642

Repeat the computation, but now specify a maximum prediction-sequence length of 3 samples and a
model order of 1. Plot the original and reconstructed functions. At its simplest, fillgaps performs a
linear fit.

y = fillgaps(h,3,1);

plot(x,f,'.',x,y)
legend('Original','Reconstructed')

 fillgaps

1-643

Specify a maximum prediction-sequence length of 80 samples and a model order of 40. Plot the
original and reconstructed functions.

y = fillgaps(h,80,40);

plot(x,f,'.',x,y)
legend('Original','Reconstructed')

1 Functions

1-644

Change the model order to 70. Plot the original and reconstructed functions.

y = fillgaps(h,80,70);

plot(x,f,'.',x,y)
legend('Original','Reconstructed')

 fillgaps

1-645

The reconstruction is imperfect because very high model orders often have problems with finite
precision.

Fill Gaps in Chirp

Generate a multichannel signal consisting of two instances of a chirp sampled at 1 kHz for 1 second.
The frequency of the chirp is zero at 0.3 seconds and increases linearly to reach a final value of 40
Hz. Each instance has a different DC value.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
r = chirp(t-0.3,0,0.7,40);
f = 1.1;
q = [r-f;r+f]';

Introduce gaps to the signal. One of the gaps covers the low-frequency region, and the other covers
the high-frequency region.

gap = (460:720);
q(gap-300,1) = NaN;
q(gap+200,2) = NaN;

Fill the gaps using the default parameters. Plot the reconstructed signals.

1 Functions

1-646

y = fillgaps(q);

plot(t,y)

Fill the gaps by fitting 14th-order autoregressive models to the signal. Limit the models to
incorporate 15 samples on the end of each gap. Use the functionality of fillgaps to plot the
reconstructions.

fillgaps(q,15,14)

 fillgaps

1-647

Increase the number of samples to use in the estimation to 150. Increase the model order to 140.

fillgaps(q,150,140)

1 Functions

1-648

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a matrix, then its columns are treated as
independent channels. x contains NaNs to represent missing samples.
Example: cos(pi/4*(0:159))+reshape(ones(32,1)*[0 NaN 0 NaN 0],1,160) is a single-
channel row-vector signal missing 40% of its samples.
Example: cos(pi./[4;2]*(0:159))'+reshape(ones(64,1)*[0 NaN 0 NaN 0],160,2) is a
two-channel signal with large gaps.
Data Types: single | double

maxlen — Maximum length of prediction sequences
positive integer

Maximum length of prediction sequences, specified as a positive integer. If you leave maxlen
unspecified, then fillgaps iteratively fits autoregressive models using all previous points for
forward estimation and all future points for backward estimation.
Data Types: single | double

order — Autoregressive model order
'aic' (default) | positive integer

 fillgaps

1-649

Autoregressive model order, specified as 'aic' or a positive integer. The order is truncated when
order is infinite or when there are not enough available samples. If you specify order as 'aic', or
leave it unspecified, then fillgaps selects the order that minimizes the Akaike information
criterion.
Data Types: single | double | char | string

Output Arguments
y — Reconstructed signal
vector | matrix

Reconstructed signal, returned as a vector or matrix.

References
[1] Akaike, Hirotugu. "Fitting Autoregressive Models for Prediction." Annals of the Institute of

Statistical Mathematics. Vol. 21, 1969, pp. 243–247.

[2] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1988.

[3] Orfanidis, Sophocles J. Optimum Signal Processing: An Introduction. 2nd Edition. New York:
McGraw-Hill, 1996.

See Also
arburg | resample

Introduced in R2016a

1 Functions

1-650

filterBuilder
Interactive filter design

Syntax
filterBuilder(h)
filterBuilder('response')

Description
filterBuilder starts a interactive tool for building filters. It relies on the fdesign object-object
oriented filter design paradigm, and is intended to reduce development time during the filter design
process. filterBuilder uses a specification-centered approach to find the best algorithm for the
desired response.

Note You must have the Signal Processing Toolbox installed to use fdesign and filterBuilder.
Some of the features described below may be unavailable if your installation does not additionally
include the DSP System Toolbox. You can verify the presence of both toolboxes by typing ver at the
command prompt.

For more information on how to use filterBuilder, see “Filter Builder Design Process”.

To use filterBuilder, enter filterBuilder at the MATLAB command line using one of three
approaches:

• Simply enter filterBuilder. MATLAB opens a dialog for you to select a filter response type.
After you select a filter response type, filterBuilder launches the appropriate filter design
dialog box.

• Enter filterBuilder(h), where h is an existing filter object. For example, if h is a bandpass
filter, filterBuilder(h) opens the bandpass filter design dialog box. The h object must have
been created using filterBuilder or using fdesign.

Note You must have the DSP System Toolbox software to create and import filter System objects.
• Enter filterBuilder('response') to replace response with a response method from the

following table. MATLAB opens a filter design dialog that corresponds to the specified response.

Note You must have the DSP System Toolbox software to implement a number of the filter designs
listed in the following table. If you only have the Signal Processing Toolbox software, you can design a
limited set of the following filter-response types.

Response Method Description of Resulting
Filter Design

Filter Object

arbgrpdelay on page 1-662 Arbitrary group delay filter
design

fdesign.arbgrpdelay

 filterBuilder

1-651

Response Method Description of Resulting
Filter Design

Filter Object

arbmag on page 1-662 Arbitrary magnitude filter
design

fdesign.arbmag

arbmagnphase on page 1-662 Arbitrary response filter
(magnitude and phase)

fdesign.arbmagnphase

audioweighting on page 1-665 Audio weighting filter fdesign.audioweighting
bandpass on page 1-666 or bp Bandpass filter fdesign.bandpass
bandstop on page 1-670 or bs Bandstop filter fdesign.bandstop
cic on page 1-675 CIC filter fdesign.decimator(M,'cic

',...) or
fdesign.interpolator(L,'
cic',...)
See fdesign.decimator and
fdesign.interpolator

ciccomp on page 1-676 CIC compensator fdesign.ciccomp
comb on page 1-679 Comb filter fdesign.comb
diff on page 1-681 Differentiator filter fdesign.differentiator
fracdelay on page 1-684 Fractional delay filter fdesign.fracdelay
halfband on page 1-684 or hb Halfband filter fdesign.halfband
highpass on page 1-687 or hp Highpass filter fdesign.highpass
hilb on page 1-691 Hilbert filter fdesign.hilbert
isinc on page 1-694,
isinclp on page 1-694, or
isinchp on page 1-694

Inverse sinc lowpass or
highpass filter

fdesign.isinclp and
fdesign.isinchp

lowpass on page 1-698 or lp Lowpass filter (default) fdesign.lowpass
notch on page 1-702 Notch filter fdesign.notch
nyquist on page 1-702 Nyquist filter fdesign.nyquist
octave on page 1-706 Octave filter fdesign.octave
parameq on page 1-707 Parametric equalizer filter fdesign.parameq
peak on page 1-710 Peak filter fdesign.peak

Note Because they do not change the filter structure, the magnitude specifications and design
method are tunable when using filterBuilder.

Filter Builder Design Panes
Main Design Pane

The main pane of Filter Builder varies depending on the filter response type, but the basic structure
is the same. The following figure shows the basic layout of the dialog box.

1 Functions

1-652

As you choose the response for the filter, the available options and design parameters displayed in the
dialog box change. This display allows you to focus only on parameters that make sense in the context
of your filter design.

Every filter design dialog box includes the options displayed at the top of the dialog box, shown in the
following figure.

• Save variable as — When you click Apply to apply your changes or OK to close this dialog box,
filterBuilder saves the current filter to your MATLAB workspace as a filter object with the
name you enter.

• View Filter Response — Displays the magnitude response for the current filter specifications and
design method by opening the Filter Visualization Tool (FVTool).

Note The filterBuilder dialog box includes an Apply option. Each time you click Apply,
filterBuilder writes the modified filter to your MATLAB workspace. This modified filter has the
variable name you assign in Save variable as. To apply changes without overwriting the variable in
you workspace, change the variable name in Save variable as before you click Apply.

There are three tabs in the Filter Builder dialog box, containing three panes: Main, Data Types, and
Code Generation. The first pane changes according to the filter being designed. The last two panes
are the same for all filters. These panes are discussed in the following sections.

Data Types Pane

The second tab in the Filter Builder dialog box is shown in the following figure.

 filterBuilder

1-653

The Arithmetic drop down box allows the choice of Double precision, Single precision, or
Fixed point. Some of these options may be unavailable depending on the filter parameters. The
following table describes these options.

Arithmetic List Entry Effect on the Filter
Double precision All filtering operations and coefficients use double-precision, floating-

point representations and math. When you use filterBuilder to
create a filter, double precision is the default value for the
Arithmetic property.

Single precision All filtering operations and coefficients use single-precision floating-
point representations and math.

Fixed point This entry applies selected default values, typically used on many
digital processors, for the properties in the fixed-point filter. These
properties include coefficient word lengths, fraction lengths, and
various operating modes. This setting allows signed fixed data types
only. Fixed-point filter design with filterBuilder is available only
when you install Fixed-Point Designer™ software along with DSP
System Toolbox software.

The following figure shows the Data Types pane after you select Fixed point for Arithmetic and
set Filter internals to Specify precision. This figure shows the Data Types pane for the case
where the Use a System object to implement filter check box is not selected in the Main pane.

1 Functions

1-654

When you select Use a System object to implement filter check box in the Main pane, the Data
Types pane appears as below:

 filterBuilder

1-655

Not all parameters described in the following section apply to all filters. For example, FIR filters do
not have the Section input and Section output parameters.

Input signal
Specify the format the filter applies to data to be filtered. For all cases, filterBuilder
implements filters that use binary point scaling and signed input. You set the word length and
fraction length as needed.

1 Functions

1-656

Coefficients
Choose how you specify the word length and the fraction length of the filter numerator and
denominator coefficients:

• Specify word length enables you to enter the word length of the coefficients in bits. In
this mode, filterBuilder automatically sets the fraction length of the coefficients to the
binary-point only scaling that provides the best possible precision for the value and word
length of the coefficients.

• Binary point scaling enables you to enter the word length and the fraction length of the
coefficients in bits. If applicable, enter separate fraction lengths for the numerator and
denominator coefficients.

• The filter coefficients do not obey the Rounding mode and Overflow mode parameters that
are available when you select Specify precision from the Filter internals list. Coefficients
are always saturated and rounded to Nearest.

Section Input
Choose how you specify the word length and the fraction length of the fixed-point data type going
into each section of an SOS filter. This parameter is visible only when the selected filter structure
is IIR and SOS.

• Binary point scaling enables you to enter the word and fraction lengths of the section
input in bits.

• Specify word length enables you to enter the word lengths in bits.

Section Output
Choose how you specify the word length and the fraction length of the fixed-point data type
coming out of each section of an SOS filter. This parameter is visible only when the selected filter
structure is IIR and SOS.

• Binary point scaling enables you to enter the word and fraction lengths of the section
output in bits.

• Specify word length enables you to enter the output word lengths in bits.

State
Contains the filter states before, during, and after filter operations. States act as filter memory
between filtering runs or sessions. Use this parameter to specify how to designate the state word
and fraction lengths. This parameter is not visible for direct form and direct form I filter
structures because filterBuilder deduces the state directly from the input format. States
always use signed representation:

• Binary point scaling enables you to enter the word length and the fraction length of the
accumulator in bits.

• Specify precision enables you to enter the word length and fraction length in bits (if
available).

Product
Determines how the filter handles the output of product operations. Choose from the following
options:

• Full precision — Maintain full precision in the result.

 filterBuilder

1-657

• Keep LSB — Keep the least significant bit in the result when you need to shorten the data
words.

• Specify Precision — Enables you to set the precision (the fraction length) used by the
output from the multiplies.

Filter internals
Specify how the fixed-point filter performs arithmetic operations within the filter. The affected
filter portions are filter products, sums, states, and output. Select one of these options:

• Full precision — Specifies that the filter maintains full precision in all calculations for
products, output, and in the accumulator.

• Specify precision — Set the word and fraction lengths applied to the results of product
operations, the filter output, and the accumulator. Selecting this option enables the word and
fraction length controls.

Signed
Selecting this option directs the filter to use signed representations for the filter coefficients.

Word length
Sets the word length for the associated filter parameter in bits.

Fraction length
Sets the fraction length for the associate filter parameter in bits.

Accum
Use this parameter to specify how you would like to designate the accumulator word and fraction
lengths.

Determines how the accumulator outputs stored values. Choose from the following options:

• Full precision — Maintain full precision in the accumulator.
• Keep MSB — Keep the most significant bit in the accumulator.
• Keep LSB — Keep the least significant bit in the accumulator when you need to shorten the

data words.
• Specify Precision — Enables you to set the precision (the fraction length) used by the

accumulator.

Output
Sets the mode the filter uses to scale the output data after filtering. You have the following
choices:

• Avoid Overflow — Set the output data fraction length to avoid causing the data to overflow.
Avoid overflow is considered the conservative setting because it is independent of the
input data values and range.

• Best Precision — Set the output data fraction length to maximize the precision in the
output data.

• Specify Precision — Set the fraction length used by the filtered data.

Fixed-point operational parameters
Parameters in this group control how the filter rounds fixed-point values and how it treats values
that overflow.

1 Functions

1-658

Rounding mode
Sets the mode the filter uses to quantize numeric values when the values lie between
representable values for the data format (word and fraction lengths).

• ceil — Round toward positive infinity.
• convergent — Round to the closest representable integer. Ties round to the nearest even

stored integer. This is the least biased of the methods available in this software.
• zero/fix — Round toward zero.
• floor — Round toward negative infinity.
• nearest — Round toward nearest. Ties round toward positive infinity.
• round — Round toward nearest. Ties round toward negative infinity for negative numbers,

and toward positive infinity for positive numbers.

The choice you make affects everything except coefficient values and input data which always
round. In most cases, products do not overflow—they maintain full precision.

Overflow mode
Sets the mode the filter uses to respond to overflow conditions in fixed-point arithmetic. Choose
from the following options:

• Saturate — Limit the output to the largest positive or negative representable value.
• Wrap — Set overflowing values to the nearest representable value using modular arithmetic.

The choice you make affects everything except coefficient values and input data which always
round. In most cases, products do not overflow—they maintain full precision.

Cast before sum
Specifies whether to cast numeric data to the appropriate accumulator format before performing
sum operations. Selecting Cast before sum ensures that the results of the affected sum
operations match most closely the results found on most digital signal processors. Performing the
cast operation before the summation adds one or two additional quantization operations that can
add error sources to your filter results.

If you clear Cast before sum, the filter prevents the addends from being cast to the sum format
before the addition operation. Choose this setting to get the most accurate results from
summations without considering the hardware your filter might use. The input format referenced
by Cast before sum depends on the filter structure you are using.

The effect of clearing or selecting Cast before sum is as follows:

• Cleared — Configures filter summation operations to retain the addends in the format carried
from the previous operation.

• Selected — Configures filter summation operations to convert the input format of the addends
to match the summation output format before performing the summation operation. Usually,
selecting Cast before sum generates results from the summation that more closely match
those found from digital signal processors.

Code Generation Pane

The code generation pane contains options for various implementations of the completed filter
design. Depending on your installation, you can generate MATLAB, VHDL, and Verilog code from the

 filterBuilder

1-659

designed filter. You can also choose to create or update a Simulink model from the designed filter. The
following section explains these options.

HDL
For more information on this option, see “Opening the Filter Design HDL Coder UI from the Filter
Builder” (Filter Design HDL Coder).

MATLAB
Generate MATLAB code based on filter specifications

• Generate function that returns your filter as an output

Selecting this option generates a function that designs a filter object using fdesign.
• Generate function that filters your data

Selecting this option generates a function that takes data as input, and outputs data filtered
with the designed filter. The data type of the filter output is set according to the data type
settings in the Data Types pane.

Clicking on the Generate MATLAB code button, brings up a Save File dialog. Specify the file
name and location, and save. The filter is now contained in an editable file.

Simulink Model
Generate Simulink blocks and subsystems from your designed filters

When you click Generate Model, the filter builder generates Simulink blocks and subsystems
from your designed filters.

Clicking on the Generate Model button opens the Export to Simulink dialog box.

1 Functions

1-660

• Block Name — The name for the new subsystem block, set to Filter by default.
• Destination — Current saves the generated model to the current Simulink model. New

creates a new model to contain the generated block. User Defined creates a new model or
subsystem at the location specified in User Defined.

• Overwrite generated 'Filter' block — Overwrites an existing block with the name specified
in Block Name. Clear this check box to create a new block with the same name.

• Build model using basic elements — Builds the model using only basic blocks.
• Optimize for zero gains — Removes all zero-gain blocks from the model.
• Optimize for unity gains — Replaces all unity gains with direct connections.
• Optimize for negative gains — Removes all negative unity gain blocks, and changes sign at

the nearest summation block.
• Optimize delay chains — Replaces delay chains made up of n unit delays with a single delay

by n.
• Optimize for unity scale values — Removes all scale value multiplications by 1 from the
filter structure.

• Input processing — Specify how the generated filter block or subsystem block processes the
input. Depending on the type of filter you are designing, one or both of the following options
may be available:

• Columns as channels (frame based) — The block treats each column of the input as
a separate channel.

• Elements as channels (sample based) — The block treats each element of the input
as a separate channel.

For more information about sample-based and frame-based processing, see “Sample- and
Frame-Based Concepts” (DSP System Toolbox).

• Realize Model — Builds the model with the set parameters.

When the Use a System object to implement filter check box is selected in the Main pane, the
Generate Model button in the Simulink model panel is disabled under the following
conditions:

• Select Filter response as Comb and Arithmetic on the Data Types pane as Fixed point.
• Select Filter response as Arbitrary Response, Impulse response as IIR, set Specify

response as to either Magnitudes and phases or Frequency response, and Arithmetic
on the Data Types pane as Fixed point.

 filterBuilder

1-661

These settings design a dsp.IIRFilter System object™ with fixed point arithmetic. Generating
a Simulink model for fixed point dsp.IIRFilter object is not supported.

Filter Responses
Select your filter response from the filterBuilder Response Selection main menu.

If you have the DSP System Toolbox software, the following Response Selection menu appears.

Select your desired filter response from the menu and design your filter.

The following sections describe the options available for each response type.

Arbitrary Response Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
This dialog only applies if you have the DSP System Toolbox software. Select either FIR or IIR
from the drop down list, where FIR is the default impulse response. When you choose an impulse
response, the design methods and structures you can use to implement your filter change
accordingly. Arbitrary group delay designs are only available if Impulse response is IIR.
Without the DSP System Toolbox, the only available arbitrary response filter design is FIR.

Order mode
This dialog only applies if you have the DSP System Toolbox software. Choose Minimum or
Specify. Choosing Specify enables the Order dialog.

Order
This dialog only applies when Order mode is Specify. For an FIR design, specify the filter
order. For an IIR design, you can specify an equal order for the numerator and denominator, or

1 Functions

1-662

you can specify different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box. Because the Signal
Processing Toolbox only supports FIR arbitrary-magnitude filters, you do not have the option to
specify a denominator order.

Denominator order
Select the check box and enter the denominator order. This option is enabled only if IIR is
selected for Impulse response.

Filter type
This dialog only applies if you have the DSP System Toolbox software and is only available for FIR
filters. Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your
choice determines the type of filter as well as the design methods and structures that are
available to implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2 for Decimator and 3 for Sample-rate
converter.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Response Specification

Number of Bands
Select the number of bands in the filter. Multiband design is available for both FIR and IIR filters.

Specify response as:
Specify the response as Amplitudes, Magnitudes and phase, Frequency response, or
Group delay. Amplitudes is the only option if you do not have the DSP System Toolbox
software. Group delay is only available for IIR designs.

Frequency units
Specify frequency units as either Normalized, Hz, kHz, MHz, or GHz.

Input sample rate
Enter the input sampling frequency in the units specified in the Frequency units drop-down box.
This option is enabled when Frequency units is set to an option in hertz.

Band Properties

These properties are modified automatically depending on the response chosen in the Specify
response as drop-down box. Two or three columns are presented for input. The first column is
always Frequencies. The other columns are either Amplitudes, Magnitudes, Phases, or Frequency
Response. Enter the corresponding vectors of values for each column.

 filterBuilder

1-663

• Frequencies and Amplitudes — These columns are presented for input if you select
Amplitudes in the Specify response as drop-down box.

• Frequencies, Magnitudes, and Phases — These columns are presented for input if the response
chosen in the Specify response as drop-down box is Magnitudes and phases.

• Frequencies and Frequency response — These columns are presented for input if the response
chosen in the Specify response as drop-down box is Frequency response.

Algorithm

The options for each design are specific for each design method. In the arbitrary response design, the
available options also depend on the Response specifications. This section does not present all of
the available options for all designs and design methods.

Design Method
Select the design method for the filter. Different methods are enabled depending on the defining
parameters entered in the previous sections.

Design Options

• Window — Valid when the Design method is Frequency Sampling. Replace the square
brackets with the name of a window function or function handle. For example, 'hamming' or
@hamming. If the window function takes parameters other than the length, use a cell array.
For example, {'kaiser',3.5} or {@chebwin,60}.

• Density factor — Valid when the Design method is equiripple. Density factor controls the
density of the frequency grid over which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid is the value you enter for
Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter
but increases the time required to design the filter. The default value of 16 represents a
reasonable trade between the accurate approximation to the ideal filter and the time to design
the filter.

The default changes to 20 for an IIR arbitrary group delay design.
• Phase constraint — Valid when the Design method is equiripple, you have the DSP

System Toolbox installed, and Specify response as is set to Amplitudes. Choose one of
Linear, Minimum, or Maximum.

• Weights — Uses the weights in Weights to weight the error for a single-band design. If you
have multiple frequency bands, the Weights design option changes to B1 Weights, B2
Weights to designate the separate bands. Use Bi Weights to specify weights for the i-th
band. The Bi Weights design option is only available when you specify the i-th band as an
unconstrained.

• Bi forced frequency point — This option is only available in a multi-band constrained
equiripple design when Specify response as is Amplitudes. Bi forced frequency point is
the frequency point in the i-th band at which the response is forced to be zero. The index i
corresponds to the frequency bands in Band properties. For example, if you specify two
bands in Band properties, you have B1 forced frequency point and B2 forced frequency
point.

• Norm — Valid only for IIR arbitrary group delay designs. Norm is the norm used in the
optimization. The default value is 128, which essentially equals the L-infinity norm. The norm
must be even.

1 Functions

1-664

• Max pole radius — Valid only for IIR arbitrary group delay designs. Constrains the maximum
pole radius. The default is 0.999999. Reducing the Max pole radius can produce a transfer
function more resistant to quantization.

• Init norm — Valid only for IIR arbitrary group delay designs. The initial norm used in the
optimization. The default initial norm is 2.

• Init numerator — Specifies an initial estimate of the filter numerator coefficients.
• Init denominator — Specifies an initial estimate of the filter denominator coefficients. This

may be useful in difficult optimization problems. In allpass filters, you only have to specify
either the denominator or numerator coefficients. If you specify the denominator coefficients,
you can obtain the numerator coefficients.

Filter implementation

Structure
Select the structure for the filter. The available filter structures depend on the parameters you
select for your filter.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Audio Weighting Filter Design — Main Pane

Filter specifications

• Weighting type — The weighting type defines the frequency response of the filter. The valid
weighting types are: A, C , C-message, ITU-T 0.41, and ITU-R 468–4 weighting. See
fdesign.audioweighting for definitions of the weighting types.

• Class — Filter class is only applicable for A weighting and C weighting filters. The filter class
describes the frequency-dependent tolerances specified in the relevant standards. There are two
possible class values: 1 and 2. Class 1 weighting filters have stricter tolerances than class 2 filters.
The filter class value does not affect the design. The class value is only used to provide a
specification mask in FVTool for the analysis of the filter design.

• Impulse response — Impulse response type as one of IIR or FIR. For A, C , C-message, and ITU-
R 468–4 filter, IIR is the only option. For a ITU-T 0.41 weighting filter, FIR is the only option.

• Frequency units — Choose Hz, kHz, MHz, or GHz. Normalized frequency designs are not
supported for audio weighting filters.

• Input sample rate — The sampling frequency in Frequency units. For example, if Frequency
units is set to kHz, setting Input sample rate to 40 is equivalent to a 40 kHz sampling frequency.

Algorithm

• Design method — Valid design methods depend on the weighting type. For type A and C
weighting filters, the only valid design type is ANSI S1.42. This is an IIR design method that
follows ANSI standard S1.42–2001. For a C message filter, the only valid design method is Bell
41009, which is an IIR design method following the Bell System Technical Reference PUB 41009.
For a ITU-R 468–4 weighting filter, you can design an IIR or FIR filter. If you choose an IIR design,

 filterBuilder

1-665

the design method is IIR least p-norm. If you choose an FIR design, the design method
choices are: Equiripple or Frequency Sampling. For an ITU-T 0.41 weighting filter, the
available FIR design methods are Equiripple or Frequency Sampling

• Scale SOS filter coefficients to reduce chance of overflow — Selecting this parameter directs
the design to scale the filter coefficients to reduce the chances that the inputs or calculations in
the filter overflow and exceed the representable range of the filter. Clearing this option removes
the scaling. This parameter applies only to IIR filters.

Filter implementation

• Structure — For the filter specifications and design method you select, this parameter lists the
filter structures available to implement your filter. For audio weighting IIR filter designs, you can
choose direct form I or II biquad (SOS). You can also choose to implement these structures in
transposed form.

For FIR designs, you can choose direct form, direct-form transposed, direct-form symmetric,
direct-form asymmetric structures, or an overlap and add structure.

• Use a System object to implement filter — Selecting this check box gives you the choice of
using a System object to implement the filter. By default, this check box is cleared. When the
current design method or structure is not supported by a System object filter, then this check box
is disabled.

Bandpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down box. Selecting Specify enables
the Order option so you can enter the filter order.

If you have the DSP System Toolbox software installed, you can specify IIR filters with different
numerator and denominator orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type — This dialog only applies if you have the DSP System Toolbox software.
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

1 Functions

1-666

• Selecting Sample-rate converter activates both factors.

Order
Enter the filter order. This option is enabled only if you select Specify for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, regions between specification values such as Stopband frequency 1 (Fstop1) and
Passband frequency 1 (Fpass1) represent transition regions where the filter response is not explicitly
defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. This dialog
applies only when Order mode is Specify.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequency — Define the filter response by specifying the locations of
the 3 dB points (IIR filters). The 3-dB point is the frequency for the point 3 dB below the
passband value.

• Half power (3dB) frequencies and passband width — Define the filter by specifying
frequencies for the 3-dB points in the filter response and the width of the passband. (IIR
filters)

 filterBuilder

1-667

• Half power (3dB) frequencies and stopband width — Define the filter by specifying
frequencies for the 3-dB points in the filter response and the width of the stopband. (IIR
filters)

• Cutoff (6dB) frequency — Define the filter response by specifying the locations of the 6-
dB points. The 6-dB point is the frequency for the point 6 dB below the passband value. (FIR
filters)

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in hertz, select one of the frequency units from the drop-down
list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input sample rate
parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Stopband frequency 1
Enter the frequency at the edge of the end of the first stopband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Passband frequency 1
Enter the frequency at the edge of the start of the passband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Passband frequency 2
Enter the frequency at the edge of the end of the passband. Specify the value in either normalized
frequency units or the absolute units you select Frequency units.

Stopband frequency 2
Enter the frequency at the edge of the start of the second stopband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have the DSP System Toolbox
software to select Constrained bands. Selecting Constrained bands enables dialogs for
both stopbands and the passband: Stopband attenuation 1, Stopband attenuation 2, and
Passband ripple. You cannot specify constraints for all three bands simultaneously.

Setting Magnitude constraints to Constrained bands enables the Wstop and Wpass options
under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.

1 Functions

1-668

• dB — Specify the magnitude in dB (decibels). This is the default setting.
• Squared — Specify the magnitude in squared units.

Stopband attenuation 1
Enter the filter attenuation in the first stopband in the units you choose for Magnitude units,
either linear or decibels.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation 2
Enter the filter attenuation in the second stopband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the DSP System Toolbox installed.
Choose one of Linear, Minimum, or Maximum.

Minimum order
This option only applies when you have the DSP System Toolbox software and Order mode is
Minimum.

 filterBuilder

1-669

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Wstop1
Weight for the first stopband.

Wpass
Passband weight.

Wstop2
Weight for the second stopband.

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius. The default is 1. Reducing the
max pole radius can produce a transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients. This may be useful in difficult
optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients. This may be useful in difficult
optimization problems.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Bandstop Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

1 Functions

1-670

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option so you can enter the filter order.

If you have the DSP System Toolbox software installed, you can specify IIR filters with different
numerator and denominator orders. The default is equal orders. To specify a different
denominator order, check the Denominator order box.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

 filterBuilder

1-671

Frequency constraints
Select the filter features to use to define the frequency response characteristics. This dialog
applies only when Order mode is Specify.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Half power (3dB) frequency — Define the filter response by specifying the locations of
the 3 dB points (IIR filters). The 3 dB point is the frequency for the point 3 dB point below the
passband value.

• Half power (3dB) frequencies and passband width — Define the filter by specifying
frequencies for the 3 dB points in the filter response and the width of the passband (IIR
filters).

• Half power (3dB) frequencies and stopband width — Define the filter by specifying
frequencies for the 3 dB points in the filter response and the width of the stopband (IIR
filters).

• Cutoff (6dB) frequency — Define the filter response by specifying the locations of the 6-
dB points (FIR filters). The 6-dB point is the frequency for the point 6 dB point below the
passband value.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output sample rate
When you design an interpolator, Fs represents the sampling frequency at the filter output rather
than the filter input. This option is available only when you set Filter type is interpolator.

Passband frequency 1
Enter the frequency at the edge of the end of the first passband. Specify the value in either
normalized frequency units or the absolute units you select in Frequency units.

Stopband frequency 1
Enter the frequency at the edge of the start of the stopband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Stopband frequency 2
Enter the frequency at the edge of the end of the stopband. Specify the value in either normalized
frequency units or the absolute units you select Frequency units.

1 Functions

1-672

Passband frequency 2
Enter the frequency at the edge of the start of the second passband. Specify the value in either
normalized frequency units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
Specify as Unconstrained or Constrained bands. You must have the DSP System Toolbox
software to select Constrained bands. Selecting Constrained bands enables dialogs for
both passbands and the stopband: Passband ripple 1, Passband ripple 2, and Stopband
attenuation. You cannot specify constraints for all three bands simultaneously.

Setting Magnitude constraints to Constrained bands enables the Wstop and Wpass options
under Design options.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple 1
Enter the filter ripple allowed in the first passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels

Passband ripple 2
Enter the filter ripple allowed in the second passband in the units you choose for Magnitude
units, either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

 filterBuilder

1-673

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Valid when the Design method is equiripple and you have the DSP System Toolbox installed.
Choose one of Linear, Minimum, or Maximum.

Minimum order
This option only applies when you have the DSP System Toolbox software and Order mode is
Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Wpass1
Weight for the first passband.

Wstop
Stopband weight.

Wpass2
Weight for the second passband.

Match exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband .

Max pole radius
Valid only for IIR designs. Constrains the maximum pole radius. The default is 1. Reducing the
max pole radius can produce a transfer function more resistant to quantization.

Init norm
Valid only for IIR designs. The initial norm used in the optimization. The default initial norm is 2.

Init numerator
Specifies an initial estimate of the filter numerator coefficients. This may be useful in difficult
optimization problems.

Init denominator
Specifies an initial estimate of the filter denominator coefficients. This may be useful in difficult
optimization problems.

1 Functions

1-674

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

CIC Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your CIC filter format, such as the filter type and the
differential delay.

Filter type
Select whether your filter will be a decimator or an interpolator. Your choice determines the
type of filter and the design methods and structures that are available to implement your filter.
Selecting decimator or interpolator activates the Factor option. When you design an
interpolator, you enable the Output sample rate parameter.

When you design either a decimator or interpolator, the resulting filter is a CIC filter that
decimates or interpolates your input signal.

Differential Delay
Specify the differential delay of your CIC filter as an integer value greater than or equal to 1. The
default value is 1. The differential delay changes the shape, number, and location of nulls in the
filter response. Increasing the differential delay increases the sharpness of the nulls and the
response between the nulls. In practice, differential delay values of 1 or 2 are the most common.

Factor
Specify the decimation or interpolation factor for your filter as an integer value greater than or
equal to 1. The default value is 2.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

 filterBuilder

1-675

Output sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

CIC Compensator Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the filter order mode and
the filter type.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

1 Functions

1-676

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Number of CIC sections
Specify the number of sections in the CIC filter for which you are designing this compensator.
Select the number of sections from the drop-down list or enter the number.

Differential Delay
Specify the differential delay of your target CIC filter. The default value is 1. Most CIC filters use
1 or 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve.

Frequency specifications

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Output sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter output. When you provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available only when you design
interpolators.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.

 filterBuilder

1-677

• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines and design the minimum order
filter to meet your specifications. Some filters do not provide this parameter. Select Any, Even, or
Odd from the drop-down list to direct the design to be any minimum order, or minimum even
order, or minimum odd order.

Note Generally, Minimum order designs are not available for IIR filters.

Match exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband or both from the drop-down list.

1 Functions

1-678

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, this check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Comb Filter Design —Main Pane

Filter specifications

Parameters in this group enable you to specify the type of comb filter and the number of peaks or
notches.

Comb Type
Select Notch or Peak from the drop-down list. Notch creates a comb filter that attenuates a set
of harmonically related frequencies. Peak creates a comb filter that amplifies a set of
harmonically related frequencies.

Order mode
Select Order or Number of Peaks/Notches from the drop-down menu.

 filterBuilder

1-679

Select Order to enter the desired filter order in the dialog box.
The comb filter has notches or peaks at increments of 2/Order in normalized frequency units.

Select Number of Peaks or Number of Notches to specify the number of peaks or notches
and the Shelving filter order

.
Shelving filter order

The Shelving filter order is a positive integer that determines the sharpness of the peaks
or notches. Larger values result in sharper peaks or notches.

Frequency specifications

Parameters in this group enable you to specify the frequency constraints and frequency units.

Frequency specifications
Select Quality factor or Bandwidth.

Quality factor is the ratio of the center frequency of the peak or notch to the bandwidth
calculated at the –3 dB point.

Bandwidth specifies the bandwidth of the peak or notch. By default the bandwidth is measured
at the –3 dB point. For example, setting the bandwidth equal to 0.1 results in 3 dB frequencies at
normalized frequencies 0.05 above and below the center frequency of the peak or notch.

Frequency Units
Specify the frequency units. The default is normalized frequency. Choosing an option in Hz
enables the Input sample rate dialog box.

Magnitude specifications

Specify the units for the magnitude specification and the gain at which the bandwidth is measured.
This menu is disabled if you specify a filter order. Select one of the following magnitude units from
the drop down list:

• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Bandwidth gain — Specify the gain at which the bandwidth is measured. The default is –3 dB.

1 Functions

1-680

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
The IIR Butterworth design is the only option for peaking or notching comb filters.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared.

Differentiator Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order. Graphically, the filter specifications look similar to those shown in the following
figure.

In the figure, regions between specification values such as Passband frequency (f1) and Stopband
frequency (f3) represent transition regions where the filter response is not explicitly defined.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

 filterBuilder

1-681

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve.

Frequency constraints
This option is only available when you specify the order of the filter design. Supported options are
Unconstrained and Passband edge and stopband edge.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude constraints
This option is only available when you specify the order of your filter design. The options for
Magnitude constraints depend on the value of the Frequency constraints. If the value of
Frequency constraints is Unconstrained, Magnitude constraints must be Unconstrained.

1 Functions

1-682

If the value of Frequency constraints is Passband edge and stopband edge, Magnitude
constraints can be Unconstrained, Passband ripple, or Stopband attenuation.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation 2
Enter the filter attenuation in the second stopband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Wpass
Passband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

 filterBuilder

1-683

Wstop
Stopband weight. This option is only available for a specified-order design when Frequency
constraints is equal to Passband edge and stopband edge and the Design method is
Equiripple.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Fractional Delay Design — Main Pane

Frequency specifications

Parameters in this group enable you to specify your filter format, such as the fractional delay and the
filter order.

Order
If you choose Specify for Order mode, enter your filter order in this field, or select the order
from the drop-down list.filterBuilder designs a filter with the order you specify.

Fractional delay
Specify a value between 0 and 1 samples for the filter fractional delay. The default value is 0.5
samples.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Halfband Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter type and order.

1 Functions

1-684

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, or Interpolator. By default, filterBuilder specifies
single-rate filters.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
decimates or interpolates your input by a factor of two.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications for a halfband lowpass filter look similar to those shown in the following figure.

In the figure, the transition region lies between the end of the passband and the start of the
stopband. The width is defined explicitly by the value of Transition width.

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

 filterBuilder

1-685

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
For FIR halfband filters, the available design options are Equiripple and Kaiser window. For
IIR halfband filters, the available design options are Butterworth, Elliptic, and IIR quasi-
linear phase.

Design Options

The following design options are available for FIR halfband filters when the user specifies an
equiripple design:

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

1 Functions

1-686

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to either Interpolator or
Decimator. The filter builder always implements the filter as a System object.

Highpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option so you can enter the filter order.

If your Impulse response is IIR, you can specify an equal order for the numerator and
denominator, or different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box.

 filterBuilder

1-687

Filter type
This option is only available if you have the DSP System Toolbox software. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a highpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the interpolation factor. This option is enabled only if the Filter type is set to
Interpolator or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, the region between specification values Stopband frequency (Fstop) and Passband
frequency (Fpass) represents the transition region where the filter response is not explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Stopband edge and passband edge — Define the filter by specifying the frequencies for
the edges for the stopband and passband.

• Passband frequency — Define the filter by specifying the frequency for the edge of the
passband.

• Stopband frequency — Define the filter by specifying the frequency for the edges of the
stopband.

1 Functions

1-688

• Stopband and half power (3dB) frequencies — Define the filter by specifying the
stopband edge frequency and the 3-dB down point (IIR designs).

• Half power (3dB) and passband frequencies — Define the filter by specifying the 3-
dB down point and passband edge frequency (IIR designs).

• Half power (3dB) frequency — Define the filter by specifying the frequency for the 3-dB
point (IIR designs or maxflat FIR).

• Cutoff (6dB) frequency — Define the filter by specifying the frequency for the 6-dB point
in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default).
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

 filterBuilder

1-689

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
This option only applies when you have the DSP System Toolbox software and when the Design
method is equiripple. Select one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP System Toolbox software and the
Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband when you
select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

1 Functions

1-690

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Wpass
Passband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Wstop
Stopband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Hilbert Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

 filterBuilder

1-691

Order mode
This option is only available if you have the DSP System Toolbox software. Select either Minimum
(the default) or Specify from the drop-down list. Selecting Specify enables the Order option
(see the following sections) so you can enter the filter order.

Filter type
This option is only available if you have the DSP System Toolbox software. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, the regions between 0 and f1 and between f2 and 1 represent the transition regions
where the filter response is explicitly defined by the transition width.

1 Functions

1-692

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transitions at the ends of the passband. Specify the value in normalized
frequency units or the absolute units you select in Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as

 filterBuilder

1-693

you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

FIR Type
This option is only available in a minimum-order design. Specify whether to design a type 3 or a
type 4 FIR filter. The filter type is defined as follows:

• Type 3 — FIR filter with even order antisymmetric coefficients
• Type 4 — FIR filter with odd order antisymmetric coefficients

Select 3 or 4 from the drop-down list.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Inverse Sinc Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

Response type
Select Lowpass or Highpass to design an inverse sinc lowpass or highpass filter.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

1 Functions

1-694

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

Regions between specification values such as Passband frequency (Fpass) and Stopband frequency
(Fstop) represent transition regions where the filter response is not explicitly defined.

Frequency constraints
This option is only available when you specify the filter order. The following options are available:

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edges for the stop- and passbands.

• Passband frequency — Define the filter by specifying frequencies for the edges of the
passband.

• Stopband frequency — Define the filter by specifying frequencies for the edges of the
stopbands.

• Cutoff (6dB) frequency — The 6-dB point is the frequency for the point 6 dB point below
the passband value.

 filterBuilder

1-695

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the end of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Design Options

1 Functions

1-696

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
Available options are Linear, Minimum, and Maximum.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options;

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Sinc frequency factor
A frequency dilation factor. The sinc frequency factor, C , parameterizes the passband magnitude
response for a lowpass design through H(ω) = sinc(Cω)^(–P) and for a highpass design through
H(ω) = sinc(C(1–ω))^(–P).

Sinc power
Negative power of passband magnitude response. The sinc power, P, parameterizes the passband
magnitude response for a lowpass design through H(ω) = sinc(Cω)^(–P) and for a highpass
design through H(ω) = sinc(C(1–ω))^(–P).

 filterBuilder

1-697

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Lowpass Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

If your Impulse response is IIR, you can specify an equal order for the numerator and
denominator, or different numerator and denominator orders. The default is equal orders. To
specify a different denominator order, check the Denominator order box.

Filter type
This option is only available if you have the DSP System Toolbox. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your choice determines the type of
filter as well as the design methods and structures that are available to implement your filter. By
default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

1 Functions

1-698

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to the one shown in the following figure.

In the figure, regions between specification values such as Passband frequency (Fpass) and Stopband
frequency (Fstop) represent transition regions where the filter response is not explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Passband and stopband frequencies — Define the filter by specifying the frequencies
for the edge of the stopband and passband.

• Passband frequency — Define the filter by specifying the frequency for the edge of the
passband.

• Stopband frequency — Define the filter by specifying the frequency for the edges of the
stopband.

• Passband edge and 3dB point — Define the filter by specifying the passband edge
frequency and the 3-dB down point (IIR designs).

• Half power (3dB) and stopband frequencies — Define the filter by specifying the 3-
dB down point and stopband edge frequency (IIR designs).

• Half power (3dB) frequency — Define the filter by specifying the frequency for the 3-dB
point (IIR designs or maxflat FIR).

• Cutoff (6dB) frequency — Define the filter by specifying the frequency for the 6-dB point
in the filter response (FIR designs).

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior

 filterBuilder

1-699

is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Passband frequency
Enter the frequency at the of the passband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Stopband frequency
Enter the frequency at the start of the stopband. Specify the value in either normalized frequency
units or the absolute units you select Frequency units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Passband ripple
Enter the filter ripple allowed in the passband in the units you choose for Magnitude units,
either linear or decibels.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

1 Functions

1-700

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as
you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Phase constraint
This option only applies when you have the DSP System Toolbox software and when the Design
method is equiripple. Select one of Linear, Minimum, or Maximum.

Minimum order — This option only applies when you have the DSP System Toolbox software and the
Order mode is Minimum.

Select Any (default), Even, or Odd. Selecting Even or Odd forces the minimum-order design to be
an even or odd order.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband when you
select Passband or Stopband.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

 filterBuilder

1-701

Wpass
Passband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Wstop
Stopband weight. This option only applies when Impulse response is FIR and Order mode is
Specify.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Notch

See “Peak/Notch Filter Design — Main Pane” on page 1-710.

Nyquist Filter Design — Main Pane

Filter specifications

Parameters in this group enable you to specify your filter format, such as the impulse response and
the filter order.

Band
Specifies the location of the center of the transition region between the passband and the
stopband. The center of the transition region, bw, is calculated using the value for Band:

bw = Fs/(2 × Band).

Impulse response
Select FIR or IIR from the drop-down list, where FIR is the default impulse response. When you
choose an impulse response, the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not the same as the methods and
structures for IIR filters.

Order mode
Select Minimum (the default) or Specify from the drop-down list. Selecting Specify enables
the Order option (see the following sections) so you can enter the filter order.

1 Functions

1-702

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate converter. Your choice
determines the type of filter as well as the design methods and structures that are available to
implement your filter. By default, filterBuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the Decimation Factor or the
Interpolation Factor options respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the resulting filter is a bandpass filter that
either decimates or interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was selected for Order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Decimator or
Sample-rate converter. The default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the Filter type is set to Interpolator
or Sample-rate converter. The default factor value is 2.

Frequency specifications

The parameters in this group allow you to specify your filter response curve. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, BW is the width of the transition region and Band determines the location of the center
of the region.

Frequency constraints
Select the filter features to use to define the frequency response characteristics. The list contains
the following options, when available for the filter specifications.

• Transition width — Define the filter using transition width and stopband attenuation or
transition width and order.

• Unconstrained — Define the filter by specifying the filter order and having no constraints on
the transition width and stopband attenuation. You can add constraints on the magnitude by
specifying the stopband attenuation.

 filterBuilder

1-703

Frequency units
Use this parameter to specify whether your frequency settings are normalized or in absolute
frequency. Select Normalized (0 to 1) to enter frequencies in normalized form. This behavior
is the default. To enter frequencies in absolute values, select one of the frequency units from the
drop-down list—Hz, kHz, MHz, or GHz. Selecting one of the unit options enables the Input
sample rate parameter.

Input sample rate
Fs, specified in the units you selected for Frequency units, defines the sampling frequency at
the filter input. When you provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is available when you select one of
the frequency options from the Frequency units list.

Transition width
Specify the width of the transition between the end of the passband and the edge of the stopband.
Specify the value in normalized frequency units or the absolute units you select in Frequency
units.

Magnitude specifications

The parameters in this group let you specify the filter response in the passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude specifications. Select one of the
following options from the drop-down list.

• Linear — Specify the magnitude in linear units.
• dB — Specify the magnitude in decibels (default)
• Squared — Specify the magnitude in squared units.

Stopband attenuation
Enter the filter attenuation in the stopband in the units you choose for Magnitude units, either
linear or decibels.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter, such as changing the impulse response, the
methods available to design filters changes as well. The default IIR design method is usually
Butterworth, and the default FIR method is equiripple.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This section does not present all of
the available options for all designs and design methods. There are many more that you encounter as

1 Functions

1-704

you select different design methods and filter specifications. The following options represent some of
the most common ones available.

Density factor
Density factor controls the density of the frequency grid over which the design method
optimization evaluates your filter response function. The number of equally spaced points in the
grid is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely approximates an ideal equiripple filter but
increases the time required to design the filter. The default value of 16 represents a reasonable
trade between the accurate approximation to the ideal filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum phase. Clearing the Minimum phase
option removes the phase constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines and designs the minimum order
filter to meet your specifications. Some filters do not provide this parameter. Select Any, Even, or
Odd from the drop-down list to direct the design to be any minimum order, or minimum even
order, or minimum odd order.

Note Generally, Minimum order designs are not available for IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the passband or stopband or both bands
when you select passband or stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with increasing frequency. Choose
one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation does not change as the frequency
increases.

• Linear — Specifies that the stopband attenuation changes linearly as the frequency
increases. Change the slope of the stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes exponentially as the frequency
increases, where f is the frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the amount of decay applied to the
stopband. the following conditions apply to Stopband decay based on the value of Stopband
Shape:

• When you set Stopband shape to Flat, Stopband decay has no affect on the stopband.
• When you set Stopband shape to Linear, enter the slope of the stopband in units of

dB/rad/s. filterBuilder applies that slope to the stopband.
• When you set Stopband shape to 1/f, enter a value for the exponent n in the relation (1/f)n

to define the stopband decay. filterBuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

 filterBuilder

1-705

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure, and IIR filters
use direct-form II filters with SOS.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Octave Filter Design — Main Pane

Filter specifications

Order
Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1, 3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input sample rate
Specify the input sampling frequency in the frequency units specified previously.

Center Frequency
Select from the drop-down list of available center frequency values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Specify filter structure. Choose from:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

1 Functions

1-706

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a system object filter, then this check box is disabled.

Parametric Equalizer Filter Design — Main Pane

Filter specifications

Order mode
Select Minimum to design a minimum order filter that meets the design specifications, or
Specify to enter a specific filter order. The order mode also affects the possible frequency
constraints, which in turn limit the gain specifications. For example, if you specify a Minimum
order filter, the available frequency constraints are:

• Center frequency, bandwidth, passband width
• Center frequency, bandwidth, stopband width

If you select Specify, the available frequency constraints are:

• Center frequency, bandwidth
• Center frequency, quality factor
• Shelf type, cutoff frequency, quality factor
• Shelf type, cutoff frequency, shelf slope parameter
• Low frequency, high frequency

Order
This parameter is enabled only if the Order mode is set to Specify. Enter the filter order in this
text box.

Frequency specifications

Depending on the filter order, the possible frequency constraints change. Once you choose the
frequency constraints, the input boxes in this area change to reflect the selection.

Frequency constraints
Select the specification to represent the frequency constraints. The following options are
available:

• Center frequency, bandwidth, passband width (available for minimum order only)
• Center frequency, bandwidth, stopband width (available for minimum order only)
• Center frequency, bandwidth (available for a specified order only)
• Center frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, quality factor (available for a specified order only)
• Shelf type, cutoff frequency, shelf slope parameter (available for a specified

order only)
• Low frequency, high frequency (available for a specified order only)

 filterBuilder

1-707

Frequency units
Select the frequency units from the available drop down list (Normalized, Hz, kHz, MHz,
GHz). If Normalized is selected, then the Input sample rate box is disabled for input.

Input sample rate
Enter the input sampling frequency. This input box is disabled for input if Normalized is selected
in the Frequency units input box.

Center frequency
Enter the center frequency in the units specified by the value in Frequency units.

Bandwidth
The bandwidth determines the frequency points at which the filter magnitude is attenuated by the
value specified as the Bandwidth gain in the Gain specifications section. By default, the
Bandwidth gain defaults to db(sqrt(.5)), or –3 dB relative to the center frequency. The
Bandwidth property only applies when the Frequency constraints are: Center frequency,
bandwidth, passband width, Center frequency, bandwidth, stopband width, or
Center frequency, bandwidth.

Passband width
The passband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Passband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, passband width.

Stopband width
The stopband width determines the frequency points at which the filter magnitude is attenuated
by the value specified as the Stopband gain in the Gain specifications section. This option is
enabled only if the filter is of minimum order, and the frequency constraint selected is Center
frequency, bandwidth, stopband width.

Low frequency
Enter the low frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

High frequency
Enter the high frequency cutoff. This option is enabled only if the filter order is user specified and
the frequency constraint selected is Low frequency, high frequency. The filter magnitude
is attenuated by the amount specified in Bandwidth gain.

Gain specifications

Depending on the filter order and frequency constraints, the possible gain constraints change. Also,
once you choose the gain constraints the input boxes in this area change to reflect the selection.

Gain constraints
Select the specification array to represent gain constraints, and remember that not all of these
options are available for all configurations. The following is a list of all available options:

• Reference, center frequency, bandwidth, passband
• Reference, center frequency, bandwidth, stopband
• Reference, center frequency, bandwidth, passband, stopband

1 Functions

1-708

• Reference, center frequency, bandwidth

Gain units
Specify the gain units either dB or squared. These units are used for all gain specifications in the
dialog box.

Reference gain
The reference gain determines the level to which the filter magnitude attenuates in Gain units.
The reference gain is a floor gain for the filter magnitude response. For example, you may use the
reference gain together with the Center frequency gain to leave certain frequencies
unattenuated (reference gain of 0 dB) while boosting other frequencies.

Bandwidth gain
Specifies the gain in Gain units at which the bandwidth is defined. This property applies only
when the Frequency constraints specification contains a bandwidth parameter, or is Low
frequency, high frequency.

Center frequency gain
Specify the center frequency in Gain units

Passband gain
The passband gain determines the level in Gain units at which the passband is defined. The
passband is determined either by the Passband width value, or the Low frequency and High
frequency values in the Frequency specifications section.

Stopband gain
The stopband gain is the level in Gain units at which the stopband is defined. This property
applies only when the Order mode is minimum and the Frequency constraints are Center
frequency, bandwidth, stopband width.

Boost/cut gain
The boost/cut gain applies only when the designing a shelving filter. Shelving filters include the
Shelf type parameter in the Frequency constraints specification. The gain in the passband of
the shelving filter is increased by Boost/cut gain dB from a floor gain of 0 dB.

Algorithm

Design method
Select the design method from the drop-down list. Different IIR design methods are available
depending on the filter constraints you specify.

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

Filter implementation

Structure
Select filter structure. The possible choices are:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

 filterBuilder

1-709

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a System object filter, then this check box is disabled.

Peak/Notch Filter Design — Main Pane

Filter specifications

In this area you can specify whether you want to design a peaking filter or a notching filter, as well as
the order of the filter.

Response
Select Peak or Notch from the drop-down box.

Order
Enter the filter order. The order must be even.

Frequency specifications

This group of parameters allows you to specify frequency constraints and units.

Frequency Constraints
Select the frequency constraints for filter specification. There are two choices as follows:

• Center frequency and quality factor
• Center frequency and bandwidth

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz.

Input sample rate
This input box is enabled if Frequency units other than Normalized (0 to 1) are specified.
Enter the input sampling frequency.

Center frequency
Enter the center frequency in the units you specified in Frequency units.

Quality Factor
This input box is enabled only when Center frequency and quality factor is chosen for
the Frequency Constraints. Enter the quality factor.

Bandwidth
This input box is enabled only when Center frequency and bandwidth is chosen for the
Frequency Constraints. Enter the bandwidth.

Magnitude specifications

This group of parameters allows you to specify the magnitude constraints, as well as their values and
units.

1 Functions

1-710

Magnitude Constraints
Depending on the choice of constraints, the other input boxes are enabled or disabled. Select
from four magnitude constraints available:

• Unconstrained
• Passband ripple
• Stopband attenuation
• Passband ripple and stopband attenuation

Magnitude units
Select the magnitude units: either dB or squared.

Passband ripple
This input box is enabled if the magnitude constraints selected are Passband ripple or
Passband ripple and stopband attenuation. Enter the passband ripple.

Stopband attenuation
This input box is enabled if the magnitude constraints selected are Stopband attenuation or
Passband ripple and stopband attenuation. Enter the stopband attenuation.

Algorithm

The parameters in this group allow you to specify the design method and structure that
filterBuilder uses to implement your filter.

Design Method
Lists all design methods available for the frequency and magnitude specifications you entered.
When you change the specifications for a filter the methods available to design filters changes as
well.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter coefficients to reduce the chances
that the inputs or calculations in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter applies only to IIR filters.

Filter implementation

Structure
Lists all available filter structures for the filter specifications and design method you select. The
typical options are:

• Direct-form I SOS
• Direct-form II SOS
• Direct-form I transposed SOS
• Direct-form II transposed SOS

Use a System object to implement filter
Selecting this check box gives you the choice of using a System object to implement the filter. By
default, the check box is cleared. When the current design method or structure is not supported
by a System object filter, then this check box is disabled.

 filterBuilder

1-711

Pulse-shaping Filter Design —Main Pane

Filter specifications

Parameters in this group enable you to specify the shape and length of the filter.

Pulse shape
Select the shape of the impulse response from the following options:

• Raised Cosine
• Square Root Raised Cosine
• Gaussian

Order mode
This specification is only available for raised cosine and square root raised cosine filters. For
these filters, select one of the following options:

• Minimum— This option will result in the minimum-length filter satisfying the user-specified
Frequency specifications.

• Specify order—This option allows the user to construct a raised cosine or square root
cosine filter of a specified order by entering an even number in the Order input box. The
length of the impulse response will be Order+1 .

• Specify symbols—This option enables the user to specify the length of the impulse
response in an alternative manner. If Specify symbols is chosen, the Order input box
changes to the Number of symbols input box.

Samples per symbol
Specify the oversampling factor. Increasing the oversampling factor guards against aliasing and
improves the FIR filter approximation to the ideal frequency response. If Order is specified in
Number of symbols, the filter length will be Number of symbols*Samples per symbol+1.
The product Number of symbols*Samples per symbol must be an even number.

If a Gaussian filter is specified, the filter length must be specified in Number of symbols and
Samples per symbol. The product Number of symbols*Samples per symbol must be an even
number. The filter length will be Number of symbols*Samples per symbol+1.

Filter Type
This option is only available if you have the DSP System Toolbox software. Choose Single rate,
Decimator, Interpolator, or Sample-rate converter. If you select Decimator or
Interpolator, the decimation and interpolation factors default to the value of the Samples per
symbol. If you select Sample-rate converter, the interpolation factor defaults to Samples
per symbol and the decimation factor defaults to 3.

Frequency specifications

Parameters in this group enable you to specify the frequency response of the filter. For raised cosine
and square root raised cosine filters, the frequency specifications include:

Rolloff factor
The rolloff factor takes values in the range [0,1]. The smaller the rolloff factor, the steeper the
transition in the stopband.

1 Functions

1-712

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

For a Gaussian pulse shape, the available frequency specifications are:

Bandwidth-time product
This option allows the user to specify the width of the Gaussian filter. Note that this is
independent of the length of the filter. The bandwidth-time product (BT) must be a positive real
number. Smaller values of the bandwidth-time product result in larger pulse widths in time and
steeper stopband transitions in the frequency response.

Frequency units
The frequency units are normalized by default. If you specify units other than normalized,
filterBuilder assumes that you wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to 1), Hz, kHz, MHz, GHz

Magnitude specifications

If the Order mode is specified as Minimum, the Magnitude units may be selected from:

• dB— Specify the magnitude in decibels (default).
• Linear— Specify the magnitude in linear units.

Algorithm

The only Design method available for FIR pulse-shaping filters is the Window method.

Filter implementation

Structure
For the filter specifications and design method you select, this parameter lists the filter structures
available to implement your filter. By default, FIR filters use direct-form structure.

Use a System object to implement filter
This check box appears when you set Filter type to Single-rate. Selecting this check box gives
you the choice of using a System object to implement the filter. By default, the check box is
cleared.

This check box no longer appears when you set Filter type to Interpolator, Decimator, or
Sample-rate converter. The filter builder always implements the filter as a System object.

Introduced in R2009a

 filterBuilder

1-713

Filter Designer
Design filters starting with algorithm selection

Description
The Filter Designer app enables you to design and analyze digital filters. You can also import and
modify existing filter designs.

Using the app, you can:

• Choose a response type and filter design method
• Set filter design specifications
• Analyze, edit, and optimize a filter design
• Export a filter design or generate MATLAB code

For more information, see “Introduction to Filter Designer”.

If the DSP System Toolbox product is installed, Filter Designer integrates advanced filter design
methods and the ability to quantize filters. For more information, see filterDesigner (DSP System
Toolbox).

Note This app requires a screen resolution greater than 640 × 480.

1 Functions

1-714

Open the Filter Designer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• Enter filterDesigner in the MATLAB command prompt.

Examples

FIR Bandpass Filter with Asymmetric Attenuation

Use the Filter Designer app to create a 50th-order equiripple FIR bandpass filter to be used with
signals sampled at 1 kHz.

 Filter Designer

1-715

N = 50;
Fs = 1e3;

Specify that the passband spans frequencies of 200–300 Hz and that the transition region on either
side has a width of 50 Hz.

Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;

Specify weights for the optimization fit:

• 3 for the low-frequency stopband
• 1 for the passband
• 100 for the high-frequency stopband

Open the Filter Designer app.

Wstop1 = 3;
Wpass = 1;
Wstop2 = 100;

filterDesigner

Use the app to design the rest of the filter. To specify the frequency constraints and magnitude
specifications, use the variables you created.

1 Set Response Type to Bandpass.
2 Set Design Method to FIR. From the drop-down list, select Equiripple.
3 Under Filter Order, specify the order as N.
4 Under Frequency Specifications, specify Fs as Fs.
5 Click Design Filter.

1 Functions

1-716

Arbitrary Magnitude Filter

Design an FIR filter with the following piecewise frequency response:

• A sinusoid between 0 and 0.19π rad/sample.

F1 = 0:0.01:0.19;
A1 = 0.5+sin(2*pi*7.5*F1)/4;

• A piecewise linear section between 0.2π rad/sample and 0.78π rad/sample.

F2 = [0.2 0.38 0.4 0.55 0.562 0.585 0.6 0.78];
A2 = [0.5 2.3 1 1 -0.2 -0.2 1 1];

• A quadratic section between 0.79π rad/sample and the Nyquist frequency.

F3 = 0.79:0.01:1;
A3 = 0.2+18*(1-F3).^2;

 Filter Designer

1-717

Specify a filter order of 50. Consolidate the frequency and amplitude vectors. To give all bands equal
weights during the optimization fit, specify a weight vector of all ones. Open the Filter Designer
app.

N = 50;

FreqVect = [F1 F2 F3];
AmplVect = [A1 A2 A3];
WghtVect = ones(1,N/2);

filterDesigner

Use the app to design the filter.

1 Under Response Type, select the button next to Differentiator. From the drop-down list,
choose Arbitrary Magnitude.

2 Set Design Method to FIR. From the drop-down list, select Least-squares.
3 Under Filter Order, specify the order as the variable N.
4 Under Frequency and Magnitude Specifications, specify the variables you created:

• Freq. vector — FreqVect.
• Mag. vector — AmplVect.
• Weight vector — WghtVect.

5 Click Design Filter.
6 Right-click the y-axis of the plot and select Magnitude to express the magnitude response in

linear units.

1 Functions

1-718

• “Introduction to Filter Designer”
• “Getting Started with Filter Designer”

See Also
Apps
Signal Analyzer | Window Designer

Functions
designfilt | FVTool | WVTool

Topics
“Introduction to Filter Designer”
“Getting Started with Filter Designer”

 Filter Designer

1-719

Introduced before R2006a

1 Functions

1-720

filternorm
2-norm or infinity-norm of digital filter

Syntax
L = filternorm(b,a)
L = filternorm(b,a,pnorm)
L = filternorm(b,a,2,tol)

Description
A typical use for filter norms is in digital filter scaling to reduce quantization effects. Scaling often
improves the signal-to-noise ratio of the filter without resulting in data overflow. You also can use the
2-norm to compute the energy of the impulse response of a filter.

L = filternorm(b,a) computes the 2-norm of the digital filter defined by the numerator
coefficients in b and denominator coefficients in a.

L = filternorm(b,a,pnorm) computes the 2- or infinity-norm (inf-norm) of the digital filter,
where pnorm is either 2 or inf.

L = filternorm(b,a,2,tol) computes the 2-norm of an IIR filter with the specified tolerance,
tol. The tolerance can be specified only for IIR 2-norm computations. pnorm in this case must be 2.
If tol is not specified, it defaults to 10–8.

Examples

Filter Norms

Compute the 2-norm of a Butterworth IIR filter with tolerance 10−10. Specify a normalized cutoff
frequency of 0 . 5π rad/s and a filter order of 5.

[b,a] = butter(5,0.5);
L2 = filternorm(b,a,2,1e-10)

L2 = 0.7071

Compute the infinity-norm of an FIR Hilbert transformer of order 30 and normalized transition width
0 . 2π rad/s.

b = firpm(30,[.1 .9],[1 1],'Hilbert');
Linf = filternorm(b,1,inf)

Linf = 1.0028

Algorithms
Given a filter with frequency response H(ejω), the Lp-norm for 1 ≤ p < ∞ is given by

 filternorm

1-721

H(e jω) p = 1
2π∫−π

π
H(e jω) pdω

1/p
.

For the case p → ∞, the L∞-norm is

H(e jω) ∞ = max
−π ≤ ω ≤ π

H(e jω) .

For the case p = 2, Parseval's theorem states that

H(e jω) 2 = 1
2π∫−π

π
H(e jω)

2
dω

1/2
= ∑

n
h(n) 2

1/2
,

where h(n) is the impulse response of the filter. The energy of the impulse response is the squared L2-
norm.

References

[1] Jackson, L. B. Digital Filters and Signal Processing: with MATLAB Exercises. 3rd Ed. Hingham,
MA: Kluwer Academic Publishers, 1996, Chapter 11.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
zp2sos | norm

Introduced before R2006a

1 Functions

1-722

filtfilt
Zero-phase digital filtering

Syntax
y = filtfilt(b,a,x)
y = filtfilt(sos,g,x)
y = filtfilt(d,x)

Description
y = filtfilt(b,a,x) performs zero-phase digital filtering by processing the input data, x, in both
the forward and reverse directions. After filtering the data in the forward direction, filtfilt
reverses the filtered sequence and runs it back through the filter. The result has the following
characteristics:

• Zero phase distortion.
• A filter transfer function equal to the squared magnitude of the original filter transfer function.
• A filter order that is double the order of the filter specified by b and a.

filtfilt minimizes start-up and ending transients by matching initial conditions. Do not use
filtfilt with differentiator and Hilbert FIR filters, because the operation of these filters depends
heavily on their phase response.

y = filtfilt(sos,g,x) zero-phase filters the input data, x, using the second-order section
(biquad) filter represented by the matrix sos and the scale values g.

y = filtfilt(d,x) zero-phase filters the input data, x, using a digital filter, d. Use designfilt to
generate d based on frequency-response specifications.

Examples

Zero-Phase Filtering of an Electrocardiogram Waveform

Zero-phase filtering helps preserve features in a filtered time waveform exactly where they occur in
the unfiltered signal.

Use filtfilt to zero-phase filter a synthetic electrocardiogram (ECG) waveform. The function that
generates the waveform is at the end of the example. The QRS complex is an important feature in the
ECG. Here it begins around time point 160.

wform = ecg(500);

plot(wform)
axis([0 500 -1.25 1.25])
text(155,-0.4,'Q')
text(180,1.1,'R')
text(205,-1,'S')

 filtfilt

1-723

Corrupt the ECG with additive noise. Reset the random number generator for reproducible results.
Construct a lowpass FIR equiripple filter and filter the noisy waveform using both zero-phase and
conventional filtering.

rng default

x = wform' + 0.25*randn(500,1);
d = designfilt('lowpassfir', ...
 'PassbandFrequency',0.15,'StopbandFrequency',0.2, ...
 'PassbandRipple',1,'StopbandAttenuation',60, ...
 'DesignMethod','equiripple');
y = filtfilt(d,x);
y1 = filter(d,x);

subplot(2,1,1)
plot([y y1])
title('Filtered Waveforms')
legend('Zero-phase Filtering','Conventional Filtering')

subplot(2,1,2)
plot(wform)
title('Original Waveform')

1 Functions

1-724

Zero-phase filtering reduces noise in the signal and preserves the QRS complex at the same time it
occurs in the original. Conventional filtering reduces noise in the signal, but delays the QRS complex.

Repeat the above using a Butterworth second-order section filter.

d1 = designfilt('lowpassiir','FilterOrder',12, ...
 'HalfPowerFrequency',0.15,'DesignMethod','butter');
y = filtfilt(d1,x);

subplot(1,1,1)
plot(x)
hold on
plot(y,'LineWidth',3)
legend('Noisy ECG','Zero-Phase Filtering')

 filtfilt

1-725

This is the function that generates the ECG waveform.

function x = ecg(L)
%ECG Electrocardiogram (ECG) signal generator.
% ECG(L) generates a piecewise linear ECG signal of length L.
%
% EXAMPLE:
% x = ecg(500).';
% y = sgolayfilt(x,0,3); % Typical values are: d=0 and F=3,5,9, etc.
% y5 = sgolayfilt(x,0,5);
% y15 = sgolayfilt(x,0,15);
% plot(1:length(x),[x y y5 y15]);

% Copyright 1988-2002 The MathWorks, Inc.

a0 = [0,1,40,1,0,-34,118,-99,0,2,21,2,0,0,0]; % Template
d0 = [0,27,59,91,131,141,163,185,195,275,307,339,357,390,440];
a = a0 / max(a0);
d = round(d0 * L / d0(15)); % Scale them to fit in length L
d(15)=L;

for i=1:14,
 m = d(i) : d(i+1) - 1;
 slope = (a(i+1) - a(i)) / (d(i+1) - d(i));
 x(m+1) = a(i) + slope * (m - d(i));
end

1 Functions

1-726

end

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. If you use an all-pole filter, enter 1 for b. If you
use an all-zero (FIR) filter, enter 1 for a.
Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with a
normalized 3-dB frequency of 0.5π rad/sample.
Data Types: double

x — Input signal
vector | matrix | N-D array

Input signal, specified as a real-valued or complex-valued vector, matrix, or N-D array. x must be
finite-valued. filtfilt operates along the first array dimension of x with size greater than 1.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: double

sos — Second-order section coefficients
matrix

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, then
filtfilt treats the input as a numerator vector. Each row of sos corresponds to the coefficients of
a second-order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1)
ai(2) ai(3)].
Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with a
normalized 3-dB frequency of 0.5π rad/sample.
Data Types: double

g — Scale factors
vector

Scale factors, specified as a vector.
Data Types: double

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with a normalized 3-dB frequency of 0.5π rad/sample.

 filtfilt

1-727

Data Types: double

Output Arguments
y — Filtered signal
vector | matrix | N-D array

Filtered signal, returned as a vector, matrix, or N-D array.

References
[1] Gustafsson, F. “Determining the initial states in forward-backward filtering.” IEEE Transactions on

Signal Processing. Vol. 44, April 1996, pp. 988–992.

[2] Mitra, Sanjit K. Digital Signal Processing. 2nd Ed. New York: McGraw-Hill, 2001.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

digitalFilter objects are not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

digitalFilter objects are not supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Both b and a must not have more than 10 coefficients.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
designfilt | digitalFilter | fftfilt | filter | filter2

Topics
“Remove the 60 Hz Hum from a Signal”
“Practical Introduction to Digital Filtering”
“Anti-Causal, Zero-Phase Filter Implementation”

1 Functions

1-728

Introduced before R2006a

 filtfilt

1-729

filtic
Initial conditions for transposed direct-form II filter implementation

Syntax
z = filtic(b,a,y,x)
z = filtic(b,a,y)

Description
z = filtic(b,a,y,x) finds the initial conditions, z, for the delays in the transposed direct-form II
filter implementation given past outputs y and inputs x. The vectors b and represent the numerator
and denominator coefficients, respectively, of the filter's transfer function.

z = filtic(b,a,y) assumes that the input x is 0 in the past..

Examples

Zero Input Response for Past Input and Output

Determine the zero input response of the following system:
y n + 1 . 12y n− 1 = 0 . 1x n + 0 . 2x n− 1 with initial condition y −1 = 1. Set the numerator and
denominator coefficients and the initial conditions for the output.

b = [0.1 0.2];
a = [1 1.12];
Y = 1;

Calculate the zero input initial conditions for the system.

xic = filtic(b,a,Y);

Compute the zero input response.

yzi = filter(b,a,zeros(1,20),xic);
stem(yzi)

1 Functions

1-730

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors.
Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with a
normalized 3-dB frequency of 0.5π rad/sample.

y — Past output
vector

Past output, specified as a vector. The vector y contains the most recent output first, and oldest
output last as in

y = [y(− 1), y(− 2), y(− 3), …, y(−m)]

where m is length(a)-1 (the denominator order); if length(y) is less than m, filtic pads it with
zeros to length m.

x — Past input
vector

Past input, specified as a vector. The vector x contains the most recent input first, and oldest input
last as in

 filtic

1-731

x = [x(− 1), x(− 2), x(− 3), …, x(− n)]

where n is length(b)-1 (the numerator order). If length(x) is less than n, filtic pads it with
zeros to length n

Output Arguments
z — Initial conditions
column vector

Initial conditions, returned as a vector. The output z is a column vector of length equal to the larger
of n and m. z describes the state of the delays given past inputs x and past outputs y.

Tips
If any of the input arguments y, x, b, or a is not a vector (that is, if any argument is a scalar or array),
filtic gives the following error message:

Requires vector inputs.

Algorithms
filtic performs a reverse difference equation to obtain the delay states z. Elements of x beyond
x(n-1) and elements of y beyond y(m-1) are unnecessary so filtic ignores them.

The transposed direct-form II structure is shown in the following illustration.

n – 1 is the filter order.

References
[1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989, pp. 296,

301-302.

See Also
filter | filtfilt

Introduced before R2006a

1 Functions

1-732

filtord
Filter order

Syntax
n = filtord(b,a)
n = filtord(sos)
n = filtord(d)

Description
n = filtord(b,a) returns the filter order, n, for the causal rational system function specified by
the numerator coefficients, b, and denominator coefficients, a.

n = filtord(sos) returns the filter order for the filter specified by the second-order sections
matrix, sos. sos is a K-by-6 matrix. The number of sections, K, must be greater than or equal to 2.
Each row of sos corresponds to the coefficients of a second-order filter. The ith row of the second-
order section matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

n = filtord(d) returns the filter order, n, for the digital filter, d. Use the function designfilt to
generate d.

Examples

Verify Order of FIR Filter

Design a 20th-order FIR filter with normalized cutoff frequency 0 . 5π rad/sample using the window
method. Verify the filter order.

b = fir1(20,0.5);
n = filtord(b)

n = 20

Design the same filter using designfilt and verify its order.

di = designfilt('lowpassfir','FilterOrder',20,'CutoffFrequency',0.5);
ni = filtord(di)

ni = 20

Determine the Order Difference Between FIR and IIR Designs

Design FIR equiripple and IIR Butterworth filters from the same set of specifications. Determine the
difference in filter order between the two designs.

fir = designfilt('lowpassfir','DesignMethod','equiripple','SampleRate',1e3, ...
 'PassbandFrequency',100,'StopbandFrequency',120, ...

 filtord

1-733

 'PassbandRipple',0.5,'StopbandAttenuation',60);
iir = designfilt('lowpassiir','DesignMethod','butter','SampleRate',1e3, ...
 'PassbandFrequency',100,'StopbandFrequency',120, ...
 'PassbandRipple',0.5,'StopbandAttenuation',60);
FIR = filtord(fir)

FIR = 114

IIR = filtord(iir)

IIR = 41

Input Arguments
b — Numerator coefficients
vector | scalar

Numerator coefficients, specified as a scalar or a vector. If the filter is an allpole filter, b is a scalar.
Otherwise, b is a row or column vector.
Example: b = fir1(20,0.25)
Data Types: single | double
Complex Number Support: Yes

a — Denominator coefficients
vector | scalar

Denominator coefficients, specified as a scalar or a vector. If the filter is an FIR filter, a is a scalar.
Otherwise, a is a row or column vector.
Example: [b,a] = butter(20,0.25)
Data Types: single | double
Complex Number Support: Yes

sos — Matrix of second-order sections
matrix

Matrix of second order-sections, specified as a K-by-6 matrix. The system function of the Kth biquad
filter has the rational Z-transform

Hk(z) =
Bk(1) + Bk(2)z−1 + Bk(3)z−2

Ak(1) + Ak(2)z−1 + Ak(3)z−2 .

The coefficients in the Kth row of the matrix, sos, are ordered as follows.

Bk(1) Bk(2) Bk(3) Ak(1) Ak(2) Ak(3) .

The frequency response of the filter is the system function evaluated on the unit circle with

z = e j2πf .

Data Types: single | double
Complex Number Support: Yes

1 Functions

1-734

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
n — Filter order
integer

Filter order, specified as an integer.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designfilt | digitalFilter | isallpass | isminphase | ismaxphase | isstable

Introduced in R2013a

 filtord

1-735

filtstates
Filter states

Syntax
Hs = filtstates.structure(input1,...)

Description
Hs = filtstates.structure(input1,...) returns a filter states object Hs, which contains the
filter states.

You can extract a filtstates object from the states property of an object with

Hd = dfilt.df1
Hs = Hd.states

Structures

Structures for filtstates specify the type of filter structure. Available types of structures for
filtstates are shown below.

filtstates.structure Description
filtstates.dfiir filtstates for IIR direct-form I filters (dfilt.df1,

dfilt.df1t, dfilt.df1sos, and dfilt.df1tsos)
filtstates.cic filtstates for cascaded integrator comb filters. (Available only

with DSP System Toolbox and Fixed-Point Designer products.)

Refer to the particular filtstates.structure reference page or use the syntax
help filtstates.structure at the MATLAB prompt for more information.

See Also
filtstates.dfiir

Introduced before R2006a

1 Functions

1-736

filtstates.dfiir
IIR direct-form filter states

Syntax
Hs = filtstates.dfiir(numstates,denstates)

Description
Hs = filtstates.dfiir(numstates,denstates) returns an IIR direct-form filter states object
Hs with two properties — Numerator and Denominator, which contain the filter states. These two
properties are column vectors with each column representing a separate channel of filter states. The
number of states is always one less than the number of filter numerator or denominator coefficients.

You can extract a filtstates object from the states property of an IIR direct-form I object with

Hd = dfilt.df1
Hs = Hd.states

Methods

You can use the following methods on a filtstates.dfiir object.

Method Description
double Converts a filtstates object to a double-precision vector containing

the values of the numerator and denominator states. The numerator
states are listed first in this vector, followed by the denominator states.

single Converts a filtstates object to a single-precision vector containing the
values of the numerator and denominator states. (This method is used
with the DSP System Toolbox product.)

Examples
This example demonstrates the interaction of filtstates with a dfilt.df1 object.

[b,a] = butter(4,0.5); % Design butterworth filter
Hd = dfilt.df1(b,a); % Create dfilt object
Hs = Hd.states % Extract filter states object
 % from dfilt states property
Hs.Numerator = [1,1,1,1] % Modify numerator states
Hd.states = Hs % Set modified states back to
 % original object

Dbl = double(Hs) % Create double vector from
 % states

See Also
filtstates

 filtstates.dfiir

1-737

Introduced before R2006a

1 Functions

1-738

filt2block
Generate Simulink filter block

Syntax
filt2block(b)
filt2block(b,'subsystem')
filt2block(___ ,'FilterStructure',structure)

filt2block(b,a)
filt2block(b,a,'subsystem')
filt2block(___ ,'FilterStructure',structure)

filt2block(sos)
filt2block(sos,'subsystem')
filt2block(___ ,'FilterStructure',structure)

filt2block(d)
filt2block(d,'subsystem')
filt2block(___ ,'FilterStructure',structure)

filt2block(___ ,Name,Value)

Description
filt2block(b) generates a Discrete FIR Filter block with filter coefficients, b.

filt2block(b,'subsystem') generates a Simulink subsystem block that implements an FIR filter
using sum, gain, and delay blocks.

filt2block(___ ,'FilterStructure',structure) specifies the filter structure for the FIR
filter.

filt2block(b,a) generates a Discrete Filter block with numerator coefficients, b, and
denominator coefficients, a.

filt2block(b,a,'subsystem') generates a Simulink subsystem block that implements an IIR
filter using sum, gain, and delay blocks.

filt2block(___ ,'FilterStructure',structure) specifies the filter structure for the IIR
filter.

filt2block(sos) generates a Biquad Filter block with second order sections matrix, sos.
sos is a K-by-6 matrix, where the number of sections, K, must be greater than or equal to 2. You must
have the DSP System Toolbox software installed to use this syntax.

filt2block(sos,'subsystem') generates a Simulink subsystem block that implements a biquad
filter using sum, gain, and delay blocks.

filt2block(___ ,'FilterStructure',structure) specifies the filter structure for the
biquad filter.

 filt2block

1-739

filt2block(d) generates a Simulink block that implements a digital filter, d. Use the function
designfilt to create d. The block is a Discrete FIR Filter block if d is FIR and a Biquad
Filter block if d is IIR.

filt2block(d,'subsystem') generates a Simulink subsystem block that implements d using sum,
gain, and delay blocks.

filt2block(___ ,'FilterStructure',structure) specifies the filter structure to
implement d.

filt2block(___ ,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

Examples

Generate Block from FIR Filter

Design a 30th-order FIR filter using the window method. Specify a cutoff frequency of π/4 rad/sample.
Create a Simulink® block.

b = fir1(30,0.25);
filt2block(b)

Generate Block from IIR Filter

Design a 30th-order IIR Butterworth filter. Specify a cutoff frequency of π/4 rad/sample. Create a
Simulink® block.

[b,a] = butter(30,0.25);
filt2block(b,a)

Generate FIR Filter with Direct Form I Transposed Structure

Design a 30th-order FIR filter using the window method. Specify a cutoff frequency of π/4 rad/sample.
Create a Simulink® block with a direct form I transposed structure.

b = fir1(30,0.25);
filt2block(b,'FilterStructure','directFormTransposed')

1 Functions

1-740

Generate IIR Filter with Direct Form I Structure

Design a 30th-order IIR Butterworth filter. Specify a cutoff frequency of π/4 rad/sample. Create a
Simulink® block with a direct form I structure.

[b,a] = butter(30,0.25);
filt2block(b,a,'FilterStructure','directForm1')

Generate Subsystem Block from Second-Order Section Matrix

Design a 5-th order Butterworth filter with a cutoff frequency of π/5 rad/sample. Obtain the filter in
biquad form and generate a Simulink® subsystem block from the second order sections.

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);
filt2block(sos,'subsystem')

Lowpass FIR Filter Block with Sample-Based Processing

Generate a Simulink® subsystem block that implements an FIR lowpass filter using sum, gain, and
delay blocks. Specify the input processing to be elements as channels by specifying
'FrameBasedProcessing' as false.

B = fir1(30,.25);
filt2block(B,'subsystem','BlockName','Lowpass FIR',...
 'FrameBasedProcessing',false)

 filt2block

1-741

New Model with Highpass Elliptic Filter Block

Design a highpass elliptic filter with normalized stopband frequency 0.45 and normalized passband
frequency 0.55. Specify a stopband attenuation of 40Design a highpass elliptic filter with normalized
stopband frequency 0.45 and normalized passband frequency 0.55. Specify a stopband attenuation of
40 dB and a passband ripple of 0.5 dB. Implement the filter as a Direct Form II structure, call it "HP",
and place it in a new Simulink® model.

d = designfilt('highpassiir','DesignMethod','ellip', ...
 'StopbandFrequency',0.45,'PassbandFrequency',0.55, ...
 'StopbandAttenuation',40,'PassbandRipple',0.5);

filt2block(d,'subsystem','FilterStructure','directForm2', ...
 'Destination','new','BlockName','HP')

Input Arguments
b — Numerator filter coefficients
row or column vector

Numerator filter coefficients, specified as a row or column vector. The filter coefficients are ordered
in descending powers of z–1 with the first element corresponding to the coefficient for z0.
Example: b = fir1(30,0.25);
Data Types: single | double
Complex Number Support: Yes

a — Denominator filter coefficients
row or column vector

Denominator filter coefficients, specified as a row or column vector. The filter coefficients are ordered
in descending powers of z–1 with the first element corresponding to the coefficient for z0. The first
filter coefficient must be 1.
Data Types: single | double
Complex Number Support: Yes

sos — Second-order section matrix
K-by-2 matrix

1 Functions

1-742

Second order section matrix, specified as a K-by-2 matrix. Each row of the matrix contains the
coefficients for a biquadratic rational function in z–1. The Z-transform of the Kth rational biquadratic
system impulse response is

Hk(z) =
Bk(1) + Bk(2)z−1 + Bk(3)z−2

Ak(1) + Ak(2)z−1 + Ak(3)z−2

The coefficients in the Kth row of the matrix, sos, are ordered as follows:

Bk(1) Bk(2) Bk(3) Ak(1) Ak(2) Ak(3)

The frequency response of the filter is its transfer function evaluated on the unit circle with z = ej2πf.
Data Types: single | double
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

structure — Filter structure
character vector | string scalar

Filter structure, specified as a character vector or string scalar. Valid options for structure depend
on the input arguments. The following table lists the valid filter structures by input.

Input Filter Structures
b 'directForm' (default),

'directFormTransposed',
'directFormSymmetric',
'directFormAntiSymmetric',
'overlapAdd'. The 'overlapAdd' structure is
only available when you omit 'subsystem' and
requires a DSP System Toolbox software license.

a 'directForm2' (default), 'directForm1',
'directForm1Transposed', 'directForm2',
'directForm2Transposed'

sos 'directForm2Transposed' (default),
'directForm1', 'directForm1Transposed',
'directForm2'

 filt2block

1-743

Input Filter Structures
d • For FIR filters: 'directForm' (default),

'directFormTransposed',
'directFormSymmetric',
'directFormAntiSymmetric',
'overlapAdd'. The 'overlapAdd'
structure is only available when you omit
'subsystem' and requires a DSP System
Toolbox software license.

• For IIR filters: 'directForm2Transposed'
(default), 'directForm1',
'directForm1Transposed',
'directForm2'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: filt2block(...,'subsystem','BlockName','Lowpass
FIR','FrameBasedProcessing',false)

Destination — Destination for Simulink filter block
'current' (default) | 'new' | character vector | string scalar

Destination for the Simulink filter block, specified as a character vector or string scalar. You can add
the filter block to your current model with 'current', add the filter block to a new model with
'new', or specify the name of an existing model.
Example: filt2block([1 2 1],'Destination','MyModel','BlockName','New block')
Data Types: char | string

BlockName — Block name
character vector | string scalar

Block name, specified as a character vector or string scalar.
Data Types: char | string

OverwriteBlock — Overwrite block
false (default) | true

Overwrite block, specified as a logical false or true. If you use a value for 'BlockName' that is the
same as an existing block, the value of 'OverwriteBlock' determines whether the block is
overwritten. The default value is false.
Data Types: logical

MapCoefficientsToPorts — Map coefficients to ports
false (default) | true

Map coefficients to ports, specified as a logical false or true.
Data Types: logical

1 Functions

1-744

CoefficientNames — Coefficient variable names
cell array of character vectors | string array

Coefficient variable names, specified as a cell array of character vectors or a string array. This name-
value pair is only applicable when 'MapCoefficientsToPorts' is true. The default values are
{'Num'}, {'Num','Den'}, and {'Num','Den','g'} for FIR, IIR, and biquad filters.
Data Types: cell | string

FrameBasedProcessing — Frame-based or sample-based processing
true (default) | false

Frame-based or sample-based processing, specified as a logical true or false. The default is true
and frame-based processing is used.
Data Types: logical

OptimizeZeros — Remove zero-gain blocks
true (default) | false

Remove zero-gain blocks, specified as a logical true or false. By default zero-gain blocks are
removed.
Data Types: logical

OptimizeOnes — Replace unity-gain blocks with direct connection
true (default) | false

Replace unity-gain blocks with direct connection, specified as a logical true or false. The default is
true.
Data Types: logical

OptimizeNegativeOnes — Replace negative unity-gain blocks with sign change
true (default) | false

Replace negative unity-gain blocks with a sign change at the nearest block, specified as a logical
true or false. The default is true.
Data Types: logical

OptimizeDelayChains — Replace cascaded delays with a single delay
true (default) | false

Replace cascaded delays with a single delay, specified as a logical true or false. The default is
true.
Data Types: logical

See Also
designfilt | digitalFilter

Introduced in R2013a

 filt2block

1-745

findchangepts
Find abrupt changes in signal

Syntax
ipt = findchangepts(x)
ipt = findchangepts(x,Name,Value)

[ipt,residual] = findchangepts(___)

findchangepts(___)

Description
ipt = findchangepts(x) returns the index at which the mean of x changes most significantly.

• If x is a vector with N elements, then findchangepts partitions x into two regions, x(1:ipt-1)
and x(ipt:N), that minimize the sum of the residual (squared) error of each region from its local
mean.

• If x is an M-by-N matrix, then findchangepts partitions x into two regions, x(1:M,1:ipt-1)
and x(1:M,ipt:N), returning the column index that minimizes the sum of the residual error of
each region from its local M-dimensional mean.

ipt = findchangepts(x,Name,Value) specifies additional options using name-value arguments.
Options include the number of changepoints to report and the statistic to measure instead of the
mean. See “Changepoint Detection” on page 1-767 for more information.

[ipt,residual] = findchangepts(___) also returns the residual error of the signal against
the modeled changes, incorporating any of the previous specifications.

findchangepts(___) without output arguments plots the signal and any detected changepoints.
See “Statistic” on page 1-0 for more information.

Note Before plotting, the findchangepts function clears (clf) the current figure. To plot the signal
and detected changepoints in a subplot, use a plotting function. See “Audio File Segmentation” on
page 1-752.

Examples

Changepoints in One and Two Dimensions

Load a data file containing a recording of a train whistle sampled at 8192 Hz. Find the 10 points at
which the root-mean-square level of the signal changes most significantly.

load train

findchangepts(y,'MaxNumChanges',10,'Statistic','rms')

1 Functions

1-746

Compute the short-time power spectral density of the signal. Divide the signal into 128-sample
segments and window each segment with a Hamming window. Specify 120 samples of overlap
between adjoining segments and 128 DFT points. Find the 10 points at which the mean of the power
spectral density changes the most significantly.

[s,f,t,pxx] = spectrogram(y,128,120,128,Fs);

findchangepts(pow2db(pxx),'MaxNumChanges',10)

Changepoint Search Options

Reset the random number generator for reproducible results. Generate a random signal where:

• The mean is constant in each of seven regions and changes abruptly from region to region.
• The variance is constant in each of five regions and changes abruptly from region to region.

rng('default')

lr = 20;

mns = [0 1 4 -5 2 0 1];
nm = length(mns);

vrs = [1 4 6 1 3];

 findchangepts

1-747

nv = length(vrs);

v = randn(1,lr*nm*nv)/2;

f = reshape(repmat(mns,lr*nv,1),1,lr*nm*nv);
y = reshape(repmat(vrs,lr*nm,1),1,lr*nm*nv);

t = v.*y+f;

Plot the signal, highlighting the steps of its construction.

subplot(2,2,1)
plot(v)
title('Original')
xlim([0 700])

subplot(2,2,2)
plot([f;v+f]')
title('Means')
xlim([0 700])

subplot(2,2,3)
plot([y;v.*y]')
title('Variances')
xlim([0 700])

subplot(2,2,4)
plot(t)
title('Final')
xlim([0 700])

1 Functions

1-748

Find the five points where the mean of the signal changes most significantly.

figure
findchangepts(t,'MaxNumChanges',5)

 findchangepts

1-749

Find the five points where the root-mean-square level of the signal changes most significantly.

findchangepts(t,'MaxNumChanges',5,'Statistic','rms')

1 Functions

1-750

Find the point where the mean and standard deviation of the signal change the most.

findchangepts(t,'Statistic','std')

 findchangepts

1-751

Audio File Segmentation

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb

Discern the vowels and consonants in the word by finding the points at which the variance of the
signal changes significantly. Limit the number of changepoints to five.

numc = 5;

[q,r] = findchangepts(mtlb,'Statistic','rms','MaxNumChanges',numc);

Plot the signal and display the changepoints.

findchangepts(mtlb,'Statistic','rms','MaxNumChanges',numc)

Create a signal mask for the speech signal based on the changepoint indices. See signalMask for
more information about using a signal mask.

t = (0:length(mtlb)-1)/Fs;
roitable = t([[1;q] [q;length(mtlb)]]);
x = ["M" "A" "T" "L" "A" "B"]';
y = unique(x,"stable");

1 Functions

1-752

c = categorical(x,y);
src = table(roitable,c);
msk = signalMask(src,"SampleRate",Fs,"RightShortening",1);
roimask(msk)

ans=6×2 table
 roitable c
 ___________________ _

 0 0.017525 M
 0.01766 0.10461 A
 0.10475 0.22162 T
 0.22176 0.33675 L
 0.33688 0.46535 A
 0.46549 0.53909 B

Plot the speech signal and detected changepoints in a subplot along with the regions of interest from
the signal mask:

• In the upper subplot, use the plotsigroi function to visualize the signal mask regions. Adjust
the settings to make the colorbar appear at the top of the plot and display the unique categories
from the table mask in the correct order.

• In the lower subplot, plot the original speech signal and add the detected changepoints as vertical
lines on the plot.

subplot(2,1,1)
plotsigroi(msk,mtlb)
 colorbar('off')
 clrs = lines(numel(c)-1);
 cmap = fliplr(clrs);
 tickLbls = categories(c)';
 colormap(gca,clrs);
 numCategories = numel(c)-1;
 Ticks = 1/(numCategories*2):1/numCategories:1;
 colorbar(TickLabels=tickLbls,Ticks=Ticks,TickLength=0,Location='northoutside')
subplot(2,1,2)
plot(t,mtlb)
hold on
xline(q/Fs)
hold off
xlim([0 t(end)])

 findchangepts

1-753

To play the sound with a pause after each of the segments, uncomment the following lines.

% soundsc(1:q(1),Fs)
% for k = 1:length(q)-1
% soundsc(mtlb(q(k):q(k+1)),Fs)
% pause(1)
% end
% soundsc(q(end):length(mtlb),Fs)

Change of Mean, RMS Level, Standard Deviation, and Slope

Create a signal that consists of two sinusoids with varying amplitude and a linear trend.

vc = sin(2*pi*(0:201)/17).*sin(2*pi*(0:201)/19).* ...
 [sqrt(0:0.01:1) (1:-0.01:0).^2]+(0:201)/401;

Find the points where the signal mean changes most significantly. The 'Statistic' name-value
argument is optional in this case. Specify a minimum residual error improvement of 1.

findchangepts(vc,'Statistic','mean','MinThreshold',1)

1 Functions

1-754

Find the points where the root-mean-square level of the signal changes the most. Specify a minimum
residual error improvement of 6.

findchangepts(vc,'Statistic','rms','MinThreshold',6)

 findchangepts

1-755

Find the points where the standard deviation of the signal changes most significantly. Specify a
minimum residual error improvement of 10.

findchangepts(vc,'Statistic','std','MinThreshold',10)

1 Functions

1-756

Find the points where the mean and the slope of the signal change most abruptly. Specify a minimum
residual error improvement of 0.6.

findchangepts(vc,'Statistic','linear','MinThreshold',0.6)

 findchangepts

1-757

Changepoints of 2-D and 3-D Bézier Curves

Generate a two-dimensional, 1000-sample Bézier curve with 20 random control points. A Bézier curve
is defined by:

C(t) = ∑
k = 0

m m
k tk(1 − t)m− kPk,

where Pk is the kth of m control points, t ranges from 0 to 1, and m
k is a binomial coefficient. Plot

the curve and the control points.

m = 20;
P = randn(m,2);
t = linspace(0,1,1000)';

pol = t.^(0:m-1).*(1-t).^(m-1:-1:0);
bin = gamma(m)./gamma(1:m)./gamma(m:-1:1);
crv = bin.*pol*P;

plot(crv(:,1),crv(:,2),P(:,1),P(:,2),'o:')

1 Functions

1-758

Partition the curve into three segments, such that the points in each segment are at a minimum
distance from the segment mean.

findchangepts(crv','MaxNumChanges',3)

 findchangepts

1-759

Partition the curve into 20 segments that are best fit by straight lines.

findchangepts(crv','Statistic','linear','MaxNumChanges',19)

1 Functions

1-760

Generate and plot a three-dimensional Bézier curve with 20 random control points.

P = rand(m,3);
crv = bin.*pol*P;

plot3(crv(:,1),crv(:,2),crv(:,3),P(:,1),P(:,2),P(:,3),'o:')
xlabel('x')
ylabel('y')

 findchangepts

1-761

Visualize the curve from above.

view([0 0 1])

1 Functions

1-762

Partition the curve into three segments, such that the points in each segment are at a minimum
distance from the segment mean.

findchangepts(crv','MaxNumChanges',3)

 findchangepts

1-763

Partition the curve into 20 segments that are best fit by straight lines.

findchangepts(crv','Statistic','linear','MaxNumChanges',19)

1 Functions

1-764

Input Arguments
x — Input signal
real vector

Input signal, specified as a real vector.
Example: reshape(randn(100,3)+[-3 0 3],1,300) is a random signal with two abrupt changes
in mean.
Example: reshape(randn(100,3).*[1 20 5],1,300) is a random signal with two abrupt
changes in root-mean-square level.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxNumChanges',3,'Statistic','rms','MinDistance',20 finds up to three points
where the changes in root-mean-square level are most significant and where the points are separated
by at least 20 samples.

MaxNumChanges — Maximum number of significant changes to return
1 (default) | integer scalar

 findchangepts

1-765

Maximum number of significant changes to return, specified as an integer scalar. After finding the
point with the most significant change, findchangepts gradually loosens its search criterion to
include more changepoints without exceeding the specified maximum. If any search setting returns
more than the maximum, then the function returns nothing. If 'MaxNumChanges' is not specified,
then the function returns the point with the most significant change. You cannot specify
'MinThreshold' and 'MaxNumChanges' simultaneously.
Example: findchangepts([0 1 0]) returns the index of the second sample.
Example: findchangepts([0 1 0],'MaxNumChanges',1) returns an empty matrix.
Example: findchangepts([0 1 0],'MaxNumChanges',2) returns the indices of the second and
third points.
Data Types: single | double

Statistic — Type of change to detect
'mean' (default) | 'rms' | 'std' | 'linear'

Type of change to detect, specified as one of these values:

• 'mean' — Detect changes in mean. If you call findchangepts with no output arguments, the
function plots the signal, the changepoints, and the mean value of each segment enclosed by
consecutive changepoints.

• 'rms' — Detect changes in root-mean-square level. If you call findchangepts with no output
arguments, the function plots the signal and the changepoints.

• 'std' — Detect changes in standard deviation, using Gaussian log-likelihood. If you call
findchangepts with no output arguments, the function plots the signal, the changepoints, and
the mean value of each segment enclosed by consecutive changepoints.

• 'linear' — Detect changes in mean and slope. If you call findchangepts with no output
arguments, the function plots the signal, the changepoints, and the line that best fits each portion
of the signal enclosed by consecutive changepoints.

Example: findchangepts([0 1 2 1],'Statistic','mean') returns the index of the second
sample.
Example: findchangepts([0 1 2 1],'Statistic','rms') returns the index of the third
sample.

MinDistance — Minimum number of samples between changepoints
integer scalar

Minimum number of samples between changepoints, specified as an integer scalar. If you do not
specify this number, then the default is 1 for changes in mean and 2 for other changes.
Example: findchangepts(sin(2*pi*(0:10)/5),'MaxNumChanges',5,'MinDistance',1)
returns five indices.
Example: findchangepts(sin(2*pi*(0:10)/5),'MaxNumChanges',5,'MinDistance',3)
returns two indices.
Example: findchangepts(sin(2*pi*(0:10)/5),'MaxNumChanges',5,'MinDistance',5)
returns no indices.
Data Types: single | double

MinThreshold — Minimum improvement in total residual error
real scalar

1 Functions

1-766

Minimum improvement in total residual error for each changepoint, specified as a real scalar that
represents a penalty. This option acts to limit the number of returned significant changes by applying
the additional penalty to each prospective changepoint. You cannot specify 'MinThreshold' and
'MaxNumChanges' simultaneously.
Example: findchangepts([0 1 2],'MinThreshold',0) returns two indices.
Example: findchangepts([0 1 2],'MinThreshold',1) returns one index.
Example: findchangepts([0 1 2],'MinThreshold',2) returns no indices.
Data Types: single | double

Output Arguments
ipt — Changepoint locations
vector

Changepoint locations, returned as a vector of integer indices.

residual — Residual error
vector

Residual error of the signal against the modeled changes, returned as a vector.

More About
Changepoint Detection

A changepoint is a sample or time instant at which some statistical property of a signal changes
abruptly. The property in question can be the mean of the signal, its variance, or a spectral
characteristic, among others.

To find a signal changepoint, findchangepts employs a parametric global method. The function:

1 Chooses a point and divides the signal into two sections.
2 Computes an empirical estimate of the desired statistical property for each section.
3 At each point within a section, measures how much the property deviates from the empirical

estimate. Adds the deviations for all points.
4 Adds the deviations section-to-section to find the total residual error.
5 Varies the location of the division point until the total residual error attains a minimum.

The procedure is clearest when the chosen statistic is the mean. In that case, findchangepts
minimizes the total residual error from the "best" horizontal level for each section. Given a signal x1,
x2, …, xN, and the subsequence mean and variance

mean xm ⋯ xn = 1
n−m + 1 ∑r = m

n
xr,

var xm ⋯ xn = 1
n−m + 1 ∑r = m

n
xr −mean xm ⋯ xn

2 ≡
Sxx m

n

n−m + 1,

where the sum of squares

 findchangepts

1-767

Sxy m
n ≡ ∑

r = m

n
xr −mean xm ⋯ xn yr −mean ym ⋯ yn ,

findchangepts finds k such that

J = ∑
i = 1

k− 1
xi−mean x1 ⋯ xk− 1

2 + ∑
i = k

N
xi−mean xk ⋯ xN

2

= k− 1 var x1 ⋯ xk− 1 + N − k + 1 var xk ⋯ xN

is smallest. This result can be generalized to incorporate other statistics. findchangepts finds k
such that

J k = ∑
i = 1

k− 1
Δ xi; χ x1 ⋯ xk− 1 + ∑

i = k

N
Δ xi; χ xk ⋯ xN

is smallest, given the section empirical estimate χ and the deviation measurement Δ.

Minimizing the residual error is equivalent to maximizing the log likelihood. Given a normal
distribution with mean μ and variance σ2, the log-likelihood for N independent observations is

log ∏
i = 1

N 1
2πσ2e− xi− μ 2/2σ2 = − N

2 log2π + logσ2 − 1
2σ2 ∑i = 1

N
xi− μ 2 .

• If 'Statistic' is specified as 'mean', the variance is fixed and the function uses

∑
i = m

n
Δ xi; χ xm ⋯ xn = ∑

i = m

n
xi−mean xm ⋯ xn

2

= (n−m + 1)var xm ⋯ xn ,

as obtained previously.
• If 'Statistic' is specified as 'std', the mean is fixed and the function uses

∑
i = m

n
Δ xi; χ xm ⋯ xn = n−m + 1 log ∑

i = m

n
σ2 xm ⋯ xn

= n−m + 1 log 1
n−m + 1 ∑i = m

n
xi−mean xm ⋯ xn

2

= n−m + 1 logvar xm ⋯ xn .
• If 'Statistic' is specified as 'rms', the total deviation is the same as for 'std' but with the

mean set to zero:

∑
i = m

n
Δ xi; χ xm ⋯ xn = n−m + 1 log 1

n−m + 1 ∑r = m

n
xr

2 .

• If 'Statistic' is specified as 'linear', the function uses as total deviation the sum of squared
differences between the signal values and the predictions of the least-squares linear fit through
the values. This quantity is also known as the error sum of squares, or SSE. The best-fit line
through xm, xm+1, …, xn is

1 Functions

1-768

x t =
Sxt m

n

Stt m
n t −mean tm ⋯ tn + mean xm ⋯ xn

and the SSE is

∑
i = m

n
Δ xi; χ xm ⋯ xn = ∑

i = m

n
xi− x ti

2

= Sxx m
n −

Sxt
2

m
n

Stt m
n

= n−m + 1 var xm ⋯ xn

−
∑

i = m

n
xi−mean xm ⋯ xn i−mean m m + 1 ⋯ n

2

n−m + 1 var m m + 1 ⋯ n .

Signals of interest often have more than one changepoint. Generalizing the procedure is
straightforward when the number of changepoints is known. When the number is unknown, you must
add a penalty term to the residual error, since adding changepoints always decreases the residual
error and results in overfitting. In the extreme case, every point becomes a changepoint and the
residual error vanishes. findchangepts uses a penalty term that grows linearly with the number of
changepoints. If there are K changepoints to be found, then the function minimizes

J K = ∑
r = 0

K − 1
∑

i = kr

kr + 1 − 1
Δ xi; χ xkr ⋯ xkr + 1 − 1 + βK,

where k0 and kK are respectively the first and the last sample of the signal.

• The proportionality constant, denoted by β and specified in 'MinThreshold', corresponds to a
fixed penalty added for each changepoint. findchangepts rejects adding additional
changepoints if the decrease in residual error does not meet the threshold. Set 'MinThreshold'
to zero to return all possible changes.

• If you do not know what threshold to use or have a rough idea of the number of changepoints in
the signal, specify 'MaxNumChanges' instead. This option gradually increases the threshold until
the function finds fewer changes than the specified value.

To perform the minimization itself, findchangepts uses an exhaustive algorithm based on dynamic
programming with early abandonment.

References
[1] Killick, Rebecca, Paul Fearnhead, and Idris A. Eckley. “Optimal detection of changepoints with a

linear computational cost.” Journal of the American Statistical Association. Vol. 107, No. 500,
2012, pp. 1590–1598.

[2] Lavielle, Marc. “Using penalized contrasts for the change-point problem.” Signal Processing.
Vol. 85, August 2005, pp. 1501–1510.

See Also
cusum

 findchangepts

1-769

Introduced in R2016a

1 Functions

1-770

finddelay
Estimate delay(s) between signals

Syntax
d = finddelay(x,y)
d = finddelay(x,y,maxlag)

Description
d = finddelay(x,y) returns an estimate of the delay d between input signals x and y. Delays in x
and y can be introduced by prepending zeros.

d = finddelay(x,y,maxlag) uses maxlag to find the estimated delay(s) between x and y.

Examples

X and Y Are Vectors, and maxlag Is Not Specified

The following shows Y being delayed with respect to X by two samples.

X = [1 2 3];
Y = [0 0 1 2 3];
D = finddelay(X,Y)

D = 2

Here is a case of Y advanced with respect to X by three samples.

X = [0 0 0 1 2 3 0 0]';
Y = [1 2 3 0]';
D = finddelay(X,Y)

D = -3

The following illustrates a case where Y is aligned with X but is noisy.

X = [0 0 1 2 3 0];
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];
D = finddelay(X,Y)

D = 0

If Y is a periodic version of X, the smallest possible delay is returned.

X = [0 1 2 3];
Y = [1 2 3 0 0 0 0 1 2 3 0 0];
D = finddelay(X,Y)

D = -1

 finddelay

1-771

X Is a Vector, Y Is a Matrix, and maxlag Is a Scalar

maxlag is specified as a scalar (same maximum window sizes).

X = [0 1 2];
Y = [0 1 0 0;
 1 2 0 0;
 2 0 1 0;
 0 0 2 1];
maxlag = 3;
D = finddelay(X,Y,maxlag)

D = 1×4

 0 -1 1 1

X and Y Are Matrices, and maxlag Is Not Specified

Specify X and Y of the same size. finddelay works column-by-column.

X = [0 1 0 0;
 1 2 0 0;
 2 0 1 0;
 1 0 2 1;
 0 0 0 2];
Y = [0 0 1 0;
 1 1 2 0;
 2 2 0 1;
 1 0 0 2;
 0 0 0 0];
D = finddelay(X,Y)

D = 1×4

 0 1 -2 -1

Repeat the computation, but now add an extra row of zeros as the second row of Y.

Y = [0 0 1 0;
 0 0 0 0;
 1 1 2 0;
 2 2 0 1;
 1 0 0 2;
 0 0 0 0];
D = finddelay(X,Y)

D = 1×4

 1 2 -1 0

1 Functions

1-772

X and Y Are Matrices, and maxlag Is Specified

Create two multichannel signals, X and Y, such that each channel of Y has a delayed identical copy of
each channel of X.

X = [1 3 2 0 0 0 0 0;
 0 0 0 0 0 1 3 2]';

Y = [0 0 0 1 3 2;
 1 3 2 0 0 0]';

Compute the column-by-column delays. Set a maximum correlation window size of 8 for each channel.

maxlag = [8 8];
D = finddelay(X,Y,maxlag)

D = 1×2

 3 -5

Decrease the correlation window size to 3 for the first channel and 5 for the second.

maxlag = [3 5];
D = finddelay(X,Y,maxlag)

D = 1×2

 3 -5

Increase the correlation window size to 5 for the first channel and decrease it to 3 for the second.

maxlag = [5 3];
D = finddelay(X,Y,maxlag)

D = 1×2

 3 -3

Input Arguments
x — Reference input
vector | matrix

Reference input, specified as a vector or a matrix.

y — Input signal
vector | matrix

Input signal, specified as a vector or a matrix.

maxlag — Maximum correlation window size
max(length(x),length(y)) – 1 | max(size(x,1),size(y,1)) – 1 |
max(length(x),size(y,1)) – 1 | max(size(x,1),length(y)) – 1 | integer scalar | integer
vector

 finddelay

1-773

Maximum correlation window size, specified as an integer scalar or vector. If any element of maxlag
is negative, it is replaced by its absolute value. If any element of maxlag is not integer-valued, or is
complex, Inf, or NaN, then finddelay returns an error.

Output Arguments
d — delay
integer scalar | integer value

Delay between input signals, returned as an integer scalar or vector. If y is delayed with respect to x,
then d is positive. If y is advanced with respect to x, then d is negative. If several delays are possible,
as in the case of periodic signals, the delay with the smallest absolute value is returned. In the case
that both a positive and a negative delay with the same absolute value are possible, the positive delay
is returned.

If x is a matrix of size MX-by-NX (MX > 1 and NX > 1) and y is a matrix of size MY-by-NY (MY > 1 and
NY > 1 and NY > 1), returns a row vector d of estimated delays between each column of x and the
corresponding column of y. With this usage the number of columns of x must be equal to the number
of columns of y (i.e., NX = NY).

Tips
• x and y need not be exact delayed copies of each other, as finddelay(x,y) returns an estimate

of the delay via cross-correlation. However this estimated delay has a useful meaning only if there
is sufficient correlation between delayed versions of x and y.

• The calculation of the vector of estimated delays, d, depends on x, y, and maxlag as shown in the
following table.

maxlag X Y D is calculated by...
Integer-valued
scalar

Row or column
vector or matrix

Row or column
vector or matrix

Cross-correlating the columns of X and Y
over a range of lags –maxlag:maxlag.

Integer-valued row
or column vector

Row or column
vector of length
LX ≥ 1

Matrix of size MY-by-
NY (MY > 1, NY > 1)

Cross-correlating X and column j of Y over
a range of lags –maxlag(j):maxlag(j), for
j = 1:NY.

Integer-valued row
or column vector

Matrix of size MX-by-
NX (MX > 1, NX > 1)

Row or column
vector of length
LY ≥ 1

Cross-correlating column j of X and Y over
a range of lags –maxlag(j):maxlag(j), for
j = 1:NX.

Integer-valued row
or column vector

Matrix of size MX-by-
NX (MX > 1, NX > 1)

Matrix of size MY-by-
NY (MY > 1,
NY = NX > 1)

Cross-correlating column j of X and
column j of Y over a range of lags –
maxlag(j):maxlag(j), for j = 1:NY.

• If you wish to treat a row vector x of length LX as comprising one sample from LX different
channels, you need to append one or more rows of zeros to x so that it appears as a matrix. Then
each column of x will be considered a channel.

For example, x = [1 1 1 1] is considered a single channel comprising four samples. To treat it
as four different channels, each channel comprising one sample, define a new matrix xm:

Each column of xm corresponds to a single channel, each one containing the samples 1 and 0.

1 Functions

1-774

xm = [1 1 1 1;
 0 0 0 0];

Algorithms
The finddelay function uses the xcorr function to determine the cross-correlation between each
pair of signals at all possible lags specified by the user. The normalized cross-correlation between
each pair of signals is then calculated. The estimated delay is given by the negative of the lag for
which the normalized cross-correlation has the largest absolute value.

If more than one lag leads to the largest absolute value of the cross-correlation, such as in the case of
periodic signals, the delay is chosen as the negative of the smallest (in absolute value) of such lags.

Pairs of signals need not be exact delayed copies of each other. However, the estimated delay has a
useful meaning only if there is sufficient correlation between at least one pair of the delayed signals.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
alignsignals | dtw | edr | findsignal | xcorr

 finddelay

1-775

findpeaks
Find local maxima

Syntax
pks = findpeaks(data)
[pks,locs] = findpeaks(data)
[pks,locs,w,p] = findpeaks(data)

[___] = findpeaks(data,x)
[___] = findpeaks(data,Fs)

[___] = findpeaks(___ ,Name,Value)

findpeaks(___)

Description
pks = findpeaks(data) returns a vector with the local maxima (peaks) of the input signal vector,
data. A local peak is a data sample that is either larger than its two neighboring samples or is equal
to Inf. Non-Inf signal endpoints are excluded. If a peak is flat, the function returns only the point
with the lowest index.

[pks,locs] = findpeaks(data) additionally returns the indices at which the peaks occur.

[pks,locs,w,p] = findpeaks(data) additionally returns the widths of the peaks as the vector w
and the prominences of the peaks as the vector p.

[___] = findpeaks(data,x) specifies x as the location vector and returns any of the output
arguments from previous syntaxes. locs and w are expressed in terms of x.

[___] = findpeaks(data,Fs) specifies the sample rate, Fs, of the data. The first sample of
data is assumed to have been taken at time zero. locs and w are converted to time units.

[___] = findpeaks(___ ,Name,Value) specifies options using name-value pair arguments in
addition to any of the input arguments in previous syntaxes.

findpeaks(___) without output arguments plots the signal and overlays the peak values.

Examples

Find Peaks in a Vector

Define a vector with three peaks and plot it.

data = [25 8 15 5 6 10 10 3 1 20 7];
plot(data)

1 Functions

1-776

Find the local maxima. The peaks are output in order of occurrence. The first sample is not included
despite being the maximum. For the flat peak, the function returns only the point with lowest index.

pks = findpeaks(data)

pks = 1×3

 15 10 20

Use findpeaks without output arguments to display the peaks.

findpeaks(data)

 findpeaks

1-777

Find Peaks and Their Locations

Create a signal that consists of a sum of bell curves. Specify the location, height, and width of each
curve.

x = linspace(0,1,1000);

Pos = [1 2 3 5 7 8]/10;
Hgt = [3 4 4 2 2 3];
Wdt = [2 6 3 3 4 6]/100;

for n = 1:length(Pos)
 Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end

PeakSig = sum(Gauss);

Plot the individual curves and their sum.

plot(x,Gauss,'--',x,PeakSig)

1 Functions

1-778

Use findpeaks with default settings to find the peaks of the signal and their locations.

[pks,locs] = findpeaks(PeakSig,x);

Plot the peaks using findpeaks and label them.

findpeaks(PeakSig,x)

text(locs+.02,pks,num2str((1:numel(pks))'))

 findpeaks

1-779

Sort the peaks from tallest to shortest.

[psor,lsor] = findpeaks(PeakSig,x,'SortStr','descend');

findpeaks(PeakSig,x)

text(lsor+.02,psor,num2str((1:numel(psor))'))

1 Functions

1-780

Peak Prominences

Create a signal that consists of a sum of bell curves riding on a full period of a cosine. Specify the
location, height, and width of each curve.

x = linspace(0,1,1000);

base = 4*cos(2*pi*x);

Pos = [1 2 3 5 7 8]/10;
Hgt = [3 7 5 5 4 5];
Wdt = [1 3 3 4 2 3]/100;

for n = 1:length(Pos)
 Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end

PeakSig = sum(Gauss)+base;

Plot the individual curves and their sum.

plot(x,Gauss,'--',x,PeakSig,x,base)

 findpeaks

1-781

Use findpeaks to locate and plot the peaks that have a prominence of at least 4.

findpeaks(PeakSig,x,'MinPeakProminence',4,'Annotate','extents')

1 Functions

1-782

The highest and lowest peaks are the only ones that satisfy the condition.

Display the prominences and the widths at half prominence of all the peaks.

[pks,locs,widths,proms] = findpeaks(PeakSig,x);
widths

widths = 1×6

 0.0154 0.0431 0.0377 0.0625 0.0274 0.0409

proms

proms = 1×6

 2.6816 5.5773 3.1448 4.4171 2.9191 3.6363

Find Peaks with Minimum Separation

Sunspots are a cyclic phenomenon. Their number is known to peak roughly every 11 years.

Load the file sunspot.dat, which contains the average number of sunspots observed every year
from 1700 to 1987. Find and plot the maxima.

 findpeaks

1-783

load sunspot.dat

year = sunspot(:,1);
avSpots = sunspot(:,2);

findpeaks(avSpots,year)

Improve your estimate of the cycle duration by ignoring peaks that are very close to each other. Find
and plot the peaks again, but now restrict the acceptable peak-to-peak separations to values greater
than six years.

findpeaks(avSpots,year,'MinPeakDistance',6)

1 Functions

1-784

Use the peak locations returned by findpeaks to compute the mean interval between maxima.

[pks,locs] = findpeaks(avSpots,year,'MinPeakDistance',6);

meanCycle = mean(diff(locs))

meanCycle = 10.9600

Create a datetime array using the year data. Assume the sunspots were counted every year on
March 20th, close to the vernal equinox. Find the peak sunspot years. Use the years function to
specify the minimum peak separation as a duration.

ty = datetime(year,3,20);

[pk,lk] = findpeaks(avSpots,ty,'MinPeakDistance',years(6));

plot(ty,avSpots,lk,pk,'o')

 findpeaks

1-785

Compute the mean sunspot cycle using datetime functionality.

dttmCycle = years(mean(diff(lk)))

dttmCycle = 10.9600

Create a timetable with the data. Specify the time variable in years. Plot the data. Show the last five
entries of the timetable.

TT = timetable(years(year),avSpots);
plot(TT.Time,TT.Variables)

1 Functions

1-786

entries = TT(end-4:end,:)

entries=5×1 timetable
 Time avSpots
 ________ _______

 1983 yrs 66.6
 1984 yrs 45.9
 1985 yrs 17.9
 1986 yrs 13.4
 1987 yrs 29.3

Constrain Peak Features

Load an audio signal sampled at 7418 Hz. Select 200 samples.

load mtlb
select = mtlb(1001:1200);

Find the peaks that are separated by at least 5 ms.

To apply this constraint, findpeaks chooses the tallest peak in the signal and eliminates all peaks
within 5 ms of it. The function then repeats the procedure for the tallest remaining peak and iterates
until it runs out of peaks to consider.

 findpeaks

1-787

findpeaks(select,Fs,'MinPeakDistance',0.005)

Find the peaks that have an amplitude of at least 1 V.

findpeaks(select,Fs,'MinPeakHeight',1)

1 Functions

1-788

Find the peaks that are at least 1 V higher than their neighboring samples.

findpeaks(select,Fs,'Threshold',1)

 findpeaks

1-789

Find the peaks that drop at least 1 V on either side before the signal attains a higher value.

findpeaks(select,Fs,'MinPeakProminence',1)

1 Functions

1-790

Peaks of Saturated Signal

Sensors can return clipped readings if the data are larger than a given saturation point. You can
choose to disregard these peaks as meaningless or incorporate them to your analysis.

Generate a signal that consists of a product of trigonometric functions of frequencies 5 Hz and 3 Hz
embedded in white Gaussian noise of variance 0.1². The signal is sampled for one second at a rate of
100 Hz. Reset the random number generator for reproducible results.

rng default

fs = 1e2;
t = 0:1/fs:1-1/fs;

s = sin(2*pi*5*t).*sin(2*pi*3*t)+randn(size(t))/10;

Simulate a saturated measurement by truncating every reading that is greater than a specified bound
of 0.32. Plot the saturated signal.

bnd = 0.32;
s(s>bnd) = bnd;

plot(t,s)
xlabel('Time (s)')

 findpeaks

1-791

Locate the peaks of the signal. findpeaks reports only the rising edge of each flat peak.

[pk,lc] = findpeaks(s,t);

hold on
plot(lc,pk,'x')

1 Functions

1-792

Use the 'Threshold' name-value pair to exclude the flat peaks. Require a minimum amplitude
difference of 10−4 between a peak and its neighbors.

[pkt,lct] = findpeaks(s,t,'Threshold',1e-4);

plot(lct,pkt,'o','MarkerSize',12)

 findpeaks

1-793

Determine Peak Widths

Create a signal that consists of a sum of bell curves. Specify the location, height, and width of each
curve.

x = linspace(0,1,1000);

Pos = [1 2 3 5 7 8]/10;
Hgt = [4 4 2 2 2 3];
Wdt = [3 8 4 3 4 6]/100;

for n = 1:length(Pos)
 Gauss(n,:) = Hgt(n)*exp(-((x - Pos(n))/Wdt(n)).^2);
end

PeakSig = sum(Gauss);

Plot the individual curves and their sum.

plot(x,Gauss,'--',x,PeakSig)
grid

1 Functions

1-794

Measure the widths of the peaks using the half prominence as reference.

findpeaks(PeakSig,x,'Annotate','extents')

 findpeaks

1-795

Measure the widths again, this time using the half height as reference.

findpeaks(PeakSig,x,'Annotate','extents','WidthReference','halfheight')
title('Signal Peak Widths')

1 Functions

1-796

Input Arguments
data — Input data
vector

Input data, specified as a vector. data must be real and must have at least three elements.
Data Types: double | single

x — Locations
vector | datetime array

Locations, specified as a vector or a datetime array. x must increase monotonically and have the
same length as data. If x is omitted, then the indices of data are used as locations.
Data Types: double | single | datetime

Fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, the sample rate has units of hertz.
Data Types: double | single

 findpeaks

1-797

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'SortStr','descend','NPeaks',3 finds the three tallest peaks of the signal.

NPeaks — Maximum number of peaks
positive integer scalar

Maximum number of peaks to return, specified as the comma-separated pair consisting of 'NPeaks'
and a positive integer scalar. findpeaks operates from the first element of the input data and
terminates when the number of peaks reaches the value of 'NPeaks'.
Data Types: double | single

SortStr — Peak sorting
'none' (default) | 'ascend' | 'descend'

Peak sorting, specified as the comma-separated pair consisting of 'SortStr' and one of these
values:

• 'none' returns the peaks in the order in which they occur in the input data.
• 'ascend' returns the peaks in ascending or increasing order, from the smallest to the largest

value.
• 'descend' returns the peaks in descending order, from the largest to the smallest value.

MinPeakHeight — Minimum peak height
-Inf (default) | real scalar

Minimum peak height, specified as the comma-separated pair consisting of 'MinPeakHeight' and a
real scalar. Use this argument to have findpeaks return only those peaks higher than
'MinPeakHeight'. Specifying a minimum peak height can reduce processing time.
Data Types: double | single

MinPeakProminence — Minimum peak prominence
0 (default) | real scalar

Minimum peak prominence, specified as the comma-separated pair consisting of
'MinPeakProminence' and a real scalar. Use this argument to have findpeaks return only those
peaks that have a relative importance of at least 'MinPeakProminence'. For more information, see
“Prominence” on page 1-801.
Data Types: double | single

Threshold — Minimum height difference
0 (default) | nonnegative real scalar

Minimum height difference between a peak and its neighbors, specified as the comma-separated pair
consisting of 'Threshold' and a nonnegative real scalar. Use this argument to have findpeaks
return only those peaks that exceed their immediate neighboring values by at least the value of
'Threshold'.
Data Types: double | single

1 Functions

1-798

MinPeakDistance — Minimum peak separation
0 (default) | positive real scalar

Minimum peak separation, specified as the comma-separated pair consisting of 'MinPeakDistance'
and a positive real scalar. When you specify a value for 'MinPeakDistance', the algorithm chooses
the tallest peak in the signal and ignores all peaks within 'MinPeakDistance' of it. The function
then repeats the procedure for the tallest remaining peak and iterates until it runs out of peaks to
consider.

• If you specify a location vector, x, then 'MinPeakDistance' must be expressed in terms of x. If
x is a datetime array, then specify 'MinPeakDistance' as a duration scalar or as a numeric
scalar expressed in days.

• If you specify a sample rate, Fs, then 'MinPeakDistance' must be expressed in units of time.
• If you specify neither x nor Fs, then 'MinPeakDistance' must be expressed in units of samples.

Use this argument to have findpeaks ignore small peaks that occur in the neighborhood of a larger
peak.
Data Types: double | single | duration

WidthReference — Reference height for width measurements
'halfprom' (default) | 'halfheight'

Reference height for width measurements, specified as the comma-separated pair consisting of
'WidthReference' and either 'halfprom' or 'halfheight'. findpeaks estimates the width of
a peak as the distance between the points where the descending signal intercepts a horizontal
reference line. The height of the line is selected using the criterion specified in 'WidthReference':

• 'halfprom' positions the reference line beneath the peak at a vertical distance equal to half the
peak prominence. See “Prominence” on page 1-801 for more information.

• 'halfheight' positions the reference line at one-half the peak height. The line is truncated if
any of its intercept points lie beyond the borders of the peaks selected by setting
'MinPeakHeight', 'MinPeakProminence', and 'Threshold'. The border between peaks is
defined by the horizontal position of the lowest valley between them. Peaks with height less than
zero are discarded.

The locations of the intercept points are computed by linear interpolation.

MinPeakWidth — Minimum peak width
0 (default) | positive real scalar

Minimum peak width, specified as the comma-separated pair consisting of 'MinPeakWidth' and a
positive real scalar. Use this argument to select only those peaks that have widths of at least
'MinPeakWidth'.

• If you specify a location vector, x, then 'MinPeakWidth' must be expressed in terms of x. If x is
a datetime array, then specify 'MinPeakWidth' as a duration scalar or as a numeric scalar
expressed in days.

• If you specify a sample rate, Fs, then 'MinPeakWidth' must be expressed in units of time.
• If you specify neither x nor Fs, then 'MinPeakWidth' must be expressed in units of samples.

Data Types: double | single | duration

 findpeaks

1-799

MaxPeakWidth — Maximum peak width
Inf (default) | positive real scalar

Maximum peak width, specified as the comma-separated pair consisting of 'MaxPeakWidth' and a
positive real scalar. Use this argument to select only those peaks that have widths of at most
'MaxPeakWidth'.

• If you specify a location vector, x, then 'MaxPeakWidth' must be expressed in terms of x. If x is
a datetime array, then specify 'MaxPeakWidth' as a duration scalar or as a numeric scalar
expressed in days.

• If you specify a sample rate, Fs, then 'MaxPeakWidth' must be expressed in units of time.
• If you specify neither x nor Fs, then 'MaxPeakWidth' must be expressed in units of samples.

Data Types: double | single | duration

Annotate — Plot style
'peaks' (default) | 'extents'

Plot style, specified as the comma-separated pair consisting of 'Annotate' and one of these values:

• 'peaks' plots the signal and annotates the location and value of every peak.
• 'extents' plots the signal and annotates the location, value, width, and prominence of every

peak.

This argument is ignored if you call findpeaks with output arguments.

Output Arguments
pks — Local maxima
vector

Local maxima, returned as a vector of signal values. If there are no local maxima, then pks is empty.

locs — Peak locations
vector

Peak locations, returned as a vector.

• If you specify a location vector, x, then locs contains the values of x at the peak indices.
• If you specify a sample rate, Fs, then locs is a numeric vector of time instants with a time
difference of 1/Fs between consecutive samples.

• If you specify neither x nor Fs, then locs is a vector of integer indices.

w — Peak widths
vector

Peak widths, returned as a vector of real numbers. The width of each peak is computed as the
distance between the points to the left and right of the peak where the signal intercepts a reference
line whose height is specified by WidthReference. The points themselves are found by linear
interpolation.

• If you specify a location vector, x, then the widths are expressed in terms of x.

1 Functions

1-800

• If you specify a sample rate, Fs, then the widths are expressed in units of time.
• If you specify neither x nor Fs, then the widths are expressed in units of samples.

p — Peak prominences
vector

Peak prominences, returned as a vector of real numbers. The prominence of a peak is the minimum
vertical distance that the signal must descend on either side of the peak before either climbing back
to a level higher than the peak or reaching an endpoint. See “Prominence” on page 1-801 for more
information.

More About
Prominence

The prominence of a peak measures how much the peak stands out due to its intrinsic height and its
location relative to other peaks. A low isolated peak can be more prominent than one that is higher
but is an otherwise unremarkable member of a tall range.

To measure the prominence of a peak:

1 Place a marker on the peak.
2 Extend a horizontal line from the peak to the left and right until the line does one of the

following:

• Crosses the signal because there is a higher peak
• Reaches the left or right end of the signal

3 Find the minimum of the signal in each of the two intervals defined in Step 2. This point is either
a valley or one of the signal endpoints.

4 The higher of the two interval minima specifies the reference level. The height of the peak above
this level is its prominence.

findpeaks makes no assumption about the behavior of the signal beyond its endpoints, whatever
their height. This is reflected in Steps 2 and 4 and often affects the value of the reference level.
Consider for example the peaks of this signal:

 findpeaks

1-801

Peak Number Left Interval
Lies Between
Peak and

Right Interval
Lies Between
Peak and

Lowest Point
on the Left
Interval

Lowest Point
on the Right
Interval

Reference
Level (Highest
Minimum)

1 Left end Crossing due to
peak 2

Left endpoint a a

2 Left end Right end Left endpoint h Left endpoint
3 Crossing due to

peak 2
Crossing due to
peak 4

b c c

4 Crossing due to
peak 2

Crossing due to
peak 6

b d b

5 Crossing due to
peak 4

Crossing due to
peak 6

d e e

6 Crossing due to
peak 2

Right end d h d

7 Crossing due to
peak 6

Crossing due to
peak 8

f g g

8 Crossing due to
peak 6

Right end f h f

9 Crossing due to
peak 8

Crossing due to
right endpoint

h i i

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fminbnd | fminsearch | fzero | islocalmax | islocalmin | max

1 Functions

1-802

Topics
“Peak Analysis”
“Find Peaks in Data”

Introduced in R2007b

 findpeaks

1-803

findsignal
Find signal location using similarity search

Syntax
[istart,istop,dist] = findsignal(data,signal)
[istart,istop,dist] = findsignal(data,signal,Name,Value)

findsignal(___)

Description
[istart,istop,dist] = findsignal(data,signal) returns the start and stop indices of a
segment of the data array, data, that best matches the search array, signal. The best-matching
segment is such that dist, the squared Euclidean distance between the segment and the search
array, is smallest. If data and signal are matrices, then findsignal finds the start and end
columns of the region of data that best matches signal. In that case, data and signal must have
the same number of rows.

[istart,istop,dist] = findsignal(data,signal,Name,Value) specifies additional options
using name-value pair arguments. Options include the normalization to apply, the number of
segments to report, and the distance metric to use.

findsignal(___) without output arguments plots data and highlights any identified instances of
signal.

• If the arrays are real vectors, the function displays data as a function of sample number.
• If the arrays are complex vectors, the function displays data on an Argand diagram.
• If the arrays are real matrices, the function uses imagesc to display signal on a subplot and

data with the highlighted regions on another subplot.
• If the arrays are complex matrices, the function plots their real and imaginary parts in the top and

bottom half of each image.

Examples

Locate Signal in Data

Generate a data set consisting of a 5 Hz Gaussian pulse with 50% bandwidth, sampled for half a
second at a rate of 1 kHz.

fs = 1e3;

t = 0:1/fs:0.5;
data = gauspuls(t,5,0.5);

Create a signal consisting of one-and-a-half cycles of a 10 Hz sinusoid. Plot the data set and the
signal.

1 Functions

1-804

ts = 0:1/fs:0.15;
signal = cos(2*pi*10*ts);

subplot(2,1,1)
plot(t,data)
title('Data')
subplot(2,1,2)
plot(ts,signal)
title('Signal')

Find the segment of the data that has the smallest squared Euclidean distance to the signal. Plot the
data and highlight the segment.

figure
findsignal(data,signal)

 findsignal

1-805

Add two clearly outlying sections to the data set. Find the segment that is closest to the signal in the
sense of having the smallest absolute distance.

dt = data;
dt(t>0.31&t<0.32) = 2.1;
dt(t>0.32&t<0.33) = -2.1;

findsignal(dt,signal,'Metric','absolute')

1 Functions

1-806

Let the x-axes stretch if the stretching results in a smaller absolute distance between the closest data
segment and the signal.

findsignal(dt,signal,'TimeAlignment','dtw','Metric','absolute')

 findsignal

1-807

Add two more outlying sections to the data set.

dt(t>0.1&t<0.11) = 2.1;
dt(t>0.11&t<0.12) = -2.1;

findsignal(dt,signal,'TimeAlignment','dtw','Metric','absolute')

1 Functions

1-808

Find the two data segments closest to the signal.

findsignal(dt,signal,'TimeAlignment','dtw','Metric','absolute', ...
 'MaxNumSegments',2)

 findsignal

1-809

Go back to finding one segment. Choose 'edr' as the x-axis stretching criterion. Select an edit
distance tolerance of 3. The edit distance between nonmatching samples is independent of the actual
separation, making 'edr' robust to outliers.

findsignal(dt,signal,'TimeAlignment','edr','EDRTolerance',3, ...
 'Metric','absolute')

1 Functions

1-810

Repeat the calculation, but now normalize the data and the signal.

• Define a moving window with 10 samples to either side of each data and signal point.
• Subtract the mean of the data in the window and divide by the local standard deviation.

Find the normalized data segment that has the smallest absolute distance to the normalized signal.
Display the unnormalized and normalized versions of the data and the signal.

findsignal(dt,signal,'TimeAlignment','edr','EDRTolerance',3, ...
 'Normalization','zscore','NormalizationLength',21, ...
 'Metric','absolute','Annotate','all')

 findsignal

1-811

Find Signal in Data with Abrupt Changes

Generate a random data array where:

• The mean is constant in each of seven regions and changes abruptly from region to region.
• The standard deviation is constant in each of five regions and changes abruptly from region to

region.

lr = 20;

mns = [0 1 4 -5 2 0 1];
nm = length(mns);

vrs = [1 4 6 1 3]/2;
nv = length(vrs);

v = randn(1,lr*nm*nv);

f = reshape(repmat(mns,lr*nv,1),1,lr*nm*nv);

1 Functions

1-812

y = reshape(repmat(vrs,lr*nm,1),1,lr*nm*nv);

t = v.*y+f;

Plot the data, highlighting the steps of its construction. Display the mean and standard deviation of
each region.

subplot(2,2,1)
plot(v)
title('Original')
xlim([0 700])

subplot(2,2,2)
plot([f;v+f]')
title('Means')
xlim([0 700])
text(lr*nv*nm*((0:1/nm:1-1/nm)+1/(2*nm)),-7*ones(1,nm),num2str(mns'), ...
 'HorizontalAlignment',"center")

subplot(2,2,3)
plot([y;v.*y]')
title('STD')
xlim([0 700])
text(lr*nv*nm*((0:1/nv:1-1/nv)+1/(2*nv)),-7*ones(1,nv),num2str(vrs'), ...
 'HorizontalAlignment',"center")

subplot(2,2,4)
plot(t)
title('Final')
xlim([0 700])

 findsignal

1-813

Create a random signal with a mean of zero and a standard deviation of 1/2. Find and display the
segment of the data array that best matches the signal.

sg = randn(1,2*lr)/2;

findsignal(t,sg)

1 Functions

1-814

Create a random signal with a mean of zero and a standard deviation of 2. Find and display the
segment of the data array that best matches the signal.

sg = randn(1,2*lr)*2;

findsignal(t,sg)

 findsignal

1-815

Create a random signal with a mean of 2 and a standard deviation of 2. Find and display the segment
of the data array that best matches the signal.

sg = randn(1,2*lr)*2+2;

findsignal(t,sg)

1 Functions

1-816

Create a random signal with a mean of -4 and a standard deviation of 3. Find and display the segment
of the data array that best matches the signal.

sg = randn(1,2*lr)*3-4;

findsignal(t,sg)

 findsignal

1-817

Repeat the calculation, but this time subtract the mean from both the signal and the data.

findsignal(t,sg,'Normalization','zscore','Annotate','all')

1 Functions

1-818

Find Letter in Writing Sample

Devise a typeface that resembles the output of early computers. Use it to write the word MATLAB®.

rng default

chr = @(x)dec2bin(x')-48;

M = chr([34 34 54 42 34 34 34]);
A = chr([08 20 34 34 62 34 34]);
T = chr([62 08 08 08 08 08 08]);
L = chr([32 32 32 32 32 32 62]);
B = chr([60 34 34 60 34 34 60]);

MATLAB = [M A T L A B];

Corrupt the word by repeating random columns of the letters and varying the spacing. Show the
original word and three corrupted versions.

c = @(x)x(:,sort([1:6 randi(6,1,2)]));

subplot(4,1,1,'XLim',[0 60])
spy(MATLAB)
xlabel('')
ylabel('Original')

 findsignal

1-819

for kj = 2:4
 subplot(4,1,kj,'XLim',[0 60])
 spy([c(M) c(A) c(T) c(L) c(A) c(B)])
 xlabel('')
 ylabel('Corrupted')
end

Generate one more corrupted version of the word. Search for a noisy version of the letter "A." Display
the distance between the search array and the data segment closest to it. The segment spills into the
"T" because the horizontal axes are rigid.

corr = [c(M) c(A) c(T) c(L) c(A) c(B)];

sgn = c(A);

[ist,ind,dst] = findsignal(corr,sgn);

clf
subplot(2,1,1)
spy(sgn)
subplot(2,1,2)
spy(corr)
chk = zeros(size(corr));
chk(:,ist:ind) = corr(:,ist:ind);
hold on

1 Functions

1-820

spy(chk,'*k')
hold off

dst

dst = 11

Allow the horizontal axes to stretch. The closest segment is the intersection of the search array and
the first instance of "A." The distance between the segment and the array is zero.

[ist,ind,dst] = findsignal(corr,sgn,'TimeAlignment','dtw');

subplot(2,1,1)
spy(sgn)
subplot(2,1,2)
spy(corr)
chk = zeros(size(corr));
chk(:,ist:ind) = corr(:,ist:ind);
hold on
spy(chk,'*k')
hold off

 findsignal

1-821

dst

dst = 0

Repeat the computation using the built-in functionality of findsignal. Divide by the local mean to
normalize the data and the signal. Use the symmetric Kullback-Leibler metric.

findsignal(corr,sgn,'TimeAlignment','dtw', ...
 'Normalization','power','Metric','symmkl','Annotate','all')

1 Functions

1-822

Input Arguments
data — Data array
vector | matrix

Data array, specified as a vector or matrix.
Data Types: single | double
Complex Number Support: Yes

signal — Search array
vector | matrix

Search array, specified as a vector or matrix.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
'MaxNumSegments',2,'Metric','squared','Normalization','center','Normalization

 findsignal

1-823

Length',11 finds the two segments of the data array that have the smallest squared Euclidean
distances to the search signal. Both the data and the signal are normalized by subtracting the mean
of a sliding window. The window has five samples to either side of each point, for a total length of
5 + 5 + 1 = 11 samples.

Normalization — Normalization statistic
'none' (default) | 'center' | 'power' | 'zscore'

Normalization statistic, specified as the comma-separated pair consisting of 'Normalization' and
one of these values:

• 'none' — Do not normalize.
• 'center' — Subtract local mean.
• 'power' — Divide by local mean.
• 'zscore' — Subtract local mean and divide by local standard deviation.

NormalizationLength — Normalization length
length(data) (default) | integer scalar

Normalization length, specified as the comma-separated pair consisting of
'NormalizationLength' and an integer scalar. This value represents the minimum number of
samples over which to normalize each sample in both the data and the signal. If the signal is a matrix,
then 'NormalizationLength' represents a number of columns.
Data Types: single | double

MaxDistance — Maximum segment distance
Inf (default) | positive real scalar

Maximum segment distance, specified as the comma-separated pair consisting of 'MaxDistance'
and a positive real scalar. If you specify 'MaxDistance', then findsignal returns the start and
stop indices of all segments of data whose distances from signal are both local minima and smaller
than 'MaxDistance'.
Data Types: single | double

MaxNumSegments — Maximum number of segments to return
1 (default) | positive integer scalar

Maximum number of segments to return, specified as the comma-separated pair consisting of
'MaxNumSegments' and a positive integer scalar. If you specify 'MaxNumSegments', then
findsignal locates all segments of data whose distances from the signal are local minima and
returns up to 'MaxNumSegments' segments with smallest distances.
Data Types: single | double

TimeAlignment — Time alignment technique
'fixed' (default) | 'dtw' | 'edr'

Time alignment technique, specified as the comma-separated pair consisting of 'TimeAlignment'
and one of these values:

• 'fixed' — Do not stretch or repeat samples to minimize the distance.
• 'dtw' — Attempt to reduce the distance by stretching the time axis and repeating samples in

either the data or the signal. See dtw for more information.

1 Functions

1-824

• 'edr' — Minimize the number of edits so that the distance between each remaining sample of the
data segment and its signal counterpart lies within a given tolerance. An edit consists of removing
a sample from the data, the signal, or both. Specify the tolerance using the 'EDRTolerance'
argument. Use this option when any of the input arrays has outliers. See edr for more
information.

EDRTolerance — Edit distance tolerance
real scalar

Edit distance tolerance, specified as the comma-separated pair consisting of 'EDRTolerance' and a
real scalar. Use this argument to find the signal when the 'TimeAlignment' name-value pair
argument is set to 'edr'.
Data Types: single | double

Metric — Distance metric
'squared' (default) | 'absolute' | 'euclidean' | 'symmkl'

Distance metric, specified as the comma-separated pair consisting of 'Metric' and one of
'squared', 'absolute', 'euclidean', or 'symmkl'. If X and Y are both K-dimensional signals,
then Metric prescribes dmn(X,Y), the distance between the mth sample of X and the nth sample of Y.
See “Dynamic Time Warping” on page 1-447 for more information about dmn(X,Y).

• 'squared' — Square of the Euclidean metric, consisting of the sum of squared differences:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'euclidean' — Root sum of squared differences, also known as the Euclidean or ℓ2 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'absolute' — Sum of absolute differences, also known as the Manhattan, city block, taxicab, or
ℓ1 metric:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n = ∑

k = 1

K
xk, m− yk, n * xk, m− yk, n

• 'symmkl' — Symmetric Kullback-Leibler metric. This metric is valid only for real and positive X
and Y:

dmn(X, Y) = ∑
k = 1

K
xk, m− yk, n logxk, m− logyk, n

Annotate — Plot style
'signal' (default) | 'data' | 'all'

Plot style, specified as the comma-separated pair consisting of 'Annotate' and one of these values:

• 'data' plots the data and highlights the regions that best match the signal.
• 'signal' plots the signal in a separate subplot.
• 'all' plots the signal, the data, the normalized signal, and the normalized data in separate

subplots.

 findsignal

1-825

This argument is ignored if you call findsignal with output arguments.

Output Arguments
istart,istop — Segment start and end indices
integer scalars | vectors

Segment start and end indices, returned as integer scalars or vectors.

dist — Minimum data-signal distance
scalar | vector

Minimum data-signal distance, returned as a scalar or a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
alignsignals | dtw | edr | findpeaks | finddelay | strfind | xcorr

Topics
“Finding a Signal in Data”
“Find a Signal in a Measurement”

Introduced in R2016b

1 Functions

1-826

fir1
Window-based FIR filter design

Syntax
b = fir1(n,Wn)
b = fir1(n,Wn,ftype)

b = fir1(___ ,window)
b = fir1(___ ,scaleopt)

Description
b = fir1(n,Wn) uses a Hamming window to design an nth-order lowpass, bandpass, or multiband
FIR filter with linear phase. The filter type depends on the number of elements of Wn.

b = fir1(n,Wn,ftype) designs a lowpass, highpass, bandpass, bandstop, or multiband filter,
depending on the value of ftype and the number of elements of Wn.

b = fir1(___ ,window) designs the filter using the vector specified in window and any of the
arguments from previous syntaxes.

b = fir1(___ ,scaleopt) additionally specifies whether or not the magnitude response of the
filter is normalized.

Note: Use fir2 for windowed filters with arbitrary frequency response.

Examples

FIR Bandpass Filter

Design a 48th-order FIR bandpass filter with passband 0 . 35π ≤ ω ≤ 0 . 65π rad/sample. Visualize its
magnitude and phase responses.

b = fir1(48,[0.35 0.65]);
freqz(b,1,512)

 fir1

1-827

FIR Highpass Filter

Load chirp.mat. The file contains a signal, y, that has most of its power above Fs/4, or half the
Nyquist frequency. The sample rate is 8192 Hz.

Design a 34th-order FIR highpass filter to attenuate the components of the signal below Fs/4. Use a
cutoff frequency of 0.48 and a Chebyshev window with 30 dB of ripple.

load chirp

t = (0:length(y)-1)/Fs;

bhi = fir1(34,0.48,'high',chebwin(35,30));
freqz(bhi,1)

1 Functions

1-828

Filter the signal. Display the original and highpass-filtered signals. Use the same y-axis scale for both
plots.

outhi = filter(bhi,1,y);

subplot(2,1,1)
plot(t,y)
title('Original Signal')
ys = ylim;

subplot(2,1,2)
plot(t,outhi)
title('Highpass Filtered Signal')
xlabel('Time (s)')
ylim(ys)

 fir1

1-829

Design a lowpass filter with the same specifications. Filter the signal and compare the result to the
original. Use the same y-axis scale for both plots.

blo = fir1(34,0.48,chebwin(35,30));

outlo = filter(blo,1,y);

subplot(2,1,1)
plot(t,y)
title('Original Signal')
ys = ylim;

subplot(2,1,2)
plot(t,outlo)
title('Lowpass Filtered Signal')
xlabel('Time (s)')
ylim(ys)

1 Functions

1-830

Multiband FIR Filter

Design a 46th-order FIR filter that attenuates normalized frequencies below 0 . 4π rad/sample and
between 0 . 6π and 0 . 9π rad/sample. Call it bM.

ord = 46;

low = 0.4;
bnd = [0.6 0.9];

bM = fir1(ord,[low bnd]);

Redesign bM so that it passes the bands it was attenuating and stops the other frequencies. Call the
new filter bW. Use fvtool to display the frequency responses of the filters.

bW = fir1(ord,[low bnd],'DC-1');

hfvt = fvtool(bM,1,bW,1);
legend(hfvt,'bM','bW')

 fir1

1-831

Redesign bM using a Hann window. (The 'DC-0' is optional.) Compare the magnitude responses of
the Hamming and Hann designs.

hM = fir1(ord,[low bnd],'DC-0',hann(ord+1));

hfvt = fvtool(bM,1,hM,1);
legend(hfvt,'Hamming','Hann')

1 Functions

1-832

Redesign bW using a Tukey window. Compare the magnitude responses of the Hamming and Tukey
designs.

tW = fir1(ord,[low bnd],'DC-1',tukeywin(ord+1));

hfvt = fvtool(bW,1,tW,1);
legend(hfvt,'Hamming','Tukey')

 fir1

1-833

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar.

For highpass and bandstop configurations, fir1 always uses an even filter order. The order must be
even because odd-order symmetric FIR filters must have zero gain at the Nyquist frequency. If you
specify an odd n for a highpass or bandstop filter, then fir1 increments n by 1.
Data Types: double

Wn — Frequency constraints
scalar | two-element vector | multi-element vector

Frequency constraints, specified as a scalar, a two-element vector, or a multi-element vector. All
elements of Wn must be strictly greater than 0 and strictly smaller than 1, where 1 corresponds to the
Nyquist frequency: 0 < Wn < 1. The Nyquist frequency is half the sample rate or π rad/sample.

• If Wn is a scalar, then fir1 designs a lowpass or highpass filter with cutoff frequency Wn. The
cutoff frequency is the frequency at which the normalized gain of the filter is –6 dB.

• If Wn is the two-element vector [w1 w2], where w1 < w2, then fir1 designs a bandpass or
bandstop filter with lower cutoff frequency w1 and higher cutoff frequency w2.

1 Functions

1-834

• If Wn is the multi-element vector [w1 w2 ... wn], where w1 < w2 < … < wn, then fir1 returns
an nth-order multiband filter with bands 0 < ω < w1, w1 < ω < w2, …, wn < ω < 1.

Data Types: double

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop' | 'DC-0' | 'DC-1'

Filter type, specified as one of the following:

• 'low' specifies a lowpass filter with cutoff frequency Wn. 'low' is the default for scalar Wn.
• 'high' specifies a highpass filter with cutoff frequency Wn.
• 'bandpass' specifies a bandpass filter if Wn is a two-element vector. 'bandpass' is the default

when Wn has two elements.
• 'stop' specifies a bandstop filter if Wn is a two-element vector.
• 'DC-0' specifies that the first band of a multiband filter is a stopband. 'DC-0' is the default

when Wn has more than two elements.
• 'DC-1' specifies that the first band of a multiband filter is a passband.

window — Window
vector

Window, specified as a vector. The window vector must have n + 1 elements. If you do not specify
window, then fir1 uses a Hamming window. For a list of available windows, see “Windows”.

fir1 does not automatically increase the length of window if you attempt to design a highpass or
bandstop filter of odd order.
Example: kaiser(n+1,0.5) specifies a Kaiser window with shape parameter 0.5 to use with a filter
of order n.
Example: hamming(n+1) is equivalent to leaving the window unspecified.
Data Types: double

scaleopt — Normalization option
'scale' (default) | 'noscale'

Normalization option, specified as either 'scale' or 'noscale'.

• 'scale' normalizes the coefficients so that the magnitude response of the filter at the center of
the passband is 1 (0 dB).

• 'noscale' does not normalize the coefficients.

Output Arguments
b — Filter coefficients
row vector

Filter coefficients, returned as a row vector of length n + 1. The coefficients are sorted in descending
powers of the Z-transform variable z:

B(z) = b(1) + b(2)z + … + b(n+1)z–n.

 fir1

1-835

Algorithms
fir1 uses a least-squares approximation to compute the filter coefficients and then smooths the
impulse response with window.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979, Algorithm
5.2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cfirpm | designfilt | filter | fir2 | fircls | fircls1 | firls | firpm | freqz | hamming |
kaiserord

Introduced before R2006a

1 Functions

1-836

fir2
Frequency sampling-based FIR filter design

Syntax
b = fir2(n,f,m)
b = fir2(n,f,m,npt,lap)

b = fir2(___ ,window)

Description
b = fir2(n,f,m) returns an nth-order FIR filter with frequency-magnitude characteristics
specified in the vectors f and m. The function linearly interpolates the desired frequency response
onto a dense grid and then uses the inverse Fourier transform and a Hamming window to obtain the
filter coefficients.

b = fir2(n,f,m,npt,lap) specifies npt, the number of points in the interpolation grid, and lap,
the length of the region that fir2 inserts around duplicate frequency points which specify steps in
the frequency response.

b = fir2(___ ,window) specifies a window vector to use in the design in addition to any input
arguments from previous syntaxes.

Note: Use fir1 for window-based standard lowpass, bandpass, highpass, bandstop, and multiband
configurations.

Examples

Attenuation of Low Frequencies

Load the MAT-file chirp. The file contains a signal, y, sampled at a frequency Fs = 8192 Hz. The
signal has most of its power above Fs/4 = 2048 Hz, or half the Nyquist frequency. Add random noise
to the signal.

load chirp
y = y + randn(size(y))/25;
t = (0:length(y)-1)/Fs;

Design a 34th-order FIR highpass filter to attenuate the components of the signal below Fs/4. Specify
a normalized cutoff frequency of 0.48, which corresponds to about 1966 Hz. Visualize the frequency
response of the filter.

f = [0 0.48 0.48 1];
mhi = [0 0 1 1];
bhi = fir2(34,f,mhi);

freqz(bhi,1,[],Fs)

 fir2

1-837

Filter the chirp signal. Plot the signal before and after filtering.

outhi = filter(bhi,1,y);

figure
subplot(2,1,1)
plot(t,y)
title('Original Signal')
ylim([-1.2 1.2])

subplot(2,1,2)
plot(t,outhi)
title('Highpass Filtered Signal')
xlabel('Time (s)')
ylim([-1.2 1.2])

1 Functions

1-838

Change the filter from highpass to lowpass. Use the same order and cutoff. Filter the signal again.
The result is mostly noise.

mlo = [1 1 0 0];
blo = fir2(34,f,mlo);
outlo = filter(blo,1,y);

subplot(2,1,1)
plot(t,y)
title('Original Signal')
ylim([-1.2 1.2])

subplot(2,1,2)
plot(t,outlo)
title('Lowpass Filtered Signal')
xlabel('Time (s)')
ylim([-1.2 1.2])

 fir2

1-839

FIR Lowpass Filter

Design a 30th-order lowpass filter with a normalized cutoff frequency of 0 . 6π rad/sample. Plot the
ideal frequency response overlaid with the actual frequency response.

f = [0 0.6 0.6 1];
m = [1 1 0 0];

b1 = fir2(30,f,m);
[h1,w] = freqz(b1,1);

plot(f,m,w/pi,abs(h1))
xlabel('\omega / \pi')
lgs = {'Ideal','fir2 default'};
legend(lgs)

1 Functions

1-840

Redesign the filter using a 64-point interpolation grid.

b2 = fir2(30,f,m,64);
h2 = freqz(b2,1);

hold on
plot(w/pi,abs(h2))
lgs{3} = 'npt = 64';
legend(lgs)

 fir2

1-841

Redesign the filter using the 64-point interpolation grid and a 13-point interval around the cutoff
frequency.

b3 = fir2(30,f,m,64,13);
h3 = freqz(b3,1);

plot(w/pi,abs(h3))
lgs{4} = 'lap = 13';
legend(lgs)

1 Functions

1-842

Arbitrary Magnitude Filter

Design an FIR filter with the following frequency response:

• A sinusoid between 0 and 0 . 18π rad/sample.

F1 = 0:0.01:0.18;
A1 = 0.5+sin(2*pi*7.5*F1)/4;

• A piecewise linear section between 0 . 2π rad/sample and 0 . 78π rad/sample.

F2 = [0.2 0.38 0.4 0.55 0.562 0.585 0.6 0.78];
A2 = [0.5 2.3 1 1 -0.2 -0.2 1 1];

• A quadratic section between 0 . 79π rad/sample and the Nyquist frequency.

F3 = 0.79:0.01:1;
A3 = 0.2+18*(1-F3).^2;

Design the filter using a Hamming window. Specify a filter order of 50.

N = 50;

FreqVect = [F1 F2 F3];
AmplVect = [A1 A2 A3];

 fir2

1-843

ham = fir2(N,FreqVect,AmplVect);

Repeat the calculation using a Kaiser window that has a shape parameter of 3.

kai = fir2(N,FreqVect,AmplVect,kaiser(N+1,3));

Redesign the filter using the designfilt function. designfilt uses a rectangular window by
default. Compute the zero-phase response of the filter over 1024 points.

d = designfilt('arbmagfir','FilterOrder',N, ...
 'Frequencies',FreqVect,'Amplitudes',AmplVect);

[zd,wd] = zerophase(d,1024);

Display the zero-phase responses of the three filters. Overlay the ideal response.

zerophase(ham,1)
hold on
zerophase(kai,1)
plot(wd/pi,zd)
plot(FreqVect,AmplVect,'k:')
legend('Hamming','Kaiser','designfilt','ideal')

1 Functions

1-844

Input Arguments
n — Filter order
integer scalar

Filter order, specified as an integer scalar.

For configurations with a passband at the Nyquist frequency, fir2 always uses an even order. If you
specify an odd-valued n for one of those configurations, then fir2 increments n by 1.
Data Types: double

f,m — Frequency-magnitude characteristics
vectors

Frequency-magnitude characteristics, specified as vectors of the same length.

• f is a vector of frequency points in the range from 0 to 1, where 1 corresponds to the Nyquist
frequency. The first point of f must be 0 and the last point must be 1. f must be sorted in
increasing order. Duplicate frequency points are allowed and are treated as steps in the frequency
response.

• m is a vector containing the desired magnitude response at each of the points specified in f.

Data Types: double

npt — Number of grid points
512 (default) | positive integer scalar

Number of grid points, specified as a positive integer scalar. npt must be larger than one-half the
filter order: npt > n/2.
Data Types: double

lap — Length of region around duplicate frequency points
25 (default) | positive integer scalar

Length of region around duplicate frequency points, specified as a positive integer scalar.
Data Types: double

window — Window
column vector

Window, specified as a column vector. The window vector must have n + 1 elements. If you do not
specify window, then fir2 uses a Hamming window. For a list of available windows, see “Windows”.

fir2 does not automatically increase the length of window if you attempt to design a filter of odd
order with a passband at the Nyquist frequency.
Example: kaiser(n+1,0.5) specifies a Kaiser window with shape parameter 0.5 to use with a filter
of order n.
Example: hamming(n+1) is equivalent to leaving the window unspecified.
Data Types: double

 fir2

1-845

Output Arguments
b — Filter coefficients
row vector

Filter coefficients, returned as a row vector of length n + 1. The coefficients are sorted in descending
powers of the Z-transform variable z:

B(z) = b(1) + b(2)z + … + b(n+1)z–n.

Algorithms
fir2 uses frequency sampling to design filters. The function interpolates the desired frequency
response linearly onto a dense, evenly spaced grid of length npt. fir2 also sets up regions of lap
points around repeated values of f to provide steep but smooth transitions. To obtain the filter
coefficients, the function applies an inverse fast Fourier transform to the grid and multiplies by
window.

References
[1] Jackson, L. B. Digital Filters and Signal Processing. 3rd Ed. Boston: Kluwer Academic Publishers,

1996.

[2] Mitra, Sanjit K. Digital Signal Processing: A Computer Based Approach. New York: McGraw-Hill,
1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
butter | cheby1 | cheby2 | designfilt | ellip | filter | fir1 | hamming | maxflat | firpm |
yulewalk

Introduced before R2006a

1 Functions

1-846

fircls
Constrained-least-squares FIR multiband filter design

Syntax
b = fircls(n,f,amp,up,lo)
fircls(n,f,amp,up,lo,'design_flag')

Description
b = fircls(n,f,amp,up,lo) generates a length n+1 linear phase FIR filter b. The frequency-
magnitude characteristics of this filter match those given by vectors f and amp:

• f is a vector of transition frequencies in the range from 0 to 1, where 1 corresponds to the
Nyquist frequency. The first point of f must be 0 and the last point 1. The frequency points must
be in increasing order.

• amp is a vector describing the piecewise-constant desired amplitude of the frequency response.
The length of amp is equal to the number of bands in the response and should be equal to
length(f)-1.

• up and lo are vectors with the same length as amp. They define the upper and lower bounds for
the frequency response in each band.

fircls always uses an even filter order for configurations with a passband at the Nyquist frequency
(that is, highpass and bandstop filters). This is because for odd orders, the frequency response at the
Nyquist frequency is necessarily 0. If you specify an odd-valued n, fircls increments it by 1.

fircls(n,f,amp,up,lo,'design_flag') enables you to monitor the filter design, where
'design_flag' can be

• 'trace', for a textual display of the design error at each iteration step.
• 'plots', for a collection of plots showing the filter's full-band magnitude response and a zoomed

view of the magnitude response in each sub-band. All plots are updated at each iteration step. The
O's on the plot are the estimated extremals of the new iteration and the X's are the estimated
extremals of the previous iteration, where the extremals are the peaks (maximum and minimum)
of the filter ripples. Only ripples that have a corresponding O and X are made equal.

• 'both', for both the textual display and plots.

Note Normally, the lower value in the stopband will be specified as negative. By setting lo equal to 0
in the stopbands, a nonnegative frequency response amplitude can be obtained. Such filters can be
spectrally factored to obtain minimum phase filters.

Examples

 fircls

1-847

Constrained Least-Squares Lowpass Filter

Design a 150th-order lowpass filter with a normalized cutoff frequency of 0 . 4π rad/sample. Specify a
maximum absolute error of 0.02 in the passband and 0.01 in the stopband. Display plots of the bands.

n = 150;
f = [0 0.4 1];
a = [1 0];
up = [1.02 0.01];
lo = [0.98 -0.01];
b = fircls(n,f,a,up,lo,'both');

 Bound Violation = 0.0788344298966
 Bound Violation = 0.0096137744998
 Bound Violation = 0.0005681345753
 Bound Violation = 0.0000051519942
 Bound Violation = 0.0000000348656

 Bound Violation = 0.0000000006231

The Bound Violations denote the iterations of the procedure as the design converges. Display the
magnitude response of the filter.

fvtool(b)

1 Functions

1-848

Algorithms
fircls uses an iterative least-squares algorithm to obtain an equiripple response. The algorithm is a
multiple exchange algorithm that uses Lagrange multipliers and Kuhn-Tucker conditions on each
iteration.

References

[1] Selesnick, I. W., M. Lang, and C. S. Burrus. “Constrained Least Square Design of FIR Filters
without Specified Transition Bands.” Proceedings of the 1995 International Conference on
Acoustics, Speech, and Signal Processing. Vol. 2, 1995, pp. 1260–1263.

[2] Selesnick, I. W., M. Lang, and C. S. Burrus. “Constrained Least Square Design of FIR Filters
without Specified Transition Bands.” IEEE Transactions on Signal Processing. Vol. 44,
Number 8, 1996, pp. 1879–1892.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 fircls

1-849

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
fircls1 | firls | firpm

Introduced before R2006a

1 Functions

1-850

fircls1
Constrained-least-squares linear-phase FIR lowpass and highpass filter design

Syntax
b = fircls1(n,wo,dp,ds)
b = fircls1(n,wo,dp,ds,'high')
b = fircls1(n,wo,dp,ds,wt)
b = fircls1(n,wo,dp,ds,wt,'high')
b = fircls1(n,wo,dp,ds,wp,ws,k)
b = fircls1(n,wo,dp,ds,wp,ws,k,'high')
b = fircls1(n,wo,dp,ds,...,'design_flag')

Description
b = fircls1(n,wo,dp,ds) generates a lowpass FIR filter b, where n+1 is the filter length, wo is
the normalized cutoff frequency in the range between 0 and 1 (where 1 corresponds to the Nyquist
frequency), dp is the maximum passband deviation from 1 (passband ripple), and ds is the maximum
stopband deviation from 0 (stopband ripple).

b = fircls1(n,wo,dp,ds,'high') generates a highpass FIR filter b. fircls1 always uses an
even filter order for the highpass configuration. This is because for odd orders, the frequency
response at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, fircls1
increments it by 1.

b = fircls1(n,wo,dp,ds,wt) and

b = fircls1(n,wo,dp,ds,wt,'high') specifies a frequency wt above which (for wt > wo) or
below which (for wt < wo) the filter is guaranteed to meet the given band criterion. This will help you
design a filter that meets a passband or stopband edge requirement. There are four cases:

• Lowpass:

• 0 < wt < wo < 1: the amplitude of the filter is within dp of 1 over the frequency range
0 < ω < wt.

• 0 < wo < wt < 1: the amplitude of the filter is within ds of 0 over the frequency range
wt < ω < 1.

• Highpass:

• 0 < wt < wo < 1: the amplitude of the filter is within ds of 0 over the frequency range
0 < ω < wt.

• 0 < wo < wt < 1: the amplitude of the filter is within dp of 1 over the frequency range
wt < ω < 1.

b = fircls1(n,wo,dp,ds,wp,ws,k) generates a lowpass FIR filter b with a weighted function,
where n+1 is the filter length, wo is the normalized cutoff frequency, dp is the maximum passband
deviation from 1 (passband ripple), and ds is the maximum stopband deviation from 0 (stopband
ripple). wp is the passband edge of the L2 weight function and ws is the stopband edge of the L2
weight function, where wp < wo < ws. k is the ratio (passband L2 error)/(stopband L2 error)

 fircls1

1-851

k =
∫0

wp
A(ω) − D(ω) 2dω

∫wz
π

A(ω) − D(ω) 2dω

b = fircls1(n,wo,dp,ds,wp,ws,k,'high') generates a highpass FIR filter b with a weighted
function, where ws < wo < wp.

b = fircls1(n,wo,dp,ds,...,'design_flag') enables you to monitor the filter design, where
'design_flag' can be

• 'trace', for a textual display of the design table used in the design
• 'plots', for plots of the filter's magnitude, group delay, and zeros and poles. All plots are

updated at each iteration step. The O's on the plot are the estimated extremals of the new
iteration and the X's are the estimated extremals of the previous iteration, where the extremals
are the peaks (maximum and minimum) of the filter ripples. Only ripples that have a
corresponding O and X are made equal.

• 'both', for both the textual display and plots

Note In the design of very narrow band filters with small dp and ds, there may not exist a filter of
the given length that meets the specifications.

Examples

Filter Design with fircls1

Design an order 55 lowpass filter with normalized cutoff frequency 0.3. Specify a passband ripple of
0.02 and a stopband ripple of 0.008. Display plots of the bands.

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.008;
b = fircls1(n,wo,dp,ds,'both');

 Bound Violation = 0.0870385343920
 Bound Violation = 0.0149343456540
 Bound Violation = 0.0056513587932
 Bound Violation = 0.0001056264205
 Bound Violation = 0.0000967624352
 Bound Violation = 0.0000000226538

1 Functions

1-852

 Bound Violation = 0.0000000000038

The Bound Violations denote the iterations of the procedure as the design converges. Display the
magnitude response of the filter.

fvtool(b)

 fircls1

1-853

Algorithms
fircls1 uses an iterative least-squares algorithm to obtain an equiripple response. The algorithm is
a multiple exchange algorithm that uses Lagrange multipliers and Kuhn-Tucker conditions on each
iteration.

References

[1] Selesnick, I. W., M. Lang, and C. S. Burrus. “Constrained Least Square Design of FIR Filters
without Specified Transition Bands.” Proceedings of the 1995 International Conference on
Acoustics, Speech, and Signal Processing. Vol. 2, 1995, pp. 1260–1263.

[2] Selesnick, I. W., M. Lang, and C. S. Burrus. “Constrained Least Square Design of FIR Filters
without Specified Transition Bands.” IEEE Transactions on Signal Processing. Vol. 44,
Number 8, 1996, pp. 1879–1892.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-854

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
fircls | firls | firpm

Introduced before R2006a

 fircls1

1-855

firls
Least-squares linear-phase FIR filter design

Syntax
b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(___ ,ftype)

Description
b = firls(n,f,a) returns row vector b containing the n+1 coefficients of an order-n FIR filter. The
frequency and amplitude characteristics of the resulting filter match those given by vectors f and a.

b = firls(n,f,a,w) uses w to weigh the frequency bins.

b = firls(___ ,ftype) designs antisymmetric (odd) filters, where ftype specifies the filter as a
differentiator or Hilbert transformer. You can use ftype with any of the previous input syntaxes.

Examples

Filter with Transition Band

Design an FIR lowpass filter of order 255 with a transition region between 0 . 25π and 0 . 3π. Use
fvtool to display the magnitude and phase responses of the filter.

b = firls(255,[0 0.25 0.3 1],[1 1 0 0]);
fvtool(b,1,'OverlayedAnalysis','phase')

1 Functions

1-856

Design of a Differentiator

An ideal differentiator has a frequency response given by D(ω) = jω. Design a differentiator of order
30 that attenuates frequencies above 0 . 9π. Include a factor of π in the amplitude because the
frequencies are normalized by π. Display the zero-phase response of the filter.

b = firls(30,[0 0.9],[0 0.9*pi],'differentiator');

fvtool(b,1,'MagnitudeDisplay','zero-phase')

 firls

1-857

Filter with Piecewise Linear Passbands

Design a 24th-order antisymmetric filter with piecewise linear passbands.

F = [0 0.3 0.4 0.6 0.7 0.9];
A = [0 1.0 0.0 0.0 0.5 0.5];
b = firls(24,F,A,'hilbert');

Plot the desired and actual frequency responses.

[H,f] = freqz(b,1,512,2);
plot(f,abs(H))
hold on
for i = 1:2:6,
 plot([F(i) F(i+1)],[A(i) A(i+1)],'r--')
end
legend('firls design','Ideal')
grid on
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude')

1 Functions

1-858

Lowpass Filter Design with Weighted Fit

Design an FIR lowpass filter. The passband ranges from DC to 0 . 45π rad/sample. The stopband
ranges from 0 . 55π rad/sample to the Nyquist frequency. Produce three different designs, changing
the weights of the bands in the least-squares fit.

In the first design, make the stopband weight higher than the passband weight by a factor of 100.
Use this specification when it is critical that the magnitude response in the stopband is flat and close
to 0. The passband ripple is about 100 times higher than the stopband ripple.

bhi = firls(18,[0 0.45 0.55 1],[1 1 0 0],[1 100]);

In the second design, reverse the weights so that the passband weight is 100 times the stopband
weight. Use this specification when it is critical that the magnitude response in the passband is flat
and close to 1. The stopband ripple is about 100 times higher than the passband ripple.

blo = firls(18,[0 0.45 0.55 1],[1 1 0 0],[100 1]);

In the third design, give the same weight to both bands. The result is a filter with similar ripple in the
passband and the stopband.

b = firls(18,[0 0.45 0.55 1],[1 1 0 0],[1 1]);

Visualize the magnitude responses of the three filters.

 firls

1-859

hfvt = fvtool(bhi,1,blo,1,b,1,'MagnitudeDisplay','Zero-phase');
legend(hfvt,'bhi: w = [1 100]','blo: w = [100 1]','b: w = [1 1]')

Input Arguments
n — Filter order
real positive scalar

Filter order, specified as a real positive scalar.

f — Normalized frequency points
real-valued vector

Normalized frequency points, specified as a real-valued vector. The argument must be in the range [0,
1] , where 1 corresponds to the Nyquist frequency. The number of elements in the vector is always a
multiple of 2. The frequencies must be in nondecreasing order.

a — Desired amplitude
vector

Desired amplitudes at the points specified in f, specified as a vector. f and a must be the same
length. The length must be an even number.

• The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k odd is the line
segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).

1 Functions

1-860

• The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k even is
unspecified. The areas between such points are transition regions or regions that are not
important for a particular application.

w — Weights
real-valued vector

Weights used to adjust the fit in each frequency band, specified as a real-valued vector. The length of
w is half the length of f and a, so there is exactly one weight per band.

ftype — Filter type
'hilbert' | 'differentiator'

Filter type for linear-phase filters with odd symmetry (type III and type IV), specified as either
'hilbert' or 'differentiator':

• 'hilbert' — The output coefficients in b obey the relation b(k) = –b(n + 2 – k), k = 1, ..., n + 1.
This class of filters includes the Hilbert transformer, which has a desired amplitude of 1 across the
entire band.

• 'differentiator' — For nonzero amplitude bands, the filter weighs the error by a factor of 1/f2

so that the error at low frequencies is much smaller than at high frequencies. For FIR
differentiators, which have an amplitude characteristic proportional to frequency, these filters
minimize the maximum relative error (the maximum of the ratio of the error to the desired
amplitude).

Output Arguments
b — Filter coefficients
row vector

Filter coefficients, returned as a row vector of length n + 1. The coefficients are in increasing order.

More About
Filter Length and Transition Width Incompatibility

If you design a filter such that the product of the filter length and the transition width is large, you
might get this warning message: Matrix is close to singular or badly scaled. The
following example illustrates this limitation.

b = firls(100,[0 0.15 0.85 1],[1 1 0 0]);

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 3.406552e-18.

fvtool(b,1,'OverlayedAnalysis','phase')

 firls

1-861

In this case, the filter coefficients b might not represent the desired filter. You can check the filter by
looking at its frequency response.

Algorithms
firls designs a linear-phase FIR filter that minimizes the weighted integrated squared error
between an ideal piecewise linear function and the magnitude response of the filter over a set of
desired frequency bands.

Reference [2] describes the theoretical approach behind firls. The function solves a system of
linear equations involving an inner product matrix of roughly the size n\2 using the MATLAB \
operator.

These are type I (n is odd) and type II (n is even) linear-phase filters. Vectors f and a specify the
frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range 0 to 1, where 1 corresponds to the
Nyquist frequency. The frequencies must be in increasing order. Duplicate frequency points are
allowed and, in fact, can be used to design a filter that is exactly the same as the filters returned
by the fir1 and fir2 functions with a rectangular (rectwin) window.

• a is a vector containing the desired amplitudes at the points specified in f.

The desired amplitude function at frequencies between pairs of points (f(k), f(k+1)) for k odd is
the line segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).

1 Functions

1-862

The desired amplitude function at frequencies between pairs of points (f(k), f(k+1)) for k even is
unspecified. These are transition (“don’t care”) regions.

• f and a are the same length. This length must be an even number.

This figure illustrates the relationship between the f and a vectors in defining a desired amplitude
response.

This function designs type I, II, III, and IV linear-phase filters. Type I and II are the default filters
when n is even and odd, respectively, while the 'hilbert' and 'differentiator' flags produce
type III (n is even) and IV (n is odd) filters. The various filter types have different symmetries and
constraints on their frequency responses (see [1] for details).

Linear Phase
Filter Type

Filter Order Symmetry of Coefficients Response H(f), f
= 0

Response H(f), f
= 1 (Nyquist)

Type I Even b(k) = b(n + 2 − k), k = 1, ..., n + 1 No restriction No restriction
Type II Odd b(k) = b(n + 2 − k), k = 1, ..., n + 1 No restriction H(1) = 0
Type III Even b(k) = − b(n + 2 − k), k = 1, ..., n + 1 H(0) = 0 H(1) = 0
Type IV Odd b(k) = − b(n + 2 − k), k = 1, ..., n + 1 H(0) = 0 No restriction

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

 firls

1-863

[2] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. Hoboken, NJ: John Wiley & Sons,
1987, pp. 54–83.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fir1 | fir2 | firpm | rcosdesign

Introduced before R2006a

1 Functions

1-864

firpm
Parks-McClellan optimal FIR filter design

Syntax
b = firpm(n,f,a)
b = firpm(n,f,a,w)
b = firpm(n,f,a,ftype)
b = firpm(n,f,a,lgrid)
[b,err] = firpm(___)
[b,err,res] = firpm(___)
b = firpm(n,f,fresp,w)
b = firpm(n,f,fresp,w,ftype)

Description
b = firpm(n,f,a) returns row vector b containing the n+1 coefficients of an order-n FIR filter. The
frequency and amplitude characteristics of the resulting filter match those given by vectors f and a.

b = firpm(n,f,a,w) uses w to weigh the frequency bins.

b = firpm(n,f,a,ftype) uses a filter type specified by 'ftype'.

b = firpm(n,f,a,lgrid) uses the integer lgrid to control the density of the frequency grid.

[b,err] = firpm(___) returns the maximum ripple height in err. You can use this with any of
the previous input syntaxes.

[b,err,res] = firpm(___) returns the frequency response characteristics as a structure res.

b = firpm(n,f,fresp,w) returns an FIR filter whose frequency-amplitude characteristics best
approximate the response returned by function handle fresp.

b = firpm(n,f,fresp,w,ftype) designs antisymmetric (odd) filters, where ftype specifies the
filter as a differentiator or Hilbert transformer. If you do not specify an ftype, a call is made to
fresp to determine the default symmetry property.

Examples

Parks-McClellan Bandpass Filter

Use the Parks-McClellan algorithm to design an FIR bandpass filter of order 17. Specify normalized
stopband frequencies of 0 . 3π and 0 . 7π rad/sample and normalized passband frequencies of 0 . 4π
and 0 . 6π rad/sample. Plot the ideal and actual magnitude responses.

f = [0 0.3 0.4 0.6 0.7 1];
a = [0 0 1 1 0 0];
b = firpm(17,f,a);

 firpm

1-865

[h,w] = freqz(b,1,512);
plot(f,a,w/pi,abs(h))
legend('Ideal','firpm Design')
xlabel 'Radian Frequency (\omega/\pi)', ylabel 'Magnitude'

Parks-McClellan Lowpass Filter

Design a lowpass filter with a 1500 Hz passband cutoff frequency and 2000 Hz stopband cutoff
frequency. Specify a sampling frequency of 8000 Hz. Require a maximum stopband amplitude of 0.01
and a maximum passband error (ripple) of 0.001. Obtain the required filter order, normalized
frequency band edges, frequency band amplitudes, and weights using firpmord.

[n,fo,ao,w] = firpmord([1500 2000],[1 0],[0.001 0.01],8000);
b = firpm(n,fo,ao,w);
fvtool(b,1)

1 Functions

1-866

FIR Bandpass Filter with Asymmetric Attenuation

Use the Parks-McClellan algorithm to create a 50th-order equiripple FIR bandpass filter to be used
with signals sampled at 1 kHz.

N = 50;
Fs = 1e3;

Specify that the passband spans the frequencies between 200 Hz and 300 Hz and that the transition
region on either side of the passband has a width of 50 Hz.

Fstop1 = 150;
Fpass1 = 200;
Fpass2 = 300;
Fstop2 = 350;

Design the filter so that the optimization fit weights the low-frequency stopband with a weight of 3,
the passband with a weight of 1, and the high-frequency stopband with a weight of 100. Display the
magnitude response of the filter.

Wstop1 = 3;
Wpass = 1;
Wstop2 = 100;

b = firpm(N,[0 Fstop1 Fpass1 Fpass2 Fstop2 Fs/2]/(Fs/2), ...

 firpm

1-867

 [0 0 1 1 0 0],[Wstop1 Wpass Wstop2]);

fvtool(b,1)

Input Arguments
n — Filter order
real positive scalar

Filter order, specified as a real positive scalar.

f — Normalized frequency points
real-valued vector

Normalized frequency points, specified as a real-valued vector. The argument must be in the range [0,
1] , where 1 corresponds to the Nyquist frequency. The number of elements in the vector is always a
multiple of 2. The frequencies must be in increasing order.

a — Desired amplitude
vector

Desired amplitudes at the points specified in f, specified as a vector. f and a must be the same
length. The length must be an even number.

• The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k odd is the line
segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).

1 Functions

1-868

• The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k even is
unspecified. The areas between such points are transition regions or regions that are not
important for a particular application.

w — Weights
real-valued vector

Weights used to adjust the fit in each frequency band, specified as a real-valued vector. The length of
w is half the length of f and a, so there is exactly one weight per band.

ftype — Filter type
'hilbert' | 'differentiator'

Filter type for linear-phase filters with odd symmetry (type III and type IV), specified as either
'hilbert' or 'differentiator':

• 'hilbert' — The output coefficients in b obey the relation b(k) = –b(n + 2 – k), k = 1, ..., n + 1.
This class of filters includes the Hilbert transformer, which has a desired amplitude of 1 across the
entire band.

For example,

h = firpm(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.
• 'differentiator' — For nonzero amplitude bands, the filter weighs the error by a factor of 1/f

so that the error at low frequencies is much smaller than at high frequencies. For FIR
differentiators, which have an amplitude characteristic proportional to frequency, these filters
minimize the maximum relative error (the maximum of the ratio of the error to the desired
amplitude).

lgrid — Density of frequency grid
16 (default) | 1-by-1 cell array with integer value

Control the density of the frequency grid, which has roughly (lgrid*n)/(2*bw) frequency points,
where bw is the fraction of the total frequency band interval [0,1] covered by f. Increasing lgrid
often results in filters that more exactly match an equiripple filter, but that take longer to compute.
The default value of 16 is the minimum value that should be specified for lgrid.

fresp — Frequency response
function handle

Frequency response, specified as a function handle. The function is called from within firpm with
this syntax:

[dh,dw] = fresp(n,f,gf,w)

The arguments are similar to those for firpm:

• n is the filter order.
• f is the vector of normalized frequency band edges that appear monotonically between 0 and 1,

where 1 is the Nyquist frequency.
• gf is a vector of grid points that have been linearly interpolated over each specified frequency

band by firpm. gf determines the frequency grid at which the response function must be

 firpm

1-869

evaluated, and contains the same data returned by cfirpm in the fgrid field of the opt
structure.

• w is a vector of real, positive weights, one per band, used during optimization. w is optional in the
call to firpm; if not specified, it is set to unity weighting before being passed to fresp.

• dh and dw are the desired complex frequency response and band weight vectors, respectively,
evaluated at each frequency in grid gf.

Output Arguments
b — Filter coefficients
row vector

Filter coefficients, returned as a row vector of length n + 1. The coefficients are in increasing order.

err — Maximum ripple height
scalar

Maximum ripple height, returned as a scalar.

res — Frequency response characteristics
structure

Frequency response characteristics, returned as a structure. The structure res has the following
fields:

res.fgrid Frequency grid vector used for the filter design optimization
res.des Desired frequency response for each point in res.fgrid
res.wt Weighting for each point in opt.fgrid
res.H Actual frequency response for each point in res.fgrid
res.error Error at each point in res.fgrid (res.des-res.H)
res.iextr Vector of indices into res.fgrid for extremal frequencies
res.fextr Vector of extremal frequencies

Tips
If your filter design fails to converge, the filter design might not be correct. Verify the design by
checking the frequency response.

If your filter design fails to converge and the resulting filter design is not correct, attempt one or
more of the following:

• Increase the filter order.
• Relax the filter design by reducing the attenuation in the stopbands and/or broadening the

transition regions.

Algorithms
firpm designs a linear-phase FIR filter using the Parks-McClellan algorithm [2]. The Parks-McClellan
algorithm uses the Remez exchange algorithm and Chebyshev approximation theory to design filters

1 Functions

1-870

with an optimal fit between the desired and actual frequency responses. The filters are optimal in the
sense that the maximum error between the desired frequency response and the actual frequency
response is minimized. Filters designed this way exhibit an equiripple behavior in their frequency
responses and are sometimes called equiripple filters. firpm exhibits discontinuities at the head and
tail of its impulse response due to this equiripple nature.

These are type I (n odd) and type II (n even) linear-phase filters. Vectors f and a specify the
frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range between 0 and 1, where 1
corresponds to the Nyquist frequency. The frequencies must be in increasing order. Duplicate
frequency points are allowed and, in fact, can be used to design a filter exactly the same as those
returned by the fir1 and fir2 functions with a rectangular (rectwin) window.

• a is a vector containing the desired amplitude at the points specified in f.

The desired amplitude function at frequencies between pairs of points (f(k), f(k+1)) for k odd is
the line segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).

The desired amplitude function at frequencies between pairs of points (f(k), f(k+1)) for k even is
unspecified. These are transition or "don’t care" regions.

• f and a are the same length. This length must be an even number.

The figure below illustrates the relationship between the f and a vectors in defining a desired
amplitude response.

 firpm

1-871

firpm always uses an even filter order for configurations with even symmetry and a nonzero
passband at the Nyquist frequency. The reason for the even filter order is that for impulse responses
exhibiting even symmetry and odd orders, the frequency response at the Nyquist frequency is
necessarily 0. If you specify an odd-valued n, firpm increments it by 1.

firpm designs type I, II, III, and IV linear-phase filters. Type I and type II are the defaults for n even
and n odd, respectively, while type III (n even) and type IV (n odd) are specified with 'hilbert' or
'differentiator', respectively, using the ftype argument. The different types of filters have
different symmetries and certain constraints on their frequency responses. (See [3] for more details.)

Linear Phase
Filter Type

Filter
Order

Symmetry of Coefficients Response
H(f), f = 0

Response H(f),
f = 1
(Nyquist)

Type I Even even:

b(k) = b(n + 2 − k), k = 1, ..., n + 1

No restriction No restriction

Type II Odd even:

b(k) = b(n + 2 − k), k = 1, ..., n + 1

No restriction H(1) = 0

firpm
increments the
filter order by 1
if you attempt to
construct a type
II filter with a
nonzero
passband at the
Nyquist
frequency.

Type III Even odd:

b(k) = − b(n + 2 − k), k = 1, ..., n + 1

H(0) = 0 H(1) = 0

Type IV Odd odd:

b(k) = − b(n + 2 − k), k = 1, ..., n + 1

H(0) = 0 No restriction

You can also use firpm to write a function that defines the desired frequency response. The
predefined frequency response function handle for firpm is @firpmfrf, which designs a linear-
phase FIR filter.

Note b = firpm(n,f,a,w) is equivalent to b = firpm(n,f,{@firpmfrf,a},w), where,
@firpmfrf is the predefined frequency response function handle for firpm. If desired, you can write
your own response function. Use help private/firpmfrf and see “Create Function Handle” for
more information.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Selected Papers in Digital Signal Processing. Vol. II. New York: IEEE Press,
1976.

1 Functions

1-872

[2] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing
Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979, algorithm
5.1.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, p. 486.

[4] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987, p. 83.

[5] Rabiner, Lawrence R., James H. McClellan, and Thomas W. Parks. "FIR Digital Filter Design
Techniques Using Weighted Chebyshev Approximation." Proceedings of the IEEE. Vol. 63,
Number 4, 1975, pp. 595–610.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
butter | cheby1 | cheby2 | cfirpm | ellip | fir1 | fir2 | fircls | fircls1 | firls | firpmord
| rcosdesign | yulewalk

Introduced before R2006a

 firpm

1-873

firpmord
Parks-McClellan optimal FIR filter order estimation

Syntax
[n,fo,ao,w] = firpmord(f,a,dev)
[___] = firpmord(___ ,fs)
c = firpmord(___ ,'cell')

Description
[n,fo,ao,w] = firpmord(f,a,dev) returns the approximate order n, normalized frequency
band edges fo, frequency band amplitudes ao, and weights w that meet input specifications f, a, and
dev.

[___] = firpmord(___ ,fs) specifies a sampling frequency fs. fs defaults to 2 Hz, implying a
Nyquist frequency of 1 Hz. You can specify band edges scaled to a particular application's sample
rate. You can use this with any of the previous input syntaxes.

c = firpmord(___ ,'cell') returns a cell array c whose elements are the parameters to firpm.

Examples

Minimum-Order Lowpass Filter

Design a minimum-order lowpass filter with a 500 Hz passband cutoff frequency and 600 Hz
stopband cutoff frequency. Specify a sampling frequency of 2000 Hz. Require at least 40 dB of
attenuation in the stopband and less than 3 dB of ripple in the passband.

rp = 3; % Passband ripple in dB
rs = 40; % Stopband ripple in dB
fs = 2000; % Sampling frequency
f = [500 600]; % Cutoff frequencies
a = [1 0]; % Desired amplitudes

Convert the deviations to linear units. Design the filter and visualize its magnitude and phase
responses.

dev = [(10^(rp/20)-1)/(10^(rp/20)+1) 10^(-rs/20)];
[n,fo,ao,w] = firpmord(f,a,dev,fs);
b = firpm(n,fo,ao,w);
freqz(b,1,1024,fs)
title('Lowpass Filter Designed to Specifications')

1 Functions

1-874

The filter falls slightly short of meeting the stopband attenuation and passband ripple specifications.
Using n+1 instead of n in the call to firpm achieves the desired amplitude characteristics.

Parks-McClellan Order of Lowpass Filter

Design a lowpass filter with a 1500 Hz passband cutoff frequency and 2000 Hz stopband cutoff
frequency. Specify a sampling frequency of 8000 Hz. Require a maximum stopband amplitude of 0.1
and a maximum passband error (ripple) of 0.01.

[n,fo,ao,w] = firpmord([1500 2000],[1 0],[0.01 0.1],8000);
b = firpm(n,fo,ao,w);

Obtain an equivalent result by having firpmord generate a cell array. Visualize the frequency
response of the filter.

c = firpmord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
B = firpm(c{:});
freqz(B,1,1024,8000)

 firpmord

1-875

Input Arguments
f — Frequency band edges
real-valued vector

Frequency band edges, specified as a real-valued vector. The argument must be in the range [0, Fs/2],
where Fs is the Nyquist frequency. The number of elements in the vector is always a multiple of 2. The
frequencies must be in increasing order.

a — Desired amplitude
vector

Desired amplitudes at the points contained in f, specified as a vector. f and a must satisfy the
condition length(f) = 2length(a)–2. The desired function is piecewise constant.

dev — Maximum allowable deviation
vector

Maximum allowable deviation, specified as a vector. dev has the same size as a. It specifies the
maximum allowable deviation or ripples between the frequency response and the desired amplitude
of the output filter for each band.

fs — Sample rate
2 Hz (default) | real scalar

1 Functions

1-876

Sample rate, specified as a real scalar.

Output Arguments
n — Filter order
positive integer

Filter order, returned as a positive integer.

fo — Normalized frequency points
real-valued vector

Normalized frequency points, specified as a real-valued vector. The argument must be in the range [0,
1] , where 1 corresponds to the Nyquist frequency. The number of elements in the vector is always a
multiple of 2. The frequencies must be in increasing order.

ao — Amplitude response
real-valued vector

Amplitude response, returned as a real-valued vector.

w — weights
real-valued vector

Weights used to adjust the fit in each frequency band, specified as a real-valued vector. The length of
w is half the length of f and a, so there is exactly one weight per band.

c — FIR filter parameters
cell array

FIR filter parameters, returned as a cell array.

Algorithms
firpmord uses the algorithm suggested in [1]. This function produces inaccurate results for band
edges close to either 0 or the Nyquist frequency, fs/2.

Note In some cases, firpmord underestimates or overestimates the order n. If the filter does not
meet the specifications, try a higher order such as n+1 or n+2.

References
[1] Rabiner, Lawrence R., and Otto Herrmann. “The Predictability of Certain Optimum Finite-Impulse-

Response Digital Filters.” IEEE Transactions on Circuit Theory. Vol. 20, Number 4, 1973,
pp. 401–408.

[2] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 156–157.

 firpmord

1-877

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheb1ord | cheb2ord | ellipord | kaiserord | firpm

Introduced before R2006a

1 Functions

1-878

firtype
Type of linear phase FIR filter

Syntax
t = firtype(b)
t = firtype(d)

Description
t = firtype(b) determines the type, t, of an FIR filter with coefficients b. t can be 1, 2, 3, or 4.
The filter must be real and have linear phase.

t = firtype(d) determines the type, t, of an FIR filter, d. t can be 1, 2, 3, or 4. The filter must be
real and have linear phase.

Examples

Types of Linear Phase Filters

Design two FIR filters using the window method, one of even order and the other of odd order.
Determine their types and plot their impulse responses.

subplot(2,1,1)
b = fir1(8,0.5);
impz(b), title(['Type ' int2str(firtype(b))])

subplot(2,1,2)
b = fir1(9,0.5);
impz(b), title(['Type ' int2str(firtype(b))])

 firtype

1-879

Design two equiripple Hilbert transformers, one of even order and the other of odd order. Determine
their types and plot their impulse responses.

subplot(2,1,1)
b = firpm(8,[0.2 0.8],[1 1],'hilbert');
impz(b), title(['Type ' int2str(firtype(b))])

subplot(2,1,2)
b = firpm(9,[0.2 0.8],[1 1],'hilbert');
impz(b), title(['Type ' int2str(firtype(b))])

1 Functions

1-880

Types of FIR digitalFilter Objects

Use designfilt to design the filters from the previous example. Display their types.

d1 = designfilt('lowpassfir','DesignMethod','window', ...
 'FilterOrder',8,'CutoffFrequency',0.5);
disp(['d1 is of type ' int2str(firtype(d1))])

d1 is of type 1

d2 = designfilt('lowpassfir','DesignMethod','window', ...
 'FilterOrder',9,'CutoffFrequency',0.5);
disp(['d2 is of type ' int2str(firtype(d2))])

d2 is of type 2

d3 = designfilt('hilbertfir','DesignMethod','equiripple', ...
 'FilterOrder',8,'TransitionWidth',0.4);
disp(['d3 is of type ' int2str(firtype(d3))])

d3 is of type 3

d4 = designfilt('hilbertfir','DesignMethod','equiripple', ...
 'FilterOrder',9,'TransitionWidth',0.4);
disp(['d4 is of type ' int2str(firtype(d4))])

 firtype

1-881

d4 is of type 4

Input Arguments
b — Filter coefficients
vector

Filter coefficients of the FIR filter, specified as a double- or single-precision real-valued row or column
vector.
Data Types: double | single

d — FIR filter
digitalFilter object

FIR filter, specified as a digitalFilter object. Use designfilt to generate a digital filter based
on frequency-response specifications.

Output Arguments
t — Filter type
1 | 2 | 3 | 4

Filter type, returned as either 1, 2, 3, or 4. Filter types are defined as follows:

• Type 1 — Even-order symmetric coefficients
• Type 2 — Odd-order symmetric coefficients
• Type 3 — Even-order antisymmetric coefficients
• Type 4 — Odd-order antisymmetric coefficients

See Also
designfilt | digitalFilter | islinphase

Introduced in R2013a

1 Functions

1-882

flattopwin
Flat top weighted window

Syntax
w = flattopwin(L)
w = flattopwin(L,sflag)

Description
w = flattopwin(L) returns an L-point symmetric flat top window

w = flattopwin(L,sflag) returns an L-point symmetric flat top window using the window
sampling method specified by sflag.

Examples

Flat Top Window

Create a 64-point symmetric flat top window. View the result using wvtool.

N = 64;
w = flattopwin(N);
wvtool(w)

 flattopwin

1-883

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

sflag — Window sampling
'symmetric' (default) | 'periodic'

Window sampling method, specified as:

• 'symmetric' — Use this option when using windows for filter design.
• 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to

have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic'
is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments
w — Flat top window
column vector

1 Functions

1-884

Flat top window, returned as a column vector.

Algorithms
Flat top windows are summations of cosines. The coefficients of a flat top window are computed from
the following equation:

w(n) = a0− a1cos 2πn
L− 1 + a2cos 4πn

L− 1 − a3cos 6πn
L− 1 + a4cos 8πn

L− 1 ,

where 0 ≤ n ≤ L− 1. The coefficient values are:

Coefficient Value
a0 0.21557895
a1 0.41663158
a2 0.277263158
a3 0.083578947
a4 0.006947368

Flat top windows have very low passband ripple (< 0.01 dB) and are used primarily for calibration
purposes. Their bandwidth is approximately 2.5 times wider than a Hann window.

References
[1] D’Antona, Gabriele, and A. Ferrero. Digital Signal Processing for Measurement Systems. New

York: Springer Media, 2006, pp. 70–72.

[2] Gade, Svend, and Henrik Herlufsen. “Use of Weighting Functions in DFT/FFT Analysis (Part I).”
Windows to FFT Analysis (Part I): Brüel & Kjær Technical Review. Vol. x, Number 3, 1987, pp.
1–28.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
blackman | hamming | hann | WVTool

Introduced before R2006a

 flattopwin

1-885

folders2labels
Get list of labels from folder names

Syntax
lbls = folders2labels(loc)
lbls = folders2labels(loc,Name,Value)

lbls = folders2labels(ds)

[lbls,files] = folders2labels(___)

Description
Use this function when you are working on a machine or deep learning classification problem and
your labeled data is stored in folders that have the corresponding label names.

lbls = folders2labels(loc) creates a list of labels based on the folder names specified by the
location loc.

lbls = folders2labels(loc,Name,Value) specifies additional input arguments using name-
value pairs. For example, 'FileExtensions','.mat' includes only .mat files in the scan for labels.

lbls = folders2labels(ds) creates a list of labels based on the files contained in ds. ds can be
a datastore, a matlab.io.datastore.FileSet object, or a
matlab.io.datastore.BlockedFileSet object.

[lbls,files] = folders2labels(___) additionally returns a list of files. The ith element of
lbls corresponds to the label of the ith file in files.

Examples

Labels from Folder Names

Create a folder called Files in the current folder containing three subfolders, Files_1, Files_2,
and Files_3. Add to each subfolder a random number of files, each containing a random signal of
random size.

mkdir Files

for kj = 1:3
 fname = "Files_" + kj;
 mkdir(fname)
 for jk = 1:randi(4)
 sname = "sig_" + kj + "_" + jk;
 sgn = randn(randi([30 50]),randi(2));
 save(sname,"sgn")
 movefile(sname + ".mat",fname)
 end

1 Functions

1-886

 movefile(fname,"Files")
end

List the contents of the folders.

dir("*/*/*")

Files Found in: Files\Files_1

. sig_1_1.mat sig_1_3.mat

.. sig_1_2.mat sig_1_4.mat

Files Found in: Files\Files_2

. .. sig_2_1.mat sig_2_2.mat

Files Found in: Files\Files_3

. .. sig_3_1.mat sig_3_2.mat sig_3_3.mat

Create a list of labels based on the folder names.

lbls = folders2labels("Files")

lbls = 9x1 categorical
 Files_1
 Files_1
 Files_1
 Files_1
 Files_2
 Files_2
 Files_3
 Files_3
 Files_3

List the names of the files associated with the labels.

[~,files] = folders2labels("Files");
[~,fnames] = fileparts(files)

fnames = 9x1 string
 "sig_1_1"
 "sig_1_2"
 "sig_1_3"
 "sig_1_4"
 "sig_2_1"
 "sig_2_2"
 "sig_3_1"
 "sig_3_2"
 "sig_3_3"

Remove the Files directory you created at the beginning of the example.

rmdir Files s

 folders2labels

1-887

Input Arguments
loc — Files or folders to scan for labels
character vector | cell array of character vectors | string scalar | string array

Files or folders to scan for labels, specified as a character vector, a cell array of character vectors, a
string scalar, or a string array, containing the location of files or folders that are local or remote.

• Local files or folders — Specify loc as a local path to files or folders. If the files are not in the
current folder, then the local path must specify full or relative paths. Files within subfolders of the
specified folder are included by default. You can use the wildcard character (*) when specifying
the local path. This character specifies that the file search include all matching files or all files in
the matching folders.

• A remote location specified using an internationalized resource identifier (IRI).
• Remote files or folders — Specify loc to be the full paths of the files or folders as a uniform

resource locator (URL) of the form hdfs:///path_to_file. For more information, see “Work
with Remote Data”.

folders2labels looks for all file formats. To specify a custom list of file extensions to scan, use the
FileExtensions argument.
Example: 'whale.mat'
Example: '../dir/data/signal.mat'
Example: "../dir/data/"
Example: {'dataFiles/Files_1/' 'dataFiles/Files_2/'}
Example: ["dataFiles/Files_1/" "dataFiles/Files_2/"]
Data Types: char | string | cell

ds — Data repository
datastore | matlab.io.datastore.FileSet object | matlab.io.datastore.BlockedFileSet
object

Data repository, specified as a datastore, a matlab.io.datastore.FileSet object, or a
matlab.io.datastore.BlockedFileSet object.

• If ds is a datastore, it must contain a Files property from which label names are parsed.
• If ds is a matlab.io.datastore.FileSet object, folders2labels obtains the label names

from the file names listed in the FileInfo property of ds.
• If ds is a matlab.io.datastore.BlockedFileSet object, folders2labels obtains the label

names from the file names listed in the BlockInfo property of ds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: folders2labels('C:\dir\signaldata','FileExtensions','.csv') specifies a
local path and includes only CSV files in the scan for labels.

1 Functions

1-888

IncludeSubfolders — Subfolder inclusion flag
false or 0 (default) | true or 1

Subfolder inclusion flag, specified as true or false. Specify true to include all files and subfolders
within each folder or false to include only the files within each folder.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Signal file extensions
character vector | cell array of character vectors | string scalar | string array

Signal file extensions, specified as a string scalar, string array, character vector, or cell array of
character vectors.
Example: 'FileExtensions','.csv'
Data Types: string | char | cell

Output Arguments
lbls — List of labels
categorical vector

List of labels, returned as a categorical vector.

files — List of files
string vector

List of files, returned as a string vector. The ith element of lbls corresponds to a label for the ith
file in files.

See Also
Signal Labeler | countlabels | splitlabels

Introduced in R2021a

 folders2labels

1-889

freqs
Frequency response of analog filters

Syntax
h = freqs(b,a,w)
[h,wout] = freqs(b,a,n)
freqs(___)

Description
h = freqs(b,a,w) returns the complex frequency response of the analog filter specified by the
coefficient vectors b and a, evaluated at the angular frequencies w.

[h,wout] = freqs(b,a,n) uses n frequency points to compute h and returns the corresponding
angular frequencies in wout.

freqs(___) with no output arguments plots the magnitude and phase responses as functions of
angular frequency in the current figure window. You can use this syntax with either of the previous
input syntaxes.

Examples

Frequency Response from Transfer Function

Find and graph the frequency response of the transfer function

H(s) = 0 . 2s2 + 0 . 3s + 1
s2 + 0 . 4s + 1

.

a = [1 0.4 1];
b = [0.2 0.3 1];
w = logspace(-1,1);

h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
phasedeg = phase*180/pi;

subplot(2,1,1)
loglog(w,mag)
grid on
xlabel('Frequency (rad/s)')
ylabel('Magnitude')

subplot(2,1,2)
semilogx(w,phasedeg)
grid on
xlabel('Frequency (rad/s)')
ylabel('Phase (degrees)')

1 Functions

1-890

You can also generate the plots by calling freqs with no output arguments.

figure
freqs(b,a,w)

 freqs

1-891

Frequency Response of a Lowpass Analog Bessel Filter

Design a 5th-order analog lowpass Bessel filter with an approximately constant group delay up to 104

rad/s. Plot the frequency response of the filter using freqs.

[b,a] = besself(5,10000); % Bessel analog filter design
freqs(b,a) % Plot frequency response

1 Functions

1-892

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors.
Example: [b,a] = butter(5,50,'s') specifies a fifth-order Butterworth filter with a cutoff
frequency of 50 rad/second.
Data Types: single | double

w — Angular frequencies
positive real vector

Angular frequencies, specified as a positive real vector expressed in rad/second.
Example: 2*pi*logspace(6,9) specifies 50 logarithmically spaced angular frequencies from 1
MHz (2π × 106 rad/second) and 1 GHz (2π × 109 rad/second).
Data Types: single | double

n — Number of evaluation points
200 (default) | positive integer scalar

Number of evaluation points, specified as a positive integer scalar.

 freqs

1-893

Data Types: single | double

Output Arguments
h — Frequency response
vector

Frequency response, returned as a vector.

wout — Angular frequencies
vector

Angular frequencies at which h is computed, returned as a vector.

Algorithms
freqs returns the complex frequency response of an analog filter specified by b and a. The function
evaluates the ratio of Laplace transform polynomials

H(s) = B(s)
A(s) = b(1)sn + b(2)sn− 1 +⋯+ b(n + 1)

a(1)sm + a(2)sm− 1 +⋯+ a(m + 1)

along the imaginary axis at the frequency points s = jω:

s = 1j*w;
h = polyval(b,s)./polyval(a,s);

See Also
abs | angle | freqz | invfreqs | logspace | polyval

Introduced before R2006a

1 Functions

1-894

freqsamp
Real or complex frequency-sampled FIR filter from specification object

Syntax
hd = design(d,'freqsamp')
hd = design(...,'FilterStructure',structure)
hd = design(...,'Window',window)

Description
hd = design(d,'freqsamp') designs a frequency-sampled filter specified by the filter
specifications object d.

hd = design(...,'FilterStructure',structure) returns a filter with the filter structure you
specify by the structure input argument. structure is dffir by default and can be any one of the
following filter structures.

Structure Description of Resulting Filter
dffir Direct-form FIR filter
dffirt Transposed direct-form FIR filter
dfsymfir Symmetrical direct-form FIR filter
dfasymfir Asymmetrical direct-form FIR filter
fftfir Fast Fourier transform FIR filter

hd = design(...,'Window',window) designs filters using the window specified in window.
Provide the input argument window as

• The window name in single quotes. For example, use 'bartlett', or 'hamming'. See window
for the full list of available windows.

• A function handle that references the window function. When the window function requires more
than one input, use a cell array to hold the required arguments. The first example shows a cell
array input argument.

• The window vector itself.

Examples

Filters with Arbitrary Magnitude Response

Design FIR filters that have arbitrary magnitude responses.

Initially, generate a real filter whose response has three distinct sections:

• A sinusoidal response section for lower frequencies
• A piecewise linear response section for intermediate frequencies

 freqsamp

1-895

• A quadratic response section for higher frequencies.

b1 = 0:0.01:0.18;
a1 = 0.5+sin(2*pi*7.5*b1)/4;

b2 = [0.2 0.38 0.4 0.55 0.562 0.585 0.6 0.78];
a2 = [0.5 2.3 1 1 -0.2 -0.2 1 1];

b3 = [0.79:0.01:1];
a3 = 0.2+18*(1-b3).^2;

f = [b1 b2 b3];
a = [a1 a2 a3];
n = 300;

Design the filter using a Kaiser window with β = 50;

d = fdesign.arbmag('n,f,a',n,f,a);
hd = design(d,'freqsamp','Window',{@kaiser,50});
fvtool(hd)

Design an arbitrary-magnitude complex FIR filter. The vector f contains frequency locations. The
vector a contains the desired filter response values at the locations specified in f. Use a rectangular
window for the design.

f = [-1 -0.93443 -0.86885 -0.80328 -0.7377 -0.67213 -0.60656 -0.54098 ...
 -0.47541 -0.40984 -0.34426 -0.27869 -0.21311 -0.14754 -0.081967 ...
 -0.016393 0.04918 0.11475 0.18033 0.2459 0.31148 0.37705 0.44262 ...

1 Functions

1-896

 0.5082 0.57377 0.63934 0.70492 0.77049 0.83607 0.90164 1];

a = [0.0095848 0.021972 0.047249 0.099869 0.23119 0.57569 0.94032 ...
 0.98084 0.99707 0.99565 0.9958 0.99899 0.99402 0.99978 ...
 0.99995 0.99733 0.99731 0.96979 0.94936 0.8196 0.28502 ...
 0.065469 0.0044517 0.018164 0.023305 0.02397 0.023141 0.021341 ...
 0.019364 0.017379 0.016061];
n = 48;

d = fdesign.arbmag('n,f,a',n,f,a);
hdc = design(d,'freqsamp','Window','rectwin');
fvtool(hdc)

FVTool shows the response for hdc from -1 to 1 in normalized frequency because the filter's transfer
function is not symmetric around 0. Since the Fourier transform of the filter does not exhibit
conjugate symmetry, design returns a complex-valued filter.

See Also
Apps
Filter Designer

Functions
designfilt | fdesign

 freqsamp

1-897

Introduced in R2009a

1 Functions

1-898

freqz
Frequency response of digital filter

Syntax
[h,w] = freqz(b,a,n)
[h,w] = freqz(sos,n)
[h,w] = freqz(d,n)
[h,w] = freqz(___ ,n,'whole')

[h,f] = freqz(___ ,n,fs)
[h,f] = freqz(___ ,n,'whole',fs)

h = freqz(___ ,w)
h = freqz(___ ,f,fs)

freqz(___)

Description
[h,w] = freqz(b,a,n) returns the n-point frequency response vector h and the corresponding
angular frequency vector w for the digital filter with transfer function coefficients stored in b and a.

[h,w] = freqz(sos,n) returns the n-point complex frequency response corresponding to the
second-order sections matrix sos.

[h,w] = freqz(d,n) returns the n-point complex frequency response for the digital filter d.

[h,w] = freqz(___ ,n,'whole') returns the frequency response at n sample points around the
entire unit circle.

[h,f] = freqz(___ ,n,fs) returns the frequency response vector h and the corresponding
physical frequency vector f for a digital filter designed to filter signals sampled at a rate fs.

[h,f] = freqz(___ ,n,'whole',fs) returns the frequency vector at n points ranging between 0
and fs.

h = freqz(___ ,w) returns the frequency response vector h evaluated at the normalized
frequencies supplied in w.

h = freqz(___ ,f,fs) returns the frequency response vector h evaluated at the physical
frequencies supplied in f.

freqz(___) with no output arguments plots the frequency response of the filter.

Examples

 freqz

1-899

Frequency Response from Transfer Function

Compute and display the magnitude response of the third-order IIR lowpass filter described by the
following transfer function:

H(z) = 0 . 05634(1 + z−1)(1 − 1 . 0166z−1 + z−2)
(1 − 0 . 683z−1)(1 − 1 . 4461z−1 + 0 . 7957z−2)

.

Express the numerator and denominator as polynomial convolutions. Find the frequency response at
2001 points spanning the complete unit circle.

b0 = 0.05634;
b1 = [1 1];
b2 = [1 -1.0166 1];
a1 = [1 -0.683];
a2 = [1 -1.4461 0.7957];

b = b0*conv(b1,b2);
a = conv(a1,a2);

[h,w] = freqz(b,a,'whole',2001);

Plot the magnitude response expressed in decibels.

plot(w/pi,20*log10(abs(h)))
ax = gca;
ax.YLim = [-100 20];
ax.XTick = 0:.5:2;
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

1 Functions

1-900

Frequency Response from Second-Order Sections

Compute and display the magnitude response of the third-order IIR lowpass filter described by the
following transfer function:

H(z) = 0 . 05634(1 + z−1)(1 − 1 . 0166z−1 + z−2)
(1 − 0 . 683z−1)(1 − 1 . 4461z−1 + 0 . 7957z−2)

.

Express the transfer function in terms of second-order sections. Find the frequency response at 2001
points spanning the complete unit circle.

b0 = 0.05634;
b1 = [1 1];
b2 = [1 -1.0166 1];
a1 = [1 -0.683];
a2 = [1 -1.4461 0.7957];

sos1 = [b0*[b1 0] [a1 0]];
sos2 = [b2 a2];

[h,w] = freqz([sos1;sos2],'whole',2001);

Plot the magnitude response expressed in decibels.

 freqz

1-901

plot(w/pi,20*log10(abs(h)))
ax = gca;
ax.YLim = [-100 20];
ax.XTick = 0:.5:2;
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

Frequency Response of an FIR filter

Design an FIR lowpass filter of order 80 using a Kaiser window with β = 8. Specify a normalized
cutoff frequency of 0 . 5π rad/sample. Display the magnitude and phase responses of the filter.

b = fir1(80,0.5,kaiser(81,8));
freqz(b,1)

1 Functions

1-902

Design the same filter using designfilt. Display its magnitude and phase responses using fvtool.

d = designfilt('lowpassfir','FilterOrder',80, ...
 'CutoffFrequency',0.5,'Window',{'kaiser',8});
freqz(d)

 freqz

1-903

Frequency Response of an FIR Bandpass Filter

Design an FIR bandpass filter with passband between 0 . 35π and 0 . 8π rad/sample and 3 dB of ripple.
The first stopband goes from 0 to 0 . 1π rad/sample and has an attenuation of 40 dB. The second
stopband goes from 0 . 9π rad/sample to the Nyquist frequency and has an attenuation of 30 dB.
Compute the frequency response. Plot its magnitude in both linear units and decibels. Highlight the
passband.

sf1 = 0.1;
pf1 = 0.35;
pf2 = 0.8;
sf2 = 0.9;
pb = linspace(pf1,pf2,1e3)*pi;

bp = designfilt('bandpassfir', ...
 'StopbandAttenuation1',40, 'StopbandFrequency1',sf1,...
 'PassbandFrequency1',pf1,'PassbandRipple',3,'PassbandFrequency2',pf2, ...
 'StopbandFrequency2',sf2,'StopbandAttenuation2',30);

[h,w] = freqz(bp,1024);
hpb = freqz(bp,pb);

subplot(2,1,1)
plot(w/pi,abs(h),pb/pi,abs(hpb),'.-')

1 Functions

1-904

axis([0 1 -1 2])
legend('Response','Passband','Location','South')
ylabel('Magnitude')

subplot(2,1,2)
plot(w/pi,db(h),pb/pi,db(hpb),'.-')
axis([0 1 -60 10])
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(e jω) = B(e jω)
A(e jω)

= b(1)+b(2) e− jω + b(3) e− j2ω +⋯+ b(M) e− j(M − 1)ω

a(1)+a(2) e− jω + a(3) e− j2ω +⋯+ a(N) e− j(N − 1)ω .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single

 freqz

1-905

Complex Number Support: Yes

n — Number of evaluation points
512 (default) | positive integer scalar

Number of evaluation points, specified as a positive integer scalar no less than 2. When n is absent, it
defaults to 512. For best results, set n to a value greater than the filter order.

sos — Second-order section coefficients
matrix

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, the function
treats the input as a numerator vector. Each row of sos corresponds to the coefficients of a second-
order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2)
ai(3)].
Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. When the unit of time is seconds, fs is expressed in hertz.
Data Types: double

w — Angular frequencies
vector

Angular frequencies, specified as a vector and expressed in rad/sample. w must have at least two
elements, because otherwise the function interprets it as n. w = π corresponds to the Nyquist
frequency.

f — Frequencies
vector

Frequencies, specified as a vector. f must have at least two elements, because otherwise the function
interprets it as n. When the unit of time is seconds, f is expressed in hertz.
Data Types: double

1 Functions

1-906

Output Arguments
h — Frequency response
vector

Frequency response, returned as a vector. If you specify n, then h has length n. If you do not specify
n, or specify n as the empty vector, then h has length 512.

If the input to freqz is single precision, the function computes the frequency response using single-
precision arithmetic. The output h is single precision.

w — Angular frequencies
vector

Angular frequencies, returned as a vector. w has values ranging from 0 to π. If you specify 'whole' in
your input, the values in w range from 0 to 2π. If you specify n, w has length n. If you do not specify n,
or specify n as the empty vector, w has length 512.

f — Frequencies
vector

Frequencies, returned as a vector expressed in hertz. f has values ranging from 0 to fs/2 Hz. If you
specify 'whole' in your input, the values in f range from 0 to fs Hz. If you specify n, f has length n.
If you do not specify n, or specify n as the empty vector, f has length 512.

Algorithms
The frequency response of a digital filter can be interpreted as the transfer function evaluated at
z = ejω [1].

freqz determines the transfer function from the (real or complex) numerator and denominator
polynomials you specify and returns the complex frequency response, H(ejω), of a digital filter. The
frequency response is evaluated at sample points determined by the syntax that you use.

freqz generally uses an FFT algorithm to compute the frequency response whenever you do not
supply a vector of frequencies as an input argument. It computes the frequency response as the ratio
of the transformed numerator and denominator coefficients, padded with zeros to the desired length.

When you do supply a vector of frequencies as input, freqz evaluates the polynomials at each
frequency point and divides the numerator response by the denominator response. To evaluate the
polynomials, the function uses Horner’s method.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd

Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 freqz

1-907

• If the first input to freqz is a variable-size matrix at compile time, then it must not become a
vector or an empty array at runtime.

• If the input n is variable-size at compile time, then it must not become a scalar or an empty array
at runtime.

See Also
abs | angle | designfilt | digitalFilter | fft | filter | freqs | impz | invfreqs |
logspace

Introduced before R2006a

1 Functions

1-908

fsst
Fourier synchrosqueezed transform

Syntax
s = fsst(x)
[s,w,n] = fsst(x)

[s,f,t] = fsst(x,fs)
[s,f,t] = fsst(x,ts)

[___] = fsst(___ ,window)

fsst(___)
fsst(___ ,freqloc)

Description
s = fsst(x) returns the Fourier synchrosqueezed transform of the input signal, x. Each column of
s contains the synchrosqueezed spectrum of a windowed segment of x.

[s,w,n] = fsst(x) returns a vector of normalized frequencies, w, and a vector of sample numbers,
n, at which the Fourier synchrosqueezed transform is computed. w corresponds to the columns of s
and n corresponds to the rows of s.

[s,f,t] = fsst(x,fs) returns a vector of cyclical frequencies, f, and a vector of time instants, t,
expressed in terms of the sample rate, fs.

[s,f,t] = fsst(x,ts) specifies the sample time, ts, as a duration scalar. t is in the same units
as ts. The units of f are reciprocal to the units of ts.

[___] = fsst(___ ,window) uses window to divide the signal into segments and perform
windowing. You can use any combination of input arguments from previous syntaxes to obtain the
corresponding output arguments.

fsst(___) with no output arguments plots the synchrosqueezed transform in the current figure
window.

fsst(___ ,freqloc) specifies the axis on which to plot the frequency.

Examples

Fourier Synchrosqueezed Transform of Sinusoidal Signal

Generate 1024 samples of a signal that consists of a sum of sinusoids embedded in white Gaussian
noise. The normalized frequencies of the sinusoids are 2π/5 rad/sample and 4π/5 rad/sample. The
higher frequency sinusoid has 3 times the amplitude of the other sinusoid.

N = 1024;
n = 0:N-1;

 fsst

1-909

w0 = 2*pi/5;
x = sin(w0*n)+3*sin(2*w0*n);

Compute the Fourier synchrosqueezed transform of the signal. Plot the result.

[s,w,n] = fsst(x);

mesh(n,w/pi,abs(s))

axis tight
view(2)
colorbar

Compute the conventional short-time Fourier transform of the signal for comparison. Use the default
values of spectrogram. Plot the result.

[s,w,n] = spectrogram(x);

surf(n,w/pi,abs(s),'EdgeColor','none')

axis tight
view(2)
colorbar

1 Functions

1-910

Synchrosqueezed Transform of Linear Chirps

Generate a signal that consists of two chirps. The signal is sampled at 3 kHz for one second. The first
chirp has an initial frequency of 400 Hz and reaches 800 Hz at the end of the sampling. The second
chirp starts at 500 Hz and reaches 1000 Hz at the end. The second chirp has twice the amplitude of
the first chirp.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = chirp(t,400,t(end),800);
x2 = 2*chirp(t,500,t(end),1000);

Compute and plot the Fourier synchrosqueezed transform of the signal.

fsst(x1+x2,fs,'yaxis')

 fsst

1-911

Compare the synchrosqueezed transform with the short-time Fourier transform (STFT). Compute the
STFT using the spectrogram function. Specify the default parameters used by fsst:

• A 256-point Kaiser window with β = 10 to window the signal
• An overlap of 255 samples between adjoining windowed segments
• An FFT length of 256

[stft,f,t] = spectrogram(x1+x2,kaiser(256,10),255,256,fs);

Plot the absolute value of the STFT.

mesh(t,f,abs(stft))

xlabel('Time (s)')
ylabel('Frequency (Hz)')
title('Short-Time Fourier Transform')
axis tight
view(2)

1 Functions

1-912

Fourier Synchrosqueezed Transform of Chirps

Compute and display the Fourier synchrosqueezed transform of a quadratic chirp that starts at 100
Hz and crosses 200 Hz at t = 1 s. Specify a sample rate of 1 kHz. Express the sample time as a
duration scalar.

fs = 1000;
t = 0:1/fs:2;
ts = duration(0,0,1/fs);

x = chirp(t,100,1,200,'quadratic');

fsst(x,ts,'yaxis')

title('Quadratic Chirp')

 fsst

1-913

The synchrosqueezing algorithm works under the assumption that the frequency of the signal varies
slowly. Thus the spectrum is better concentrated at early times, where the rate of change of
frequency is smaller.

Compute and display the Fourier synchrosqueezed transform of a linear chirp that starts at DC and
crosses 150 Hz at t = 1 s. Use a 256-sample Hamming window.

x = chirp(t,0,1,150);

fsst(x,ts,hamming(256),'yaxis')

title('Linear Chirp')

1 Functions

1-914

Compute and display the Fourier synchrosqueezed transform of a logarithmic chirp. The chirp is
sampled at 1 kHz, starts at 20 Hz, and crosses 60 Hz at t = 1 s. Use a 256-sample Kaiser window
with β = 20.

x = chirp(t,20,1,60,'logarithmic');

[s,f,t] = fsst(x,fs,kaiser(256,20));

clf
mesh(t,f,(abs(s)))

title('Logarithmic Chirp')
xlabel('Time (s)')
ylabel('Frequency (Hz)')
view(2)

 fsst

1-915

Use a logarithmic scale for the frequency axis. The transform becomes a straight line.

ax = gca;
ax.YScale = 'log';
axis tight

1 Functions

1-916

Fourier Synchrosqueezed Transform of Speech Signal

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb

% To hear, type sound(mtlb,Fs)

Compute the synchrosqueezed transform of the signal. Use a Hann window of length 256. Display the
time on the x-axis and the frequency on the y-axis.

fsst(mtlb,Fs,hann(256),'yaxis')

 fsst

1-917

Use ifsst to invert the transform. Compare the original and reconstructed signals.

sst = fsst(mtlb,Fs,hann(256));

xrc = ifsst(sst,hann(256));

plot((0:length(mtlb)-1)/Fs,[mtlb xrc xrc-mtlb])
legend('Original','Reconstructed','Difference')

1 Functions

1-918

% To hear, type sound(xrc-mtlb,Fs)

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.
Data Types: double | single

ts — Sample time
duration scalar

 fsst

1-919

Sample time, specified as a duration scalar. The sample time is the time elapsed between
consecutive samples of x.
Data Types: duration

window — Window used to divide the signal into segments
kaiser(256,10) (default) | integer | vector | []

Window used to divide the signal into segments, specified as an integer or as a row or column vector.

• If window is an integer, then fsst divides x into segments of length window and windows each
segment with a Kaiser window of that length and β = 10. The overlap between adjacent segments
is window – 1.

• If window is a vector, then fsst divides x into segments of the same length as the vector and
windows each segment using window. The overlap between adjacent segments is
length(window) – 1.

• If window is not specified, then fsst divides x into segments of length 256 and windows each
segment with a 256-sample Kaiser window with β = 10. The overlap between adjacent segments is
255. If x has fewer than 256 samples, then the function uses a single Kaiser window with the same
length as x and β = 10.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: double | single

freqloc — Frequency display axis
'xaxis' (default) | 'yaxis'

Frequency display axis, specified as 'xaxis' or 'yaxis'.

• 'xaxis' — Displays frequency on the x-axis and time on the y-axis.
• 'yaxis' — Displays frequency on the y-axis and time on the x-axis.

This argument is ignored if you call fsst with output arguments.

Output Arguments
s — Fourier synchrosqueezed transform
matrix

Fourier synchrosqueezed transform, returned as a matrix. Time increases across the columns of s
and frequency increases down the rows of s, starting from zero. If x is real, then its synchrosqueezed
spectrum is one-sided. If x is complex, then its synchrosqueezed spectrum is two-sided and centered.

w — Normalized frequencies
vector

Normalized frequencies, returned as a vector. The length of w equals the number of rows in s.

n — Sample numbers
vector

1 Functions

1-920

Sample numbers, returned as a vector. The length of n equals the number of columns in s. Each
sample number in n is the midpoint of a windowed segment of x.

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a vector. The length of f equals the number of rows in s.

t — Time instants
vector

Time instants, returned as a vector. The length of t equals the number of columns in s. Each time
value in t is the midpoint of a windowed segment of x.

More About
Fourier Synchrosqueezed Transform

Many real-world signals such as speech waveforms, machine vibrations, and physiologic signals can
be expressed as a superposition of amplitude-modulated and frequency-modulated modes. For time-
frequency analysis, it is convenient to express such signals as sums of analytic signals through

f (t) = ∑
k = 1

K
fk(t) = ∑

k = 1

K
Ak(t)e j2πϕk(t) .

The phases ϕk(t) have time derivatives dϕk(t)/dt that correspond to instantaneous frequencies. When
the exact phases are unknown, you can use the Fourier synchrosqueezed transform to estimate them.

The Fourier synchrosqueezed transform is based on the short-time Fourier transform implemented in
the spectrogram function. For certain kinds of nonstationary signals, the synchrosqueezed
transform resembles the reassigned spectrogram because it generates sharper time-frequency
estimates than the conventional transform. The fsst function determines the short-time Fourier
transform of a function, f, using a spectral window, g, and computing

Vgf (t, η) =∫−∞
∞

f (x)g(x− t)e− j2πη(x− t) dx .

Unlike the conventional definition, this definition has an extra factor of ej2πηt. The transform values
are then “squeezed” so that they concentrate around curves of instantaneous frequency in the time-
frequency plane. The resulting synchrosqueezed transform is of the form

Tgf (t, ω) =∫−∞
∞

Vgf (t, η) δ(ω− Ωgf (t, η)) dη,

where the instantaneous frequencies are estimated with the “phase transform”

Ωgf (t, η) = 1
j2π

∂
∂t Vgf (t, η)
Vgf (t, η) = η− 1

j2π
V ∂g/ ∂tf (t, η)

Vgf (t, η) .

The transform in the denominator decreases the influence of the window. To see a simple example,
refer to “Detect Closely Spaced Sinusoids”. The definition of Tgf(t,ω) differs by a factor of 1/g(0) from
other expressions found in the literature. fsst incorporates the factor in the mode-reconstruction
step.

 fsst

1-921

Unlike the reassigned spectrogram, the synchrosqueezed transform is invertible and thus can
reconstruct the individual modes that compose the signal. Invertibility imposes some constraints on
the computation of the short-time Fourier transform:

• The number of DFT points is equal to the length of the specified window.
• The overlap between adjoining windowed segments is one less than the window length.
• The reassignment is performed only in frequency.

To find the modes, integrate the synchrosqueezed transform over a small frequency interval around
Ωgf(t,η):

fk(t) ≈ 1
g(0)∫ω− Ωk(t) < εTgf (t, ω) dω,

where ɛ is a small number.

The synchrosqueezed transform produces narrow ridges compared to the windowed short-time
Fourier transform. However, the width of the short-time transform still affects the ability of the
synchrosqueezed transform to separate modes. To be resolvable, the modes must obey these
conditions:

1 For each mode, the frequency must be strictly greater than the rate of change of the amplitude:
dϕk(t)

dt >
dAk(t)

dt for all k.

2 Distinct modes must be separated by at least the frequency bandwidth of the window. If the

support of the window is the interval [–Δ,Δ], then
dϕk(t)

dt −
dϕm(t)

dt > 2Δ for k ≠ m.

For an illustration, refer to “Detect Closely Spaced Sinusoids”.

References
[1] Auger, François, Patrick Flandrin, Yu-Ting Lin, Stephen McLaughlin, Sylvain Meignen, Thomas

Oberlin, and Hau-Tieng Wu. "Time-Frequency Reassignment and Synchrosqueezing: An
Overview." IEEE Signal Processing Magazine. Vol. 30, November 2013, pp. 32–41.

[2] Oberlin, Thomas, Sylvain Meignen, and Valérie Perrier. "The Fourier-based Synchrosqueezing
Transform." Proceedings of the 2014 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 315–319.

[3] Thakur, Gaurav, and Hau-Tieng Wu. "Synchrosqueezing-based Recovery of Instantaneous
Frequency from Nonuniform Samples." SIAM Journal of Mathematical Analysis. Vol. 43, 2011,
pp. 2078–2095.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The window must be double precision.

1 Functions

1-922

• Duration arrays are not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The length of the window must be smaller than or equal to the length of the input signal.
• The syntax with no output arguments is not supported.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Analyzer

Functions
ifsst | pspectrum | spectrogram | tfridge

Topics
“Hilbert Transform and Instantaneous Frequency”
“Practical Introduction to Time-Frequency Analysis”
“Time-Frequency Gallery”

Introduced in R2016b

 fsst

1-923

FVTool
Filter Visualization Tool

Description
Filter Visualization Tool is an interactive tool that enables you to display the magnitude, phase
response, group delay, impulse response, step response, pole-zero plot, and coefficients of a filter. You
can export the displayed response to a file with File > Export.

If the DSP System Toolbox product is installed, FVTool can also visualize the frequency response of a
filter System object. If you need to filter streaming data in real time, using System objects is the
recommended approach. For more information, see fvtool (DSP System Toolbox).

Open the FVTool
FVTool can be opened programmatically using one of the methods described in “Programmatic Use”
on page 1-933.

Examples

1 Functions

1-924

Magnitude Response of Elliptic Filter

Display the magnitude response of a 6th-order elliptic filter. Specify a passband ripple of 3 dB, a
stopband attenuation of 50 dB, a sample rate of 1 kHz, and a normalized passband edge of 300 Hz.
Start FVTool from the command line.

[b,a] = ellip(6,3,50,300/500);
fvtool(b,a)

Display Analysis Parameters

Display and analyze multiple FIR filters, starting FVTool from the command line.

b1 = firpm(20,[0 0.4 0.5 1],[1 1 0 0]);
b2 = firpm(40,[0 0.4 0.5 1],[1 1 0 0]);
fvtool(b1,1,b2,1)

 FVTool

1-925

Display the associated analysis parameters by selecting Analysis > Analysis Parameters.

.

1 Functions

1-926

FVTool Figure Handle Commands

Start FVTool from the command line. Display the magnitude response of a 6th-order elliptic filter.
Specify a passband ripple of 3 dB, a stopband attenuation of 50 dB, a sample rate of 1 kHz, and a
normalized passband edge of 300 Hz.

[b,a] = ellip(6,3,50,300/500);
h = fvtool(b,a)

h =
 Figure (filtervisualizationtool) with properties:

 Number: 1
 Name: 'Filter Visualization Tool - Magnitude Response (dB)'
 Color: [0.9400 0.9400 0.9400]
 Position: [361 290 560 420]
 Units: 'pixels'

 Use get to show all properties

Display the phase response of the filter.

h.Analysis = 'phase'

 FVTool

1-927

h =
 Figure (filtervisualizationtool) with properties:

 Number: 1
 Name: 'Filter Visualization Tool - Phase Response'
 Color: [0.9400 0.9400 0.9400]
 Position: [361 290 560 420]
 Units: 'pixels'

 Use get to show all properties

Turn on the plot legend and add text.

legend(h,'Phase plot')

1 Functions

1-928

Specify a sample rate of 1 kHz. Display the two-sided centered response.

h.Fs = 1000;
h.FrequencyRange='[-Fs/2, Fs/2)'

 FVTool

1-929

h =
 Figure (filtervisualizationtool) with properties:

 Number: 1
 Name: 'Filter Visualization Tool - Phase Response'
 Color: [0.9400 0.9400 0.9400]
 Position: [361 290 560 420]
 Units: 'pixels'

 Use get to show all properties

View the all the properties of the plot. The properties specific to FVTool are at the end of the list.

get(h)

 Grid: on
 Legend: 'on'
 AnalysisToolbar: 'on'
 FigureToolbar: 'on'
 DesignMask: 'off'
 SOSViewSettings: [1x1 dspopts.sosview]
 Fs: 1000
 Alphamap: [0 0.0159 0.0317 0.0476 0.0635 0.0794 0.0952 ...]
 CloseRequestFcn: 'closereq'
 Color: [0.9400 0.9400 0.9400]
 Colormap: [256x3 double]
 ContextMenu: [0x0 GraphicsPlaceholder]

1 Functions

1-930

 CurrentAxes: [1x1 Axes]
 CurrentCharacter: ''
 CurrentObject: [0x0 GraphicsPlaceholder]
 CurrentPoint: [0 0]
 DockControls: on
 FileName: ''
 IntegerHandle: on
 InvertHardcopy: on
 KeyPressFcn: ''
 KeyReleaseFcn: ''
 MenuBar: 'none'
 Name: 'Filter Visualization Tool - Phase Response'
 NextPlot: 'new'
 NumberTitle: on
 PaperUnits: 'inches'
 PaperOrientation: 'portrait'
 PaperPosition: [1.3333 3.3125 5.8333 4.3750]
 PaperPositionMode: 'auto'
 PaperSize: [8.5000 11]
 PaperType: 'usletter'
 Pointer: 'arrow'
 PointerShapeCData: [16x16 double]
 PointerShapeHotSpot: [1 1]
 Position: [361 290 560 420]
 Renderer: 'opengl'
 RendererMode: 'auto'
 Resize: on
 ResizeFcn: ''
 SelectionType: 'normal'
 ToolBar: 'auto'
 Type: 'figure'
 Units: 'pixels'
 WindowButtonDownFcn: ''
 WindowButtonMotionFcn: ''
 WindowButtonUpFcn: ''
 WindowKeyPressFcn: ''
 WindowKeyReleaseFcn: ''
 WindowScrollWheelFcn: ''
 WindowStyle: 'normal'
 BeingDeleted: off
 ButtonDownFcn: ''
 Children: [15x1 Graphics]
 Clipping: on
 CreateFcn: ''
 DeleteFcn: ''
 BusyAction: 'queue'
 HandleVisibility: 'on'
 HitTest: on
 Interruptible: on
 Parent: [1x1 Root]
 Selected: off
 SelectionHighlight: on
 Tag: 'filtervisualizationtool'
 UserData: []
 Visible: on
 ShowReference: 'on'
 FrequencyRange: '[-Fs/2, Fs/2)'
 OverlayedAnalysis: ''

 FVTool

1-931

 FrequencyScale: 'Linear'
 PolyphaseView: 'off'
 FrequencyVector: [0 0.0039 0.0078 0.0118 0.0157 0.0196 0.0235 ...]
 Analysis: 'phase'
 NormalizedFrequency: 'off'
 PhaseUnits: 'Radians'
 NumberofPoints: 8192
 PhaseDisplay: 'Phase'

Magnitude and Phase Response of Bandpass FIR Filter

Design a 50th-order bandpass FIR filter with stopband frequencies 150 Hz and 350 Hz and passband
frequencies 200 Hz and 300 Hz. The sample rate is 1000 Hz. Visualize the magnitude and phase
response of the filter.

N = 50;
Fstop1 = 150;
Fstop2 = 350;

Fpass1 = 200;
Fpass2 = 300;

Fs = 1e3;

bpFilt = designfilt('bandpassfir','FilterOrder',N, ...
'StopbandFrequency1',Fstop1,...
'StopbandFrequency2',Fstop2,...
'PassbandFrequency1',Fpass1,...
'PassbandFrequency2',Fpass2,...
'SampleRate',Fs);

fvtool(bpFilt,'Analysis','freq')

1 Functions

1-932

• “Filter Analysis Using FVTool”

Programmatic Use
fvtool(b,a) opens FVTool and displays the magnitude response of the digital filter defined with
numerator b and denominator a. Specify b and a coefficients in ascending order of power z-1.

fvtool(sos) opens FVTool and displays the magnitude response of the digital filter defined by the
L-by-6 matrix of second order sections:

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

The rows of sos contain the numerator and denominator coefficients bik and aik of the cascade of
second-order sections of H(z):

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

 FVTool

1-933

The number of sections, L, must be greater than or equal to 2. If the number of sections is less than
2, fvtool considers the input to be a numerator vector.

fvtool(d) opens FVTool and displays the magnitude response of a digital filter, d. Use designfilt
to generate d based on frequency-response specifications.

fvtool(b1,a1,b2,a2,...,bN,aN) opens FVTool and displays the magnitude responses of
multiple filters defined with numerators b1, …, bN and denominators a1, ..., aN.

fvtool(sos1,sos2,...,sosN) opens FVTool and displays the magnitude responses of multiple
filters defined with second order section matrices sos1, sos2, ..., sosN.

fvtool(Hd) opens FVTool and displays the magnitude responses for the dfilt filter object Hd or
the array of dfilt filter objects.

fvtool(Hd1,Hd2,...,HdN) opens FVTool and displays the magnitude responses of the filters in
the dfilt objects Hd1, Hd2, ..., HdN.

h = fvtool(___) returns a figure handle h. You can use this handle to interact with FVTool from
the command line. See “Controlling FVTool from the MATLAB Command Line”.

More About
Controlling FVTool from the GUI

FVTool has two toolbars:

• An extended version of the MATLAB plot editing toolbar. The following table shows the toolbar
icons specific to FVTool:

Icon Description
Restore default view. This view displays buffer regions around the data and
shows only significant data. To see the response using standard MATLAB
plotting, which shows all data values, use View > Full View.
Toggle legend

Toggle grid

Link to Filter Designer (appears only if FVTool was started from Filter
Designer)
Toggle Add mode/Replace mode (appears only if FVTool was launched from
Filter Designer)

• Analysis toolbar with the following icons:

Magnitude response of the current filter. See freqz and zerophase for more
information.

To see the zero-phase response, right-click the y-axis label of the Magnitude
plot and select Zero-phase from the context menu.

1 Functions

1-934

Phase response of the current filter. See phasez for more information.

Magnitude response and the phase response of the current filter superimposed
on one another. See freqz for more information.
Group delay of the current filter. Group delay is the average delay of the filter
as a function of frequency. See grpdelay for more information.
Phase delay of the current filter. Phase delay is the time delay the filter imposes
on each component of the input signal. See phasedelay for more information.
Impulse response of the current filter. The impulse response is the response of
the filter to an impulse input. See impz for more information.
Step response of the current filter. The step response is the response of the
filter to a step input. See stepz for more information.
Pole-zero plot, which shows the pole and zero locations of the current filter on
the z-plane. See zplane for more information.
Filter coefficients of the current filter, which depend on the filter structure
(direct-form or lattice) in a text box. For SOS filters, each section is displayed as
a separate filter.
Detailed filter information.

 FVTool

1-935

Linking to Filter Designer

In the Filter Designer app, selecting View > Filter Visualization Tool or the Full View Analysis
toolbar button when an analysis is displayed starts FVTool for the current filter. You can
synchronize Filter Designer and FVTool with the toolbar button . Any changes made to the filter in
Filter Designer are immediately reflected in FVTool.

Two link modes are provided via the toggle toolbar button / :

•
Replace — removes the filter currently displayed in FVTool and inserts the new filter.

•
Add — retains the filter currently displayed in FVTool and adds the new filter to the display.

Overlaying a Response

You can overlay a second response on the plot by selecting Analysis > Overlay Analysis and
selecting an available response. A second y-axis is added to the right side of the response plot. The
Analysis Parameters dialog box shows parameters for thex-axis and both y-axes. See “Display Analysis
Parameters” on page 1-925 for a sample Analysis Parameters dialog box.

1 Functions

1-936

See Also
Apps
Signal Analyzer | Filter Designer

Functions
designfilt | digitalFilter

Topics
“Filter Analysis Using FVTool”
“Modifying the Axes”
“Modifying the Plot”
“Controlling FVTool from the MATLAB Command Line”

Introduced before R2006a

 FVTool

1-937

fwht
Fast Walsh-Hadamard transform

Syntax
y = fwht(x)
y = fwht(x,n)
y = fwht(x,n,ordering)

Description
y = fwht(x) returns the coefficients of the discrete Walsh-Hadamard transform of the input x.

y = fwht(x,n) returns the n-point discrete Walsh-Hadamard transform.

y = fwht(x,n,ordering) specifies the ordering to use for the returned Walsh-Hadamard
transform coefficients.

Examples

Walsh-Hadamard Transform of a Signal

This example shows a simple input signal and its Walsh-Hadamard transform.

x = [19 -1 11 -9 -7 13 -15 5];
y = fwht(x)

y = 1×8

 2 3 0 4 0 0 10 0

y contains nonzero values at locations 0, 1, 3, and 6. Form the Walsh functions with the sequency
values 0, 1, 3, and 6 to recreate x.

w0 = [1 1 1 1 1 1 1 1];
w1 = [1 1 1 1 -1 -1 -1 -1];
w3 = [1 1 -1 -1 1 1 -1 -1];
w6 = [1 -1 1 -1 -1 1 -1 1];
w = y(0+1)*w0 + y(1+1)*w1 + y(3+1)*w3 + y(6+1)*w6

w = 1×8

 19 -1 11 -9 -7 13 -15 5

Obtain the same result by extracting the nonzero values and Walsh functions programmatically.

ww = fwht(eye(length(y)))*length(y)

ww = 8×8

1 Functions

1-938

 1 1 1 1 1 1 1 1
 1 1 1 1 -1 -1 -1 -1
 1 1 -1 -1 -1 -1 1 1
 1 1 -1 -1 1 1 -1 -1
 1 -1 -1 1 1 -1 -1 1
 1 -1 -1 1 -1 1 1 -1
 1 -1 1 -1 -1 1 -1 1
 1 -1 1 -1 1 -1 1 -1

nz = find(y);
w = sum(y(nz)'.*ww(nz,:))

w = 1×8

 19 -1 11 -9 -7 13 -15 5

Input Arguments
x — Input signal
matrix | vector

Input signal, specified as a matrix or a vector. If x is a matrix, the Fast Walsh-Hadamard transform is
calculated on each column of x. fwht operates only on signals with length equal to a power of 2. If
the length of x is less than a power of 2, its length is padded with zeros to the next greater power of
two before processing.

n — Points in discrete Walsh Hadamard transform
positive even integer scalar

Points in discrete Walsh Hadamard transform, specified as a positive even integer scalar.x and n must
be the same length. If x is longer than n, x is truncated. If x is shorter than n, x is padded with zeros.

ordering — Order of Walsh Hadamard transform coefficients
'sequency' | 'hadamard' | 'dyadic'

Order of Walsh Hadamard transform coefficients, specified as 'sequency', 'hadamard' or
'dyadic'. To specify the ordering, you must enter a value for the length n or, to use the default
behavior, specify an empty vector ([]) for n. Valid values for the ordering are the following:

Ordering Description
'sequency' Coefficients in order of increasing sequency value, where each row has

an additional zero crossing. This is the default ordering.
'hadamard' Coefficients in normal Hadamard order.
'dyadic' Coefficients in Gray code order, where a single bit change occurs from

one coefficient to the next.

For more information on the Walsh functions and ordering, see “Walsh-Hadamard Transform”.

 fwht

1-939

Output Arguments
y — Discrete Walsh-Hadamard transform
matrix | vector

Discrete Walsh-Hadamard transform, returned as a matrix or a vector.

Algorithms
The fast Walsh-Hadamard transform algorithm is similar to the Cooley-Tukey algorithm used for the
FFT. Both use a butterfly structure to determine the transform coefficients. See the references for
details.

References
[1] Beauchamp, Kenneth G. Applications of Walsh and Related Functions: With an Introduction to

Sequency Theory. London: Academic Press, 1984.

[2] Beer, Tom. “Walsh Transforms.” American Journal of Physics. Vol. 49, 1981, pp. 466–472.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ifwht | dct | idct | fft | ifft

Introduced in R2008b

1 Functions

1-940

gauspuls
Gaussian-modulated sinusoidal RF pulse

Syntax
yi = gauspuls(t,fc,bw)
yi = gauspuls(t,fc,bw,bwr)
[yi,yq] = gauspuls(___)
[yi,yq,ye] = gauspuls(___)
tc = gauspuls('cutoff',fc,bw,bwr,tpe)

Description
yi = gauspuls(t,fc,bw) returns a unit-amplitude Gaussian-modulated sinusoidal RF pulse at the
times indicated in array t, with a center frequency fc in hertz and a fractional bandwidth bw

yi = gauspuls(t,fc,bw,bwr) returns a unit-amplitude inphase Gaussian RF pulse with a
fractional bandwidth of bw as measured at a level of bwr dB with respect to the normalized signal
peak.

[yi,yq] = gauspuls(___) also returns the quadrature pulse. This syntax can include any
combination of input arguments from previous syntaxes.

[yi,yq,ye] = gauspuls(___) returns the RF signal envelope.

tc = gauspuls('cutoff',fc,bw,bwr,tpe) returns the cutoff time tc at which the trailing pulse
envelope falls below tpe dB with respect to the peak envelope amplitude.

Examples

Generate Gaussian RF Pulse

Plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of 10 MHz. Truncate the
pulse where the envelope falls 40 dB below the peak. Also plot the quadrature pulse and the RF
signal envelope.

tc = gauspuls('cutoff',50e3,0.6,[],-40);
t = -tc : 1e-7 : tc;
[yi,yq,ye] = gauspuls(t,50e3,0.6);

plot(t,yi,t,yq,t,ye)
legend('Inphase','Quadrature','Envelope')

 gauspuls

1-941

Input Arguments
t — Vector of time values
vector

Vector of time values at which the unit-amplitude Gaussian RF pulse is calculated.
Data Types: single | double

fc — Center frequency
1000 (default) | real positive scalar

Center frequency of the Gaussian-modulated sinusoidal pulses, specified as a real positive scalar
expressed in Hz.

bw — Fractional bandwidth
0.5 (default) | real positive scalar

Fractional bandwidth of the Gaussian-modulated sinusoidal pulses,specified as a real positive scalar.

bwr — Fractional bandwidth reference level
–6 (default) | real negative scalar

Fractional bandwidth reference level of the Gaussian-modulated sinusoidal pulses, specified as a real
negative scalar. bwr indicates a reference level less than peak (unit) envelope amplitude. The

1 Functions

1-942

fractional bandwidth is specified in terms of power ratios. This corresponds to the -3 dB point
expressed in magnitude ratios.

tpe — Trailing pulse envelope level
–60 (default) | real negative scalar

Trailing pulse envelope level, specified as a real negative scalar in dB. The tpe indicates a reference
level less than peak (unit) envelope amplitude.

Output Arguments
yi — Inphase Gaussian pulse
vector

Inphase Gaussian-modulated sinusoidal pulse, returned as a vector of unit amplitude at the times
indicated by the time vector t.

yq — Quadrature Gaussian pulse
vector

Quadrature Gaussian-modulated sinusoidal pulse, returned as a vector of unit amplitude at the times
indicated by the time vector t.

ye — RF signal envelope
vector

RF signal envelope of unit amplitude at the times indicated by the time vector t.

tc — Cutoff time
positive real scalar

The cutoff time in seconds at which the trailing pulse envelope falls below tpe dB with respect to the
peak envelope amplitude.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | cos | diric | pulstran | rectpuls | sawtooth | sin | sinc | square | tripuls

Introduced before R2006a

 gauspuls

1-943

gaussdesign
Gaussian FIR pulse-shaping filter design

Syntax
h = gaussdesign(bt,span,sps)

Description
h = gaussdesign(bt,span,sps) designs a lowpass FIR Gaussian pulse-shaping filter and returns
a vector, h, of filter coefficients. The filter is truncated to span symbols, and each symbol period
contains sps samples. The order of the filter, sps*span, must be even.

Examples

Gaussian Filter for a GSM GMSK Digital Cellular Communication System

Specify that the modulation used to transmit the bits is a Gaussian minimum-shift keying (GMSK)
pulse. This pulse has a 3-dB bandwidth equal to 0.3 of the bit rate. Truncate the filter to 4 symbols
and represent each symbol with 8 samples.

bt = 0.3;
span = 4;
sps = 8;
h = gaussdesign(bt,span,sps);
fvtool(h,'impulse')

1 Functions

1-944

Input Arguments
bt — 3-dB bandwidth-symbol time product
positive real scalar

Product of the 3-dB one-sided bandwidth, in hertz, and the symbol time, in seconds. Specify this value
as a positive real scalar. Smaller values of bt produce larger pulse widths.
Data Types: double | single

span — Number of symbols
3 (default) | positive integer scalar

Number of symbols, specified as a positive integer scalar.
Data Types: double | single

sps — Samples per symbol
2 (default) | positive integer scalar

Number of samples per symbol period (oversampling factor), specified as a positive integer scalar.
Data Types: double | single

 gaussdesign

1-945

Output Arguments
h — FIR filter coefficients
row vector

FIR coefficients of the Gaussian pulse-shaping filter, returned as a row vector. The coefficients are
normalized so that the nominal passband gain is always 1.
Data Types: double | single

Algorithms
The impulse response of the Gaussian filter is given by

h(t) =
exp −t2

2δ2

2π ⋅ δ

where

δ = log2
2πBT .

BT is the bandwidth-symbol time product specified in bt, where B is the 3-dB bandwidth of the filter
and T is the symbol time. The number of symbols between the start and end of the impulse (span)
and the number of samples per symbol (sps) determine the length of the impulse response:
span × sps + 1.

For more information, see “FIR Gaussian Pulse-Shaping Filter Design”.

References
[1] Krishnapura, N., S. Pavan, C. Mathiazhagan, and B. Ramamurthi. “A baseband pulse shaping filter

for Gaussian minimum shift keying.” Proceedings of the 1998 IEEE International Symposium
on Circuits and Systems. Vol. 1, 1998, pp. 249–252.

[2] Rappaport, Theodore S. Wireless Communications: Principles and Practice. 2nd Ed. Upper Saddle
River, NJ: Prentice Hall, 2002.

See Also
rcosdesign

Introduced in R2013b

1 Functions

1-946

gausswin
Gaussian window

Syntax
w = gausswin(L)
w = gausswin(L,alpha)

Description
w = gausswin(L) returns an L-point Gaussian window.

w = gausswin(L,alpha) returns an L-point Gaussian window with width factor alpha.

Note If the window appears to be clipped, increase L, the number of points.

Examples

Gaussian Window

Create a 64-point Gaussian window. Display the result in wvtool.

L = 64;
wvtool(gausswin(L))

 gausswin

1-947

Gaussian Window and the Fourier Transform

This example shows that the Fourier transform of the Gaussian window is also Gaussian with a
reciprocal standard deviation. This is an illustration of the time-frequency uncertainty principle.

Create a Gaussian window of length 64 by using gausswin and the defining equation. Set α = 8,
which results in a standard deviation of 64/16 = 4. Accordingly, you expect that the Gaussian is
essentially limited to the mean plus or minus 3 standard deviations, or an approximate support of
[-12, 12].

N = 64;
n = -(N-1)/2:(N-1)/2;
alpha = 8;

w = gausswin(N,alpha);

stdev = (N-1)/(2*alpha);
y = exp(-1/2*(n/stdev).^2);

plot(n,w)
hold on
plot(n,y,'.')
hold off

1 Functions

1-948

xlabel('Samples')
title('Gaussian Window, N = 64')

Obtain the Fourier transform of the Gaussian window at 256 points. Use fftshift to center the
Fourier transform at zero frequency (DC).

nfft = 4*N;
freq = -pi:2*pi/nfft:pi-pi/nfft;

wdft = fftshift(fft(w,nfft));

The Fourier transform of the Gaussian window is also Gaussian with a standard deviation that is the
reciprocal of the time-domain standard deviation. Include the Gaussian normalization factor in your
computation.

ydft = exp(-1/2*(freq/(1/stdev)).^2)*(stdev*sqrt(2*pi));

plot(freq/pi,abs(wdft))
hold on
plot(freq/pi,abs(ydft),'.')
hold off

xlabel('Normalized frequency (\times\pi rad/sample)')
title('Fourier Transform of Gaussian Window')

 gausswin

1-949

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

alpha — Width factor
2.5 (default) | positive real scalar

Width factor, specified as a positive real scalar. alpha is inversely proportional to the width of the
window.
Data Types: single | double

Output Arguments
w — Gaussian window
column vector

Gaussian window, returned as a column vector.

1 Functions

1-950

Algorithms
The coefficients of a Gaussian window are computed from the following equation:

w(n) = e−
1
2 α n

(L− 1)/2
2

= e−n2/2σ2,

where –(L – 1)/2 ≤ n ≤ (L – 1)/2, and α is inversely proportional to the standard deviation, σ, of a
Gaussian random variable. The exact correspondence with the standard deviation of a Gaussian
probability density function is σ = (L – 1)/(2α).

References
[1] Hansen, Eric W. Fourier Transforms: Principles and Applications. New York: John Wiley & Sons,

2014.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
WVTool | chebwin | kaiser | tukeywin

Introduced before R2006a

 gausswin

1-951

gmonopuls
Gaussian monopulse

Syntax
y = gmonopuls(t,fc)
tc = gmonopuls('cutoff',fc)

Description
y = gmonopuls(t,fc) returns samples of the unit-amplitude Gaussian monopulse with center
frequency fc at the times indicated in array t.

tc = gmonopuls('cutoff',fc) returns the time duration between the maximum and minimum
amplitudes of the pulse.

Examples

Gaussian Monopulse

Consider a Gaussian monopulse with center frequency fc = 2 GHz and sampled at a rate of 100 GHz.
Determine the cutoff time tc using the 'cutoff' option and compute the monopulse between −2tc
and 2tc.

fc = 2e9;
fs = 100e9;

tc = gmonopuls('cutoff',fc);
t = -2*tc:1/fs:2*tc;

y = gmonopuls(t,fc);

The monopulse is defined by the equation

y(t) = e1/2(t/σ)exp(− (t/σ)2/2),

where σ = tc/2 = 1/(2πfc) and the exponential factor is such that y(σ) = 1. Plot the two curves and
verify that they match.

sg = 1/(2*pi*fc);

ys = exp(1/2)*t/sg.*exp(-(t/sg).^2/2);

plot(t,y,t,ys,'.')
legend('gmonopuls','Definition')

1 Functions

1-952

Gaussian Monopulse Pulse Train

Consider a Gaussian monopulse with center frequency fc = 2 GHz and sampled at a rate of 100 GHz.
Use the monopulse to construct a pulse train with a spacing of 7.5 ns.

Determine the width tc of each pulse using the 'cutoff' option. Set the delay times to be integer
multiples of the spacing.

fc = 2e9;
fs = 100e9;

tc = gmonopuls('cutoff',fc);
D = ((0:2)*7.5+2.5)*1e-9;

Generate the pulse train such that the total duration is 150tc. Plot the result.

t = 0:1/fs:150*tc;
yp = pulstran(t,D,'gmonopuls',fc);

plot(t,yp)

 gmonopuls

1-953

Input Arguments
t — Time values
vector

Time values at which the unit-amplitude Gaussian monopulse is calculated, specified as a vector.

fc — Center frequency
1000 (default) | real positive scalar

Center frequency, specified as a real positive scalar expressed in hertz. By default, fc = 1000 Hz.

Output Arguments
y — Monopulse
vector

Monopulse of unit amplitude, returned as a vector.

tc — Time duration
scalar

Time duration between the maximum and minimum amplitudes of the pulse, returned as a scalar.

1 Functions

1-954

Tips
Default values are substituted for empty or omitted trailing input arguments.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | gauspuls | pulstran | rectpuls | tripuls

Introduced before R2006a

 gmonopuls

1-955

goertzel
Discrete Fourier transform with second-order Goertzel algorithm

Syntax
dft = goertzel(data)
dft = goertzel(data,findx)
dft = goertzel(data,findx,dim)

Description
dft = goertzel(data) returns the discrete Fourier transform (DFT) of the input array data using
a second-order Goertzel algorithm. If data has more than one dimension, then goertzel operates
along the first array dimension with size greater than 1.

dft = goertzel(data,findx) returns the DFT for the frequency indices specified in findx.

dft = goertzel(data,findx,dim) computes the DFT along dimension dim. To input a dimension
and use the default value of findx, specify the second argument as empty, [].

Examples

Estimate Telephone Keypad Frequencies

Estimate the frequencies of the tone generated by pressing the 1 button on a telephone keypad.

The number 1 produces a tone with frequencies 697 and 1209 Hz. Generate 205 samples of the tone
with a sample rate of 8 kHz.

Fs = 8000;
N = 205;
lo = sin(2*pi*697*(0:N-1)/Fs);
hi = sin(2*pi*1209*(0:N-1)/Fs);
data = lo + hi;

Use the Goertzel algorithm to compute the discrete Fourier transform (DFT) of the tone. Choose the
indices corresponding to the frequencies used to generate the numbers 0 through 9.

f = [697 770 852 941 1209 1336 1477];
freq_indices = round(f/Fs*N) + 1;
dft_data = goertzel(data,freq_indices);

Plot the DFT magnitude.

stem(f,abs(dft_data))

ax = gca;
ax.XTick = f;
xlabel('Frequency (Hz)')
ylabel('DFT Magnitude')

1 Functions

1-956

Resolve Frequency Components of a Noisy Tone

Generate a noisy cosine with frequency components at 1.24 kHz, 1.26 kHz, and 10 kHz. Specify a
sample rate of 32 kHz. Reset the random number generator for reproducible results.

rng default

Fs = 32e3;
t = 0:1/Fs:2.96;
x = cos(2*pi*t*10e3) + cos(2*pi*t*1.24e3) + cos(2*pi*t*1.26e3) ...
 + randn(size(t));

Generate the frequency vector. Use the Goertzel algorithm to compute the DFT. Restrict the range of
frequencies to between 1.2 and 1.3 kHz.

N = (length(x)+1)/2;
f = (Fs/2)/N*(0:N-1);
indxs = find(f>1.2e3 & f<1.3e3);
X = goertzel(x,indxs);

Plot the mean squared spectrum expressed in decibels.

plot(f(indxs)/1e3,mag2db(abs(X)/length(X)))

title('Mean Squared Spectrum')

 goertzel

1-957

xlabel('Frequency (kHz)')
ylabel('Power (dB)')
grid

Discrete Fourier Transform of N-D Array

Generate a two-channel signal sampled at 3.2 kHz for 10 seconds and embedded in white Gaussian
noise. The first channel of the signal is a 124 Hz sinusoid. The second channel is a complex
exponential with a frequency of 126 Hz. Reshape the signal into a three-dimensional array such that
the time axis runs along the third dimension.

fs = 3.2e3;
t = 0:1/fs:10-1/fs;

x = [cos(2*pi*t*124);exp(2j*pi*t*126)] + randn(2,length(t))/100;
x = permute(x,[3 1 2]);

size(x)

ans = 1×3

 1 2 32000

1 Functions

1-958

Compute the discrete Fourier transform of the signal using the Goertzel algorithm. Restrict the range
of frequencies to between 120 Hz and 130 Hz.

N = (length(x)+1)/2;
f = (fs/2)/N*(0:N-1);
indxs = find(f>=120 & f<=130);

X = goertzel(x,indxs,3);

Plot the magnitude of the discrete Fourier transform expressed in decibels.

plot(f(indxs),mag2db(abs(squeeze(X))))
xlabel('Frequency (Hz)')
ylabel('DFT Magnitude (dB)')
grid

Input Arguments
data — Input array
vector | matrix | N-D array

Input array, specified as a vector, matrix, or N-D array.
Example: sin(2*pi*(0:255)/4) specifies a sinusoid as a row vector.
Example: sin(2*pi*[0.1;0.3]*(0:39))' specifies a two-channel sinusoid.

 goertzel

1-959

Data Types: single | double
Complex Number Support: Yes

findx — Frequency indices
vector

Frequency indices, specified as a vector. The indices can correspond to integer or noninteger
multiples of fs/N, where fs is the sample rate and N is the signal length.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
dft — Discrete Fourier transform
vector | matrix | N-D array

Discrete Fourier transform, returned as a vector, matrix, or N-D array.

Algorithms
The Goertzel algorithm implements the discrete Fourier transform X(k) as the convolution of an N-
point input x(n), n = 0, 1, …, N – 1, with the impulse response

hk(n) = e− j2πk e j2πkn/N u(n) ≡ e− j2πk WN
−kn u(n),

where u(n), the unit step sequence, is 1 for n ≥ 0 and 0 otherwise. k does not have to be an integer.
At a frequency f = kfs/N, where fs is the sample rate, the transform has a value

X(k) = yk(n) n = N,

where

yk(n) = ∑
m = 0

N
x(m) hk(n−m)

and x(N) = 0. The Z-transform of the impulse response is

Hk(z) =
1 −WN

k z−1 e− j2πk

1 − 2cos 2πk
N z−1 + z−2 ,

with this direct form II implementation:

1 Functions

1-960

Compare the output of goertzel to the result of a direct implementation of the Goertzel algorithm.
For the input signal, use a chirp sampled at 50 Hz for 10 seconds and embedded in white Gaussian
noise. The chirp's frequency increases linearly from 15 Hz to 20 Hz during the measurement.
Compute the discrete Fourier transform at a frequency that is not an integer multiple of fs/N. When
calling goertzel, keep in mind that MATLAB vectors run from 1 to N instead of from 0 to N – 1. The
results agree to high precision.

fs = 50;
t = 0:1/fs:10-1/fs;
N = length(t);
xn = chirp(t,15,t(end),20)+randn(1,N)/100;

f0 = 17.36;
k = N*f0/fs;

ykn = filter([1 -exp(-2j*pi*k/N)],[1 -2*cos(2*pi*k/N) 1],[xn 0]);
Xk = exp(-2j*pi*k)*ykn(end);

dft = goertzel(xn,k+1);

df = abs(Xk-dft)

df =
 4.3634e-12

Alternatives
You can also compute the DFT with:

• fft: less efficient than the Goertzel algorithm when you only need the DFT at a few frequencies.
fft is more efficient than goertzel when you need to evaluate the transform at more than log2N
frequencies, where N is the length of the input signal.

• czt: czt calculates the chirp Z-transform of an input signal on a circular or spiral contour and
includes the DFT as a special case.

 goertzel

1-961

References
[1] Burrus, C. Sidney, and Thomas W. Parks. DFT/FFT and Convolution Algorithms: Theory and

Implementation. New York: John Wiley & Sons, 1985.

[2] Proakis, John G., and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms, and
Applications. 3rd Edition. Upper Saddle River, NJ: Prentice Hall, 1996.

[3] Sysel, Petr, and Pavel Rajmic. “Goertzel Algorithm Generalized to Non-Integer Multiples of
Fundamental Frequency.” EURASIP Journal on Advances in Signal Processing. Vol. 2012,
Number 1, December 2012, pp. 56-1–56-8. https://doi.org/10.1186/1687-6180-2012-56.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Automatic dimension restriction” (MATLAB Coder).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• For a single-channel input, executing this function on the GPU offers no performance gains.
Performance on the GPU increases as the number of channels increases.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
czt | fft

Introduced before R2006a

1 Functions

1-962

https://doi.org/10.1186/1687-6180-2012-56

grpdelay
Average filter delay (group delay)

Syntax
[gd,w] = grpdelay(b,a,n)
[gd,w] = grpdelay(sos,n)
[gd,w] = grpdelay(d,n)
[gd,w] = grpdelay(___ ,'whole')

[gd,f] = grpdelay(___ ,n,fs)
[gd,f] = grpdelay(___ ,n,'whole',fs)

gd = grpdelay(___ ,win)
gd = grpdelay(___ ,fin,fs)

grpdelay(___)

Description
[gd,w] = grpdelay(b,a,n) returns the n-point group delay response vector, gd, and the
corresponding angular frequency vector, w, for the digital filter with transfer function coefficients
stored in b and a.

[gd,w] = grpdelay(sos,n) returns the n-point group delay response corresponding to the
second-order sections matrix sos.

[gd,w] = grpdelay(d,n) returns the n-point group delay response for the digital filter d.

[gd,w] = grpdelay(___ ,'whole') returns the group delay at n sample points around the entire
unit circle.

[gd,f] = grpdelay(___ ,n,fs) returns the group delay response vector gd and the
corresponding physical frequency vector f for a digital filter designed to filter signals sampled at a
rate fs.

[gd,f] = grpdelay(___ ,n,'whole',fs) returns the frequency vector at n points ranging
between 0 and fs.

gd = grpdelay(___ ,win) returns the group delay response vector gd evaluated at the
normalized frequencies supplied in win.

gd = grpdelay(___ ,fin,fs) returns the group delay response vector gd evaluated at the
physical frequencies supplied in fin.

grpdelay(___) with no output arguments plots the group delay response of the filter.

Examples

 grpdelay

1-963

Group Delay of a Butterworth Filter

Design a Butterworth filter of order 6 with normalized 3-dB frequency 0 . 2π rad/sample. Use
grpdelay to display the group delay.

[z,p,k] = butter(6,0.2);
sos = zp2sos(z,p,k);

grpdelay(sos,128)

Plot both the group delay and the phase delay of the system on the same figure.

gd = grpdelay(sos,512);

[h,w] = freqz(sos,512);
pd = -unwrap(angle(h))./w;

plot(w/pi,gd,w/pi,pd)
grid
xlabel 'Normalized Frequency (\times\pi rad/sample)'
ylabel 'Group and phase delays'
legend('Group delay','Phase delay')

1 Functions

1-964

Group Delay Response of a Butterworth digitalFilter

Use designfilt to design a sixth-order Butterworth Filter with normalized 3-dB frequency 0 . 2π
rad/sample. Display its group delay response.

d = designfilt('lowpassiir','FilterOrder',6, ...
 'HalfPowerFrequency',0.2,'DesignMethod','butter');
grpdelay(d)

 grpdelay

1-965

Group Delay Response of Arbitrary Magnitude Response FIR Filter

Design an 88th-order FIR filter of arbitrary magnitude response. The filter has two passbands and
two stopbands. The lower-frequency passband has twice the gain of the higher-frequency passband.
Specify a sample rate of 200 Hz. Visualize the magnitude response and the phase response of the
filter from 10 Hz to 78 Hz.

fs = 200;
d = designfilt('arbmagfir', ...
 'FilterOrder',88, ...
 'NumBands',4, ...
 'BandFrequencies1',[0 20], ...
 'BandFrequencies2',[25 40], ...
 'BandFrequencies3',[45 65], ...
 'BandFrequencies4',[70 100], ...
 'BandAmplitudes1',[2 2], ...
 'BandAmplitudes2',[0 0], ...
 'BandAmplitudes3',[1 1], ...
 'BandAmplitudes4',[0 0], ...
 'SampleRate',fs);
freqz(d,10:1/fs:78,fs)

1 Functions

1-966

Compute and display the group delay response of the filter over the same frequency range. Verify that
it is one-half of the filter order.

filtord(d)

ans = 88

grpdelay(d,10:1/fs:78,fs)

 grpdelay

1-967

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(e jω) = B(e jω)
A(e jω)

= b(1)+b(2) e− jω + b(3) e− j2ω +⋯+ b(M) e− j(M − 1)ω

a(1)+a(2) e− jω + a(3) e− j2ω +⋯+ a(N) e− j(N − 1)ω .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

n — Number of evaluation points
512 (default) | positive integer scalar

Number of evaluation points, specified as a positive integer scalar no less than 2. When n is absent, it
defaults to 512. For best results, set n to a value greater than the filter order.

sos — Second-order section coefficients
matrix

1 Functions

1-968

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, the function
treats the input as a numerator vector. Each row of sos corresponds to the coefficients of a second-
order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2)
ai(3)].
Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. When the unit of time is seconds, fs is expressed in hertz.
Data Types: double

win — Angular frequencies
vector

Angular frequencies, specified as a vector and expressed in rad/sample. win must have at least two
elements, because otherwise the function interprets it as n. win = π corresponds to the Nyquist
frequency.

fin — Frequencies
vector

Frequencies, specified as a vector. fin must have at least two elements, because otherwise the
function interprets it as n. When the unit of time is seconds, fin is expressed in hertz.
Data Types: double

Output Arguments
gd — Group delay response
vector

Group delay response, returned as a vector. If you specify n, then gd has length n. If you do not
specify n, or specify n as the empty vector, then gd has length 512.

If the input to grpdelay is single precision, the function computes the group delay using single-
precision arithmetic. The output h is single precision.

w — Angular frequencies
vector

 grpdelay

1-969

Angular frequencies, returned as a vector. w has values ranging from 0 to π. If you specify 'whole' in
your input, the values in w range from 0 to 2π. If you specify n, w has length n. If you do not specify n,
or specify n as the empty vector, then w has length 512.

f — Frequencies
vector

Frequencies, returned as a vector expressed in hertz. f has values ranging from 0 to fs/2 Hz. If you
specify 'whole' in your input, the values in f range from 0 to fs Hz. If you specify n, f has length n.
If you do not specify n, or specify n as the empty vector, then f has length 512.

More About
Group Delay

The group delay response of a filter is a measure of the average delay of the filter as a function of
frequency. It is the negative first derivative of the phase response of the filter. If the frequency
response of a filter is H(ejω), then the group delay is

τg(ω) = − dθ(ω)
dω ,

where θ(ω) is the phase, or argument, of H(ejω).

See Also
cceps | designfilt | digitalFilter | fft | freqz | FVTool | hilbert | icceps | phasedelay |
rceps

Introduced before R2006a

1 Functions

1-970

hamming
Hamming window

Syntax
w = hamming(L)
w = hamming(L,sflag)

Description
w = hamming(L) returns an L-point symmetric Hamming window.

w = hamming(L,sflag) returns a Hamming window using the window sampling specified by
sflag.

Examples

Hamming Window

Create a 64-point Hamming window. Display the result using wvtool.

L = 64;
wvtool(hamming(L))

 hamming

1-971

Comparison of Periodic and Symmetric Hamming Windows

Design two Hamming windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = hamming(64,'symmetric');
Hp = hamming(63,'periodic');
wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-972

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

sflag — Window sampling
'symmetric' (default) | 'periodic'

Window sampling method, specified as:

• 'symmetric' — Use this option when using windows for filter design.
• 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to

have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic'
is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments
w — Hamming window
column vector

 hamming

1-973

Hamming window, returned as a column vector.

Algorithms
The following equation generates the coefficients of a Hamming window:

w(n) = 0.54 − 0.46cos 2π n
N , 0 ≤ n ≤ N .

The window length L = N + 1.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
blackman | flattopwin | hann | WVTool

Introduced before R2006a

1 Functions

1-974

hampel
Outlier removal using Hampel identifier

Syntax
y = hampel(x)
y = hampel(x,k)
y = hampel(x,k,nsigma)

[y,j] = hampel(___)
[y,j,xmedian,xsigma] = hampel(___)

hampel(___)

Description
y = hampel(x) applies a Hampel filter to the input vector, x, to detect and remove outliers. For
each sample of x, the function computes the median of a window composed of the sample and its six
surrounding samples, three per side. It also estimates the standard deviation of each sample about its
window median using the median absolute deviation. If a sample differs from the median by more
than three standard deviations, it is replaced with the median. If x is a matrix, then hampel treats
each column of x as an independent channel.

y = hampel(x,k) specifies the number of neighbors, k, on either side of each sample of x in the
measurement window. k defaults to 3.

y = hampel(x,k,nsigma) specifies a number of standard deviations, nsigma, by which a sample
of x must differ from the local median for it to be replaced with the median. nsigma defaults to 3.

[y,j] = hampel(___) also returns a logical matrix that is true at the locations of all points
identified as outliers. This syntax accepts any of the input arguments from previous syntaxes.

[y,j,xmedian,xsigma] = hampel(___) also returns the local medians and the estimated
standard deviations for each element of x.

hampel(___) with no output arguments plots the filtered signal and annotates the outliers that
were removed.

Examples

Remove Spikes from Sinusoid

Generate 100 samples of a sinusoidal signal. Replace the sixth and twentieth samples with spikes.

x = sin(2*pi*(0:99)/100);
x(6) = 2;
x(20) = -2;

 hampel

1-975

Use hampel to locate every sample that differs by more than three standard deviations from the local
median. The measurement window is composed of the sample and its six surrounding samples, three
per side.

[y,i,xmedian,xsigma] = hampel(x);

Plot the filtered signal and annotate the outliers.

n = 1:length(x);
plot(n,x)
hold on
plot(n,xmedian-3*xsigma,n,xmedian+3*xsigma)
plot(find(i),x(i),'sk')
hold off
legend('Original signal','Lower limit','Upper limit','Outliers')

Repeat the computation, but now take just one adjacent sample on each side when computing the
median. The function considers the extrema as outliers.

hampel(x,1)

1 Functions

1-976

Hampel Filtering of Multichannel Signal

Generate a two-channel signal consisting of sinusoids of different frequencies. Place spikes in random
places. Use NaNs to add missing samples at random. Reset the random number generator for
reproducible results. Plot the signal.

rng('default')

n = 59;
x = sin(pi./[15 10]'*(1:n)+pi/3)';

spk = randi(2*n,9,1);
x(spk) = x(spk)*2;
x(randi(2*n,6,1)) = NaN;

plot(x)

 hampel

1-977

Filter the signal using hampel with the default settings.

y = hampel(x);
plot(y)

1 Functions

1-978

Increase the length of the moving window and decrease the threshold to treat a sample as an outlier.

y = hampel(x,4,2);
plot(y)

 hampel

1-979

Output the running median for each channel. Overlay the medians on a plot of the signal.

[y,j,xmd,xsd] = hampel(x,4,2);
plot(x)
hold on
plot(xmd,'--')

1 Functions

1-980

Find Outliers in Multichannel Signal

Generate a multichannel signal that consists of two sinusoids of different frequencies embedded in
white Gaussian noise of unit variance.

rng('default')

t = 0:60;
x = sin(pi./[10;2]*t)'+randn(numel(t),2);

Apply a Hampel filter to the signal. Take as outliers those points that differ by more than two
standard deviations from the median of a surrounding nine-sample window. Output a logical matrix
that is true at the locations of the outliers.

k = 4;
nsig = 2;

[y,h] = hampel(x,k,nsig);

Plot each channel of the signal in its own set of axes. Draw the original signal, the filtered signal, and
the outliers. Annotate the outlier locations.

for k = 1:2
 hk = h(:,k);
 ax = subplot(2,1,k);

 hampel

1-981

 plot(t,x(:,k))
 hold on
 plot(t,y(:,k))
 plot(t(hk),x(hk,k),'*')
 hold off
 ax.XTick = t(hk);
end

Signal Statistics Returned by Hampel Filter

Generate 100 samples of a sinusoidal signal. Replace the sixth and twentieth samples with spikes.

n = 1:100;
x = sin(2*pi*n/100);
x(6) = 2;
x(20) = -2;

Use hampel to compute the local median and estimated standard deviation for every sample. Use the
default values of the input parameters:

• The window size is 2 × 3 + 1 = 7.
• The points that differ from their window median by more than three standard deviations are

considered outliers.

Plot the result.

1 Functions

1-982

[y,i,xmedian,xsigma] = hampel(x);

plot(n,x)
hold on
plot(n,[1;1]*xmedian+3*[-1;1]*xsigma)
plot(find(i),x(i),'sk')
hold off
legend('Signal','Lower','Upper','Outliers')

Repeat the calculation using a window size of 2 × 10 + 1 = 21 and two standard deviations as the
criteria for identifying outliers.

sds = 2;
adj = 10;
[y,i,xmedian,xsigma] = hampel(x,adj,sds);

plot(n,x)
hold on
plot(n,[1;1]*xmedian+sds*[-1;1]*xsigma)
plot(find(i),x(i),'sk')
hold off
legend('Signal','Lower','Upper','Outliers')

 hampel

1-983

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a matrix, then hampel treats each column of x as
an independent channel.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

k — Number of neighbors on either side
3 (default) | integer scalar

Number of neighbors on either side of the sample xs, specified as an integer scalar. Samples close to
the signal edges that have fewer than k samples on one side are compared to the median of a smaller
window.

1 Functions

1-984

Data Types: single | double

nsigma — Number of standard deviations
3 (default) | real scalar

Number of standard deviations by which a sample of x must differ from its local median to be
considered an outlier. Specify nsigma as a real scalar. The function estimates the standard deviation
by scaling the local median absolute deviation (MAD) by a factor of κ = 1

2erf−1 1/2
≈ 1.4826.

Data Types: single | double

Output Arguments
y — Filtered signal
vector | matrix

Filtered signal, returned as a vector or matrix of the same size as x.
Data Types: single | double

j — Outlier index
vector | matrix

Outlier index, returned as a vector or matrix of the same size as x.
Data Types: logical

xmedian — Local medians
vector | matrix

Local medians, returned as a vector or matrix of the same size as x.
Data Types: single | double

xsigma — Estimated standard deviations
vector | matrix

Estimated standard deviations, returned as a vector or matrix of the same size as x.
Data Types: single | double

More About
Hampel Identifier

The Hampel identifier is a variation of the three-sigma rule of statistics that is robust against outliers.

 hampel

1-985

Given a sequence x1, x2, x3, …, xn and a sliding window of length k, define point-to-point median and
standard-deviation estimates using:

• Local median — mi = median xi− k, xi− k + 1, xi− k + 2, …, xi, …, xi + k− 2, xi + k− 1, xi + k

• Standard deviation — σi = κmedian xi− k−mi , …, xi + k−mi , where κ = 1
2erf−1 1/2

≈ 1.4826

The quantity σi /κ is known as the median absolute deviation (MAD).

If a sample xi is such that

xi−mi > nσσi

for a given threshold nσ, then the Hampel identifier declares xi an outlier and replaces it with mi.

Near the sequence endpoints, the function truncates the window used to compute mi and σi:

• i < k + 1

mi = median x1, x2, x3, …, xi, …, xi + k− 2, xi + k− 1, xi + k

σi = κmedian x1−m1 , …, xi + k−mi

• i > n – k

mi = median xi− k, xi− k + 1, xi− k + 2, …, xi, …, xn− 2, xn− 1, xn

σi = κmedian xi− k−mi , …, xn−mn

References
[1] Liu, Hancong, Sirish Shah, and Wei Jiang. “On-line outlier detection and data cleaning.”

Computers and Chemical Engineering. Vol. 28, March 2004, pp. 1635–1647.

[2] Suomela, Jukka. “Median Filtering Is Equivalent to Sorting.” 2014.

See Also
medfilt1 | median | filloutliers | filter | isoutlier | mad | movmad | movmedian |
sgolayfilt

Topics
“Eliminate Outliers Using Hampel Identifier”

Introduced in R2015b

1 Functions

1-986

https://arxiv.org/pdf/1406.1717.pdf

hann
Hann (Hanning) window

Syntax
w = hann(L)
w = hann(L,sflag)

Description
w = hann(L) returns an L-point symmetric Hann window.

w = hann(L,sflag) returns a Hann window using the window sampling specified by sflag.

Examples

Hann Window

Create a 64-point Hann window. Display the result using wvtool.

L = 64;
wvtool(hann(L))

 hann

1-987

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

sflag — Window sampling
'symmetric' (default) | 'periodic'

Window sampling, specified as one of the following:

• 'symmetric' — Use this option when using windows for filter design.
• 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to

have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic'
is specified, hann computes a window of length L + 1 and returns the first L points.

Output Arguments
w — Hann window
column vector

Hann window, returned as a column vector.

Algorithms
The following equation generates the coefficients of a Hann window:

w(n) = 0.5 1 − cos 2π n
N , 0 ≤ n ≤ N .

The window length L = N + 1.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

1 Functions

1-988

Functions
blackman | flattopwin | hamming | WVTool

Introduced before R2006a

 hann

1-989

hht
Hilbert-Huang transform

Syntax
hs = hht(imf)
hs = hht(imf,fs)
[hs,f,t] = hht(___)
[hs,f,t,imfinsf,imfinse] = hht(___)
[___] = hht(___ ,Name,Value)

hht(___)
hht(___ ,freqlocation)

Description
hs = hht(imf) returns the Hilbert spectrum hs of the signal specified by intrinsic mode functions
imf. hs is useful for analyzing signals that comprise a mixture of signals whose spectral content
changes in time. Use hht to perform Hilbert spectral analysis on signals to identify localized features.

hs = hht(imf,fs) returns the Hilbert spectrum hs of a signal sampled at a rate fs.

[hs,f,t] = hht(___) returns frequency vector f and time vector t in addition to hs. These
output arguments can be used with either of the previous input syntaxes.

[hs,f,t,imfinsf,imfinse] = hht(___) also returns the instantaneous frequencies imfinsf
and the instantaneous energies imfinse of the intrinsic mode functions for signal diagnostics.

[___] = hht(___ ,Name,Value) estimates Hilbert spectrum parameters with additional options
specified by one or more Name,Value pair arguments.

hht(___) with no output arguments plots the Hilbert spectrum in the current figure window. You
can use this syntax with any of the input arguments in previous syntaxes.

hht(___ ,freqlocation) plots the Hilbert spectrum with the optional freqlocation argument
to specify the location of the frequency axis. Frequency is represented on the y-axis by default.

Examples

Hilbert Spectrum of Quadratic Chirp

Generate a Gaussian-modulated quadratic chirp. Specify a sample rate of 2 kHz and a signal duration
of 2 seconds.

fs = 2000;
t = 0:1/fs:2-1/fs;
q = chirp(t-2,4,1/2,6,'quadratic',100,'convex').*exp(-4*(t-1).^2);
plot(t,q)

1 Functions

1-990

Use emd to visualize the intrinsic mode functions (IMFs) and the residual.

emd(q)

 hht

1-991

Compute the IMFs of the signal. Use the 'Display' name-value pair to output a table showing the
number of sifting iterations, the relative tolerance, and the sifting stop criterion for each IMF.

imf = emd(q,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 2 | 0.0063952 | SiftMaxRelativeTolerance
 2 | 2 | 0.1007 | SiftMaxRelativeTolerance
 3 | 2 | 0.01189 | SiftMaxRelativeTolerance
 4 | 2 | 0.0075124 | SiftMaxRelativeTolerance
Decomposition stopped because the number of extrema in the residual signal is less than the 'MaxNumExtrema' value.

Use the computed IMFs to plot the Hilbert spectrum of the quadratic chirp. Restrict the frequency
range from 0 Hz to 20 Hz.

hht(imf,fs,'FrequencyLimits',[0 20])

1 Functions

1-992

Perform Empirical Mode Decomposition and Visualize Hilbert Spectrum of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
plot(t,X)
xlabel('Time(s)')

 hht

1-993

The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To create the Hilbert spectrum plot, you need the intrinsic mode functions (IMFs) of the signal.
Perform empirical mode decomposition to compute the IMFs and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,'Interpolation','pchip');

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by adding the 'Display',0 name value pair.

Create the Hilbert spectrum plot using the imf components obtained using empirical mode
decomposition.

hht(imf,fs)

1 Functions

1-994

The frequency versus time plot is a sparse plot with a vertical color bar indicating the instantaneous
energy at each point in the IMF. The plot represents the instantaneous frequency spectrum of each
component decomposed from the original mixed signal. Three IMFs appear in the plot with a distinct
change in frequency at 1 second.

Hilbert Spectrum of Whale Song

Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible. Convert the signal to a MATLAB® timetable and plot it. Four features stand out from the
noise in the signal. The first is known as a trill, and the other three are known as moans.

[w,fs] = audioread('bluewhale.wav');
whale = timetable(w,'SampleRate',fs);
stackedplot(whale);

 hht

1-995

Use emd to visualize the first three intrinsic mode functions (IMFs) and the residual.

emd(whale,'MaxNumIMF',3)

1 Functions

1-996

Compute the first three IMFs of the signal. Use the 'Display' name-value pair to output a table
showing the number of sifting iterations, the relative tolerance, and the sifting stop criterion for each
IMF.

imf = emd(whale,'MaxNumIMF',3,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 1 | 0.13523 | SiftMaxRelativeTolerance
 2 | 2 | 0.030198 | SiftMaxRelativeTolerance
 3 | 2 | 0.01908 | SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use the computed IMFs to plot the Hilbert spectrum of the signal. Restrict the frequency range from
0 Hz to 1400 Hz.

hht(imf,'FrequencyLimits',[0 1400])

 hht

1-997

Compute the Hilbert spectrum for the same range of frequencies. Visualize the Hilbert spectra of the
trill and moans as a mesh plot.

[hs,f,t] = hht(imf,'FrequencyLimits',[0 1400]);

mesh(seconds(t),f,hs,'EdgeColor','none','FaceColor','interp')
xlabel('Time (s)')
ylabel('Frequency (Hz)')
zlabel('Instantaneous Energy')

1 Functions

1-998

Compute Hilbert Spectrum Parameters of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
plot(t,X)
xlabel('Time(s)')

 hht

1-999

The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To compute the Hilbert spectrum parameters, you need the IMFs of the signal. Perform empirical
mode decomposition to compute the intrinsic mode functions and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,'Interpolation','pchip');

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by specifying 'Display' as 0.

Compute the Hilbert spectrum parameters: Hilbert spectrum hs, frequency vector f, time vector t,
instantaneous frequency imfinsf, and instantaneous energy imfinse.

[hs,f,t,imfinsf,imfinse] = hht(imf,fs);

Use the computed Hilbert spectrum parameters for time-frequency analysis and signal diagnostics.

VMD of Multicomponent Signal

Generate a multicomponent signal consisting of three sinusoids of frequencies 2 Hz, 10 Hz, and 30
Hz. The sinusoids are sampled at 1 kHz for 2 seconds. Embed the signal in white Gaussian noise of
variance 0.01².

1 Functions

1-1000

fs = 1e3;
t = 1:1/fs:2-1/fs;
x = cos(2*pi*2*t) + 2*cos(2*pi*10*t) + 4*cos(2*pi*30*t) + 0.01*randn(1,length(t));

Compute the IMFs of the noisy signal and visualize them in a 3-D plot.

imf = vmd(x);
[p,q] = ndgrid(t,1:size(imf,2));
plot3(p,q,imf)
grid on
xlabel('Time Values')
ylabel('Mode Number')
zlabel('Mode Amplitude')

Use the computed IMFs to plot the Hilbert spectrum of the multicomponent signal. Restrict the
frequency range to [0, 40] Hz.

hht(imf,fs,'FrequencyLimits',[0,40])

 hht

1-1001

Compute Hilbert Spectrum of Vibration Signal

Simulate a vibration signal from a damaged bearing. Compute the Hilbert spectrum of this signal and
look for defects.

A bearing with a pitch diameter of 12 cm has eight rolling elements. Each rolling element has a
diameter of 2 cm. The outer race remains stationary as the inner race is driven at 25 cycles per
second. An accelerometer samples the bearing vibrations at 10 kHz.

fs = 10000;
f0 = 25;
n = 8;
d = 0.02;
p = 0.12;

1 Functions

1-1002

The vibration signal from the healthy bearing includes several orders of the driving frequency.

t = 0:1/fs:10-1/fs;
yHealthy = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t)/5;

A resonance is excited in the bearing vibration halfway through the measurement process.

yHealthy = (1+1./(1+linspace(-10,10,length(yHealthy)).^4)).*yHealthy;

The resonance introduces a defect in the outer race of the bearing that results in progressive wear.
The defect causes a series of impacts that recur at the ball pass frequency outer race (BPFO) of the
bearing:

BPFO = 1
2nf0 1 − d

pcosθ ,

where f0 is the driving rate, n is the number of rolling elements, d is the diameter of the rolling
elements, p is the pitch diameter of the bearing, and θ is the bearing contact angle. Assume a contact
angle of 15° and compute the BPFO.

ca = 15;
bpfo = n*f0/2*(1-d/p*cosd(ca));

Use the pulstran function to model the impacts as a periodic train of 5-millisecond sinusoids. Each
3 kHz sinusoid is windowed by a flat top window. Use a power law to introduce progressive wear in
the bearing vibration signal.

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;

 hht

1-1003

wImpact = flattopwin(length(tImpact))'/10;
xImpact = sin(2*pi*fImpact*tImpact).*wImpact;

tx = 0:1/bpfo:t(end);
tx = [tx; 1.3.^tx-2];

nWear = 49000;
nSamples = 100000;
yImpact = pulstran(t,tx',xImpact,fs)/5;
yImpact = [zeros(1,nWear) yImpact(1,(nWear+1):nSamples)];

Generate the BPFO vibration signal by adding the impacts to the healthy bearing signal. Plot the
signal and select a 0.3-second interval starting at 5.0 seconds.

yBPFO = yImpact + yHealthy;

xLimLeft = 5.0;
xLimRight = 5.3;
yMin = -0.6;
yMax = 0.6;

plot(t,yBPFO)

hold on
[limLeft,limRight] = meshgrid([xLimLeft xLimRight],[yMin yMax]);
plot(limLeft,limRight,'--')
hold off

1 Functions

1-1004

Zoom in on the selected interval to visualize the effect of the impacts.

xlim([xLimLeft xLimRight])

Add white Gaussian noise to the signals. Specify a noise variance of 1/1502.

rn = 150;
yGood = yHealthy + randn(size(yHealthy))/rn;
yBad = yBPFO + randn(size(yHealthy))/rn;

plot(t,yGood,t,yBad)
xlim([xLimLeft xLimRight])
legend('Healthy','Damaged')

 hht

1-1005

Use emd to perform an empirical mode decomposition of the healthy bearing signal. Compute the first
five intrinsic mode functions (IMFs). Use the 'Display' name-value argument to output a table
showing the number of sifting iterations, the relative tolerance, and the sifting stop criterion for each
IMF.

imfGood = emd(yGood,'MaxNumIMF',5,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 3 | 0.017132 | SiftMaxRelativeTolerance
 2 | 3 | 0.12694 | SiftMaxRelativeTolerance
 3 | 6 | 0.14582 | SiftMaxRelativeTolerance
 4 | 1 | 0.011082 | SiftMaxRelativeTolerance
 5 | 2 | 0.03463 | SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use emd without output arguments to visualize the first three IMFs and the residual.

emd(yGood,'MaxNumIMF',5)

1 Functions

1-1006

Compute and visualize the IMFs of the defective bearing signal. The first empirical mode reveals the
high-frequency impacts. This high-frequency mode increases in energy as the wear progresses.

imfBad = emd(yBad,'MaxNumIMF',5,'Display',1);

Current IMF | #Sift Iter | Relative Tol | Stop Criterion Hit
 1 | 2 | 0.041274 | SiftMaxRelativeTolerance
 2 | 3 | 0.16695 | SiftMaxRelativeTolerance
 3 | 3 | 0.18428 | SiftMaxRelativeTolerance
 4 | 1 | 0.037177 | SiftMaxRelativeTolerance
 5 | 2 | 0.095861 | SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

emd(yBad,'MaxNumIMF',5)

 hht

1-1007

Plot the Hilbert spectrum of the first empirical mode of the defective bearing signal. The first mode
captures the effect of high-frequency impacts. The energy of the impacts increases as the bearing
wear progresses.

figure
hht(imfBad(:,1),fs)

1 Functions

1-1008

The Hilbert spectrum of the third mode shows the resonance in the vibration signal. Restrict the
frequency range from 0 Hz to 100 Hz.

hht(imfBad(:,3),fs,'FrequencyLimits',[0 100])

 hht

1-1009

For comparison, plot the Hilbert spectra of the first and third modes of the healthy bearing signal.

subplot(2,1,1)
hht(imfGood(:,1),fs)
subplot(2,1,2)
hht(imfGood(:,3),fs,'FrequencyLimits',[0 100])

1 Functions

1-1010

Input Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode function, specified as a matrix or timetable. imf is any signal whose envelope is
symmetric with respect to zero and whose numbers of extrema and zero crossings differ by at most
one. emd is used to decompose and simplify complicated signals into a finite number of intrinsic mode
functions required to perform Hilbert spectral analysis.

hht treats each column in imf as an intrinsic mode function. For more information on computing
imf, see emd.

fs — Sample Rate
2π (default) | positive scalar

Sample rate, specified as a positive scalar. If fs is not supplied, a normalized frequency of 2π is used
to compute the Hilbert spectrum. If imf is specified as a timetable, the sample rate is inferred from
it.

freqlocation — Location of frequency axis on plot
'yaxis' (default) | 'xaxis'

Location of frequency axis on the plot, specified as 'yaxis' or 'xaxis'. To display frequency data
on the y-axis or x-axis of the plot, specify freqlocation as 'yaxis' or 'xaxis' respectively.

 hht

1-1011

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FrequencyResolution',1

FrequencyLimits — Frequency limits to compute Hilbert spectrum
[0,fs/2] (default) | 1-by-2 integer-valued vector

Frequency limits to compute Hilbert spectrum, specified as the comma-separated pair consisting of
'FrequencyLimits' and a 1-by-2 integer-valued vector. FrequencyLimits is specified in Hz.

FrequencyResolution — Frequency resolution to discretize frequency range
(f_high-f_low)/100 (default) | positive scalar

Frequency resolution to discretize frequency limits, specified as the comma-separated pair consisting
of 'FrequencyResolution' and a positive scalar.

Specify FrequencyResolution in Hz. If 'FrequencyResolution' is not specified, a value of (fhigh-
flow)/100 is inferred from FrequencyLimits. Here, fhigh is the upper limit of FrequencyLimits and
flow is the lower limit.

MinThreshold — Minimum threshold value of Hilbert spectrum
-inf (default) | scalar

Minimum threshold value of Hilbert spectrum, specified as the comma-separated pair consisting of
'MinThreshold' and a scalar.

MinThreshold sets elements of hs to 0 when the corresponding elements of 10log10 hs are less
than MinThreshold.

Output Arguments
hs — Hilbert spectrum of signal
sparse matrix

Hilbert spectrum of the signal, returned as a sparse matrix. Use hs for time-frequency analysis and to
identify localized features in the signal.

f — Frequency values
vector

Frequency values of the signal, returned as a vector. hht uses the frequency vector f and the time
vector t to create the Hilbert spectrum plot.

Mathematically, f is denoted as: f = flow : fres : fhigh, where fres is the frequency resolution.

t — Time values
vector | duration array

Time values of the signal, returned as a vector or a duration array. hht uses the time vector t and
the frequency vector f to create the Hilbert spectrum plot.

1 Functions

1-1012

t is returned as:

• An array, if imf is specified as an array.
• A duration array, if imf is specified as a uniformly sampled timetable.

imfinsf — Instantaneous frequency of each IMF
vector | matrix | timetable

Instantaneous frequency of each IMF, returned as a vector, a matrix, or a timetable.

imfinsf has the same number of columns as imf and is returned as:

• A vector, if imf is specified as a vector.
• A matrix, if imf is specified as a matrix.
• A timetable, if imf is specified as a uniformly sampled timetable.

imfinse — Instantaneous energy of each IMF
vector | matrix | timetable

Instantaneous energy of each IMF, returned as a vector, a matrix, or a timetable.

imfinse has the same number of columns as imf and is returned as:

• A vector, if imf is specified as a vector.
• A matrix, if imf is specified as a matrix.
• A timetable, if imf is specified as a uniformly sampled timetable.

Algorithms
The Hilbert-Huang transform is useful for performing time-frequency analysis of nonstationary and
nonlinear data. The Hilbert-Huang procedure consists of the following steps:

1 emd or vmd decomposes the data set x into a finite number of intrinsic mode functions.
2 For each intrinsic mode function, xi, the function hht:

a Uses hilbert to compute the analytic signal, zi(t) = xi(t) + jH xi(t) , where H{xi} is the
Hilbert transform of xi.

b Expresses zi as zi(t) = ai(t) e jθi(t), where ai(t) is the instantaneous amplitude and θi(t) is the
instantaneous phase.

c Computes the instantaneous energy, ai(t) 2, and the instantaneous frequency,
ωi(t) ≡ dθi(t)/dt. If given a sample rate, hht converts ωi(t) to a frequency in Hz.

d Outputs the instantaneous energy in imfinse and the instantaneous frequency in imfinsf.
3 When called with no output arguments, hht plots the energy of the signal as a function of time

and frequency, with color proportional to amplitude.

References
[1] Huang, Norden E, and Samuel S P Shen. Hilbert–Huang Transform and Its Applications. 2nd ed.

Vol. 16. Interdisciplinary Mathematical Sciences. WORLD SCIENTIFIC, 2014. https://doi.org/
10.1142/8804.

 hht

1-1013

[2] Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin
Blank. “ON INSTANTANEOUS FREQUENCY.” Advances in Adaptive Data Analysis 01, no. 02
(April 2009): 177–229. https://doi.org/10.1142/S1793536909000096.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name-value pairs must be compile-time constants.
• Timetables are not supported for code generation.

See Also
emd | hilbert | vmd

Topics
“Time-Frequency Gallery”
“Analytic Signal and Hilbert Transform”
“Hilbert Transform and Instantaneous Frequency”

Introduced in R2018a

1 Functions

1-1014

highpass
Highpass-filter signals

Syntax
y = highpass(x,wpass)
y = highpass(x,fpass,fs)
y = highpass(xt,fpass)

y = highpass(___ ,Name,Value)

[y,d] = highpass(___)

highpass(___)

Description
y = highpass(x,wpass) filters the input signal x using a highpass filter with normalized passband
frequency wpass in units of π rad/sample. highpass uses a minimum-order filter with a stopband
attenuation of 60 dB and compensates for the delay introduced by the filter. If x is a matrix, the
function filters each column independently.

y = highpass(x,fpass,fs) specifies that x has been sampled at a rate of fs hertz. fpass is the
passband frequency of the filter in hertz.

y = highpass(xt,fpass) highpass-filters the data in timetable xt using a filter with a passband
frequency of fpass hertz. The function independently filters all variables in the timetable and all
columns inside each variable.

y = highpass(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the “Highpass Filter
Steepness” on page 1-1023, and the type of impulse response of the filter.

[y,d] = highpass(___) also returns the digitalFilter object d used to filter the input.

highpass(___) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Highpass Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains two tones, one at 50 Hz and the
other at 250 Hz, embedded in Gaussian white noise of variance 1/100. The high-frequency tone has
twice the amplitude of the low-frequency tone.

fs = 1e3;
t = 0:1/fs:1;

x = [1 2]*sin(2*pi*[50 250]'.*t) + randn(size(t))/10;

 highpass

1-1015

Highpass-filter the signal to remove the low-frequency tone. Specify a passband frequency of 150 Hz.
Display the original and filtered signals, and also their spectra.

highpass(x,150,fs)

Highpass Filtering of Musical Signal

Implement a basic digital music synthesizer and use it to play a traditional song. Specify a sample
rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
 song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end

1 Functions

1-1016

song = song/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

Highpass-filter the signal to separate the melody from the accompaniment. Specify a passband
frequency of 450 Hz. Plot the original and filtered signals in the time and frequency domains.

hong = highpass(song,450,fs);

% To hear, type sound(hong,fs)

highpass(song,450,fs)

 highpass

1-1017

Plot the spectrogram of the melody.

figure
pspectrum(hong,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

1 Functions

1-1018

Highpass Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response highpass filter with a passband
frequency of 200 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;
x = randn(20000,1);

[y1,d1] = highpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.5);
[y2,d2] = highpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.8);
[y3,d3] = highpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.95);

pspectrum([y1 y2 y3],fs)
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95')

 highpass

1-1019

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95')
ylim([-130 10])

1 Functions

1-1020

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

wpass — Normalized passband frequency
scalar in (0, 1)

Normalized passband frequency, specified as a scalar in the interval (0, 1).

fpass — Passband frequency
scalar in (0, fs/2)

Passband frequency, specified as a scalar in the interval (0, fs/2).

fs — Sample rate
positive real scalar

 highpass

1-1021

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1)) specifies a random variable sampled at 1 Hz
for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ImpulseResponse','iir','StopbandAttenuation',30 filters the input using a
minimum-order IIR filter that attenuates frequencies lower than fpass by 30 dB.

ImpulseResponse — Type of impulse response
'auto' (default) | 'fir' | 'iir'

Type of impulse response of the filter, specified as the comma-separated pair consisting of
'ImpulseResponse' and 'fir', 'iir', or 'auto'.

• 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

• 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

• 'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

• Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

• If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

• If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.

• Filter the signal and compensate for the delay.

1 Functions

1-1022

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1)

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar in the interval [0.5, 1). As the steepness increases, the filter response approaches the ideal
highpass response, but the resulting filter length and the computational cost of the filtering operation
also increase. See “Highpass Filter Steepness” on page 1-1023 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar in dB.

Output Arguments
y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Highpass filter
digitalFilter object

Highpass filter used in the filtering operation, returned as a digitalFilter object.

• Use filter(d,x) to filter a signal x using d.
• Use FVTool to visualize the filter response.
• Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About
Highpass Filter Steepness

The 'Steepness' argument controls the width of a filter's transition region. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

• The Nyquist frequency, fNyquist, is the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fNyquist is 1 (×π rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

• The stopband frequency of the filter, fstop, is the frequency below which the attenuation is equal to
or greater than the value specified using 'StopbandAttenuation'.

• The transition width of the filter, W, is fpass – fstop, where fpass is the specified passband
frequency.

• Most nonideal filters also attenuate the input signal across the passband. The maximum value of
this frequency-dependent attenuation is called the passband ripple. Every filter used by highpass
has a passband ripple of 0.1 dB.

 highpass

1-1023

When you specify a value, s, for 'Steepness', the function computes the transition width as
W = (1 – s) × fpass.

• When 'Steepness' is equal to 0.5, the transition width is 50% of fpass.
• As 'Steepness' approaches 1, the transition width becomes progressively narrower until it

reaches a minimum value of 1% of fpass.
• The default value of 'Steepness' is 0.85, which corresponds to a transition width that is 15% of

fpass.

See Also
Apps
Signal Analyzer

Functions
bandpass | bandstop | designfilt | filter | filtfilt | fir1 | lowpass

Introduced in R2018a

1 Functions

1-1024

hilbert
Discrete-time analytic signal using Hilbert transform

Syntax
x = hilbert(xr)
x = hilbert(xr,n)

Description
x = hilbert(xr) returns the analytic signal, x, from a real data sequence, xr. If xr is a matrix,
then hilbert finds the analytic signal corresponding to each column.

x = hilbert(xr,n) uses an n-point fast Fourier transform (FFT) to compute the Hilbert transform.
The input data is zero-padded or truncated to length n, as appropriate.

Examples

Analytic Signal of a Sequence

Define a sequence and compute its analytic signal using hilbert.

xr = [1 2 3 4];
x = hilbert(xr)

x = 1×4 complex

 1.0000 + 1.0000i 2.0000 - 1.0000i 3.0000 - 1.0000i 4.0000 + 1.0000i

The imaginary part of x is the Hilbert transform of xr, and the real part is xr itself.

imx = imag(x)

imx = 1×4

 1 -1 -1 1

rex = real(x)

rex = 1×4

 1 2 3 4

The last half of the discrete Fourier transform (DFT) of x is zero. (In this example, the last half of the
transform is just the last element.) The DC and Nyquist elements of fft(x) are purely real.

dft = fft(x)

dft = 1×4 complex

 hilbert

1-1025

 10.0000 + 0.0000i -4.0000 + 4.0000i -2.0000 + 0.0000i 0.0000 + 0.0000i

Analytic Signal and Hilbert Transform

The hilbert function finds the exact analytic signal for a finite block of data. You can also generate
the analytic signal by using an finite impulse response (FIR) Hilbert transformer filter to compute an
approximation to the imaginary part.

Generate a sequence composed of three sinusoids with frequencies 203, 721, and 1001 Hz. The
sequence is sampled at 10 kHz for about 1 second. Use the hilbert function to compute the analytic
signal. Plot it between 0.01 seconds and 0.03 seconds.

fs = 1e4;
t = 0:1/fs:1;

x = 2.5 + cos(2*pi*203*t) + sin(2*pi*721*t) + cos(2*pi*1001*t);

y = hilbert(x);

plot(t,real(y),t,imag(y))
xlim([0.01 0.03])
legend('real','imaginary')
title('hilbert Function')
xlabel('Time (s)')

1 Functions

1-1026

Compute Welch estimates of the power spectral densities of the original sequence and the analytic
signal. Divide the sequences into Hamming-windowed, nonoverlapping sections of length 256. Verify
that the analytic signal has no power at negative frequencies.

pwelch([x;y].',256,0,[],fs,'centered')
legend('Original','hilbert')

Use the designfilt function to design a 60th-order Hilbert transformer FIR filter. Specify a
transition width of 400 Hz. Visualize the frequency response of the filter.

fo = 60;

d = designfilt('hilbertfir','FilterOrder',fo, ...
 'TransitionWidth',400,'SampleRate',fs);

freqz(d,1024,fs)

 hilbert

1-1027

Filter the sinusoidal sequence to approximate the imaginary part of the analytic signal.

hb = filter(d,x);

The group delay of the filter, grd, is equal to one-half the filter order. Compensate for this delay.
Remove the first grd samples of the imaginary part and the last grd samples of the real part and the
time vector. Plot the result between 0.01 seconds and 0.03 seconds.

grd = fo/2;

y2 = x(1:end-grd) + 1j*hb(grd+1:end);
t2 = t(1:end-grd);

plot(t2,real(y2),t2,imag(y2))
xlim([0.01 0.03])
legend('real','imaginary')
title('FIR Filter')
xlabel('Time (s)')

1 Functions

1-1028

Estimate the power spectral density (PSD) of the approximate analytic signal and compare it to the
hilbert result.

pwelch([y;[y2 zeros(1,grd)]].',256,0,[],fs,'centered')
legend('hilbert','FIR Filter')

 hilbert

1-1029

Input Arguments
xr — Input signal
vector | matrix

Input signal, specified as a real-valued vector or matrix. If xr is complex, then hilbert ignores its
imaginary part.
Example: sin(2*pi*(0:15)/16) specifies one period of a sinusoid.
Example: sin(2*pi*(0:15)'./[16 8]) specifies a two-channel sinusoidal signal.
Data Types: single | double

n — DFT length
positive integer scalar

DFT length, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
x — Analytic signal
vector | matrix

1 Functions

1-1030

Analytic signal, returned as a vector or matrix.

More About
Analytic Signal

hilbert returns a complex helical sequence, sometimes called the analytic signal, from a real data
sequence.

The analytic signal x = xr + jxi has a real part, xr, which is the original data, and an imaginary part, xi,
which contains the Hilbert transform. The imaginary part is a version of the original real sequence
with a 90° phase shift. Sines are therefore transformed to cosines, and conversely, cosines are
transformed to sines. The Hilbert-transformed series has the same amplitude and frequency content
as the original sequence. The transform includes phase information that depends on the phase of the
original.

The Hilbert transform is useful in calculating instantaneous attributes of a time series, especially the
amplitude and the frequency. The instantaneous amplitude is the amplitude of the complex Hilbert
transform; the instantaneous frequency is the time rate of change of the instantaneous phase angle.
For a pure sinusoid, the instantaneous amplitude and frequency are constant. The instantaneous
phase, however, is a sawtooth, reflecting how the local phase angle varies linearly over a single cycle.
For mixtures of sinusoids, the attributes are short term, or local, averages spanning no more than two
or three points. See “Hilbert Transform and Instantaneous Frequency” for examples.

Reference [1] describes the Kolmogorov method for minimum phase reconstruction, which involves
taking the Hilbert transform of the logarithm of the spectral density of a time series. The toolbox
function rceps performs this reconstruction.

Algorithms
The analytic signal for a sequence xr has a one-sided Fourier transform. That is, the transform
vanishes for negative frequencies. To approximate the analytic signal, hilbert calculates the FFT of
the input sequence, replaces those FFT coefficients that correspond to negative frequencies with
zeros, and calculates the inverse FFT of the result.

hilbert uses a four-step algorithm:

1 Calculate the FFT of the input sequence, storing the result in a vector x.
2 Create a vector h whose elements h(i) have the values:

• 1 for i = 1, (n/2)+1
• 2 for i = 2, 3, ... , (n/2)
• 0 for i = (n/2)+2, ... , n

3 Calculate the element-wise product of x and h.
4 Calculate the inverse FFT of the sequence obtained in step 3 and returns the first n elements of

the result.

This algorithm was first introduced in [2]. The technique assumes that the input signal, x, is a finite
block of data. This assumption allows the function to remove the spectral redundancy in x exactly.
Methods based on FIR filtering can only approximate the analytic signal, but they have the advantage
that they operate continuously on the data. See “Single-Sideband Amplitude Modulation” for another
example of a Hilbert transform computed with an FIR filter.

 hilbert

1-1031

References
[1] Claerbout, Jon F. Fundamentals of Geophysical Data Processing with Applications to Petroleum

Prospecting. Oxford, UK: Blackwell, 1985.

[2] Marple, S. L. “Computing the Discrete-Time Analytic Signal via FFT.” IEEE Transactions on Signal
Processing. Vol. 47, 1999, pp. 2600–2603.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fft | ifft | rceps

Introduced before R2006a

1 Functions

1-1032

icceps
Inverse complex cepstrum

Syntax
x = icceps(xhat,nd)

Description
x = icceps(xhat,nd) returns the inverse complex cepstrum of the real data sequence xhat,
removing nd samples of delay.

Examples

Inverse Complex Cepstrum of Echo

Generate a sine of frequency 45 Hz, sampled at 100 Hz. Add an echo with half the amplitude and 0.2
s later. Compute the complex cepstrum of the signal.

Fs = 100;
t = 0:1/Fs:1.27;

s1 = sin(2*pi*45*t);
s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

c = cceps(s2);

Compute the inverse complex cepstrum. Plot the echo data and its inverse complex cepstrum.

x = icceps(c);
plot(t,s2,t,x,'r--')
xlabel('Time (s)')
legend('Echo signal','Inverse complex cepstrum')

 icceps

1-1033

Input Arguments
xhat — Data sequence
real vector

Data sequence, specified as a real vector. If xhat was obtained with cceps, then the amount of delay
that was added to x was the element of round(unwrap(angle(fft(x)))/pi) corresponding to π
radians.

nd — Number of samples of delay
real positive scalar

Number of samples of delay, specified as a real positive scalar.

Output Arguments
x — Inverse complex cepstrum
vector

Inverse complex cepstrum, returned as a vector.

References
[1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989.

1 Functions

1-1034

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cceps | hilbert | rceps | unwrap

Introduced before R2006a

 icceps

1-1035

idct
Inverse discrete cosine transform

Syntax
x = idct(y)
x = idct(y,n)

x = idct(y,n,dim)

y = idct(___ ,'Type',dcttype)

Description
x = idct(y) returns the inverse discrete cosine transform of input array y. The output x has the
same size as y. If y has more than one dimension, then idct operates along the first array dimension
with size greater than 1.

x = idct(y,n) zero-pads or truncates the relevant dimension of y to length n before transforming.

x = idct(y,n,dim) computes the transform along dimension dim. To input a dimension and use
the default value of n, specify the second argument as empty, [].

y = idct(___ ,'Type',dcttype) specifies the type of inverse discrete cosine transform to
compute. See “Inverse Discrete Cosine Transform” on page 1-1039 for details. This option can be
combined with any of the previous syntaxes.

Examples

Signal Reconstruction Using Inverse Discrete Cosine Transform

Generate a signal that consists of a 25 Hz sinusoid sampled at 1000 Hz for 1 second. The sinusoid is
embedded in white Gaussian noise with variance 0.01.

rng('default')

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = sin(2*pi*25*t) + randn(size(t))/10;

Compute the discrete cosine transform of the sequence. Determine how many of the 1000 DCT
coefficients are significant. Choose 1 as the threshold for significance.

y = dct(x);

sigcoeff = abs(y) >= 1;

howmany = sum(sigcoeff)

howmany = 17

1 Functions

1-1036

Reconstruct the signal using only the significant components.

y(~sigcoeff) = 0;

z = idct(y);

Plot the original and reconstructed signals.

subplot(2,1,1)
plot(t,x)
yl = ylim;
title('Original')

subplot(2,1,2)
plot(t,z)
ylim(yl)
title('Reconstructed')

DCT Orthogonality

Verify that the different variants of the discrete cosine transform are orthogonal, using a random
signal as a benchmark.

Start by generating the signal.

 idct

1-1037

s = randn(1000,1);

Verify that DCT-1 and DCT-4 are their own inverses.

dct1 = dct(s,'Type',1);
idt1 = idct(s,'Type',1);

max(abs(dct1-idt1))

ans = 1.1102e-15

dct4 = dct(s,'Type',4);
idt4 = idct(s,'Type',4);

max(abs(dct4-idt4))

ans = 1.3323e-15

Verify that DCT-2 and DCT-3 are inverses of each other.

dct2 = dct(s,'Type',2);
idt2 = idct(s,'Type',3);

max(abs(dct2-idt2))

ans = 4.4409e-16

dct3 = dct(s,'Type',3);
idt3 = idct(s,'Type',2);

max(abs(dct3-idt3))

ans = 1.5543e-15

Input Arguments
y — Input discrete cosine transform
vector | matrix | N-D array | gpuArray object

Input discrete cosine transform, specified as a real-valued or complex-valued vector, matrix, N-D
array, or gpuArray object.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Example: dct(sin(2*pi*(0:255)/4)) specifies the discrete cosine transform of a sinusoid.
Example: dct(sin(2*pi*[0.1;0.3]*(0:39))') specifies the discrete cosine transform of a two-
channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

n — Inverse transform length
positive integer scalar

1 Functions

1-1038

Inverse transform length, specified as a positive integer scalar.
Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.
Data Types: single | double

dcttype — Inverse discrete cosine transform type
2 (default) | 1 | 3 | 4

Inverse discrete cosine transform type, specified as a positive integer scalar from 1 to 4.
Data Types: single | double

Output Arguments
x — Inverse discrete cosine transform
vector | matrix | N-D array | gpuArray object

Inverse discrete cosine transform, returned as a real-valued or complex-valued vector, matrix, N-D
array, or gpuArray object.

More About
Inverse Discrete Cosine Transform

The inverse discrete cosine transform reconstructs a sequence from its discrete cosine transform
(DCT) coefficients. The idct function is the inverse of the dct function.

The DCT has four standard variants. For a transformed signal y of length N, and with δkℓ the
Kronecker delta, the inverses are defined by:

• Inverse of DCT-1:

x(n) = 2
N − 1 ∑k = 1

N
y(k) 1

1 + δk1 + δkN

1
1 + δn1 + δnN

cos π
N − 1(k− 1)(n− 1)

• Inverse of DCT-2:

x(n) = 2
N ∑

k = 1

N
y(k) 1

1 + δk1
cos π

2N (k− 1)(2n− 1)

• Inverse of DCT-3:

x(n) = 2
N ∑

k = 1

N
y(k) 1

1 + δn1
cos π

2N (2k− 1)(n− 1)

• Inverse of DCT-4:

x(n) = 2
N ∑

k = 1

N
y(k)cos π

4N (2k− 1)(2n− 1)

 idct

1-1039

The series are indexed from n = 1 and k = 1 instead of the usual n = 0 and k = 0, because MATLAB
vectors run from 1 to N instead of from 0 to N – 1.

All variants of the DCT are unitary (or, equivalently, orthogonal): To find the forward transforms,
switch k and n in each definition. DCT-1 and DCT-4 are their own inverses. DCT-2 and DCT-3 are
inverses of each other.

References
[1] Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[3] Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression Standard. New York: Van
Nostrand Reinhold, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• C and C++ code generation for dct requires DSP System Toolbox software.
• The length of the transform dimension must be a power of two. If specified, the pad or truncation

value must be constant. Expressions or variables are allowed if their values do not change.
• Inputs must be double precision.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• N-D input arrays are not supported.
• The dim and dcttype input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dct | dct2 | idct2 | ifft

Topics
“DCT for Speech Signal Compression”

Introduced before R2006a

1 Functions

1-1040

ifsst
Inverse Fourier synchrosqueezed transform

Syntax
x = ifsst(s)

x = ifsst(s,window)

x = ifsst(s,window,f,freqrange)

x = ifsst(s,window,iridge)
x = ifsst(s,window,iridge,'NumFrequencyBins',nbins)

Description
x = ifsst(s) returns the inverse Fourier synchrosqueezed transform of s. x is reconstructed using
the entire time-frequency plane in s.

x = ifsst(s,window) reconstructs the signal whose Fourier synchrosqueezed transform was
computed using window.

x = ifsst(s,window,f,freqrange) inverts the synchrosqueezed transform assuming it was
sampled at the frequencies f, which lie within freqrange. The synchrosqueezed transform is
inverted for the bins in s whose frequencies are within freqrange.

x = ifsst(s,window,iridge) inverts the synchrosqueezed transform along the time-frequency
ridges specified by the index vector or matrix iridge. If iridge is a matrix, then ifsst initially
performs the inversion along the first column of iridge and then proceeds iteratively along the
subsequent columns. The output is a vector or matrix with the same size as iridge.

x = ifsst(s,window,iridge,'NumFrequencyBins',nbins) specifies the number of frequency
bins around the indices in iridge to use in the reconstruction.

Examples

Inverse Fourier Synchrosqueezed Transform of Speech Signal

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®." Compute the Fourier synchrosqueezed transform of the signal.

load mtlb % To hear, type sound(mtlb,Fs)

[sst,f] = fsst(mtlb,Fs);

Invert the transform to reconstruct the signal. Plot the original and reconstructed signals, as well as
the difference between them.

xrec = ifsst(sst);

 ifsst

1-1041

t = (0:length(mtlb)-1)/Fs;
plot(t,mtlb,t,xrec,t,mtlb-xrec)

xlabel('Time (s)')
legend('Original','Reconstructed','Difference')

Check the accuracy of the reconstruction by computing the ℓ∞ norm of the difference between the
original signal and the inverse transform.

Linf = norm(abs(mtlb-xrec),Inf)

Linf = 1.9762e-14

% To hear, type sound(mtlb-xrec,Fs)

Fourier Synchrosqueezed Transform and Its Inverse

Generate a signal sampled at 1024 Hz for 2 seconds.

nSamp = 2048;
Fs = 1024;
t = (0:nSamp-1)'/Fs;

1 Functions

1-1042

During the first second, the signal consists of a 400 Hz sinusoid and a concave quadratic chirp.
Specify a chirp that is symmetric about the interval midpoint, starts and ends at a frequency of 250
Hz, and attains a minimum of 150 Hz.

t1 = t(1:nSamp/2);

x11 = sin(2*pi*400*t1);
x12 = chirp(t1-t1(nSamp/4),150,nSamp/Fs,1750,'quadratic');
x1 = x11+x12;

The rest of the signal consists of two linear chirps of decreasing frequency. One chirp has an initial
frequency of 250 Hz that decreases to 100 Hz. The other chirp has an initial frequency of 400 Hz that
decreases to 250 Hz.

t2 = t(nSamp/2+1:nSamp);

x21 = chirp(t2,400,nSamp/Fs,100);
x22 = chirp(t2,550,nSamp/Fs,250);
x2 = x21+x22;

Compute the Fourier synchrosqueezed transform of the signal. Specify a 256-sample Kaiser window
with a shape parameter β = 100. Use the plotting functionality of fsst to display the result.

sig = [x1;x2];
wind = kaiser(256,120);

[sigtr,ftr,ttr] = fsst(sig,Fs,wind);

fsst(sig,Fs,wind,'yaxis')

 ifsst

1-1043

Invert the transform to reconstruct the function. Plot the original and inverted signals and the
difference between them.

x = ifsst(sigtr,wind);

plot(t,sig,t,x,t,x-sig)
legend('Original','Reconstructed','Difference')

1 Functions

1-1044

diffnorm = norm(x-sig)

diffnorm = 3.9032e-13

Reconstruction of Linear Chirps

Generate a signal that consists of two chirps. The signal is sampled at 3 kHz for one second. The first
chirp has an initial frequency of 400 Hz and reaches 800 Hz at the end of the sampling. The second
chirp starts at 500 Hz and reaches 1000 Hz at the end. The second chirp has twice the amplitude of
the first chirp.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = chirp(t,400,t(end),800);
x2 = 2*chirp(t,500,t(end),1000);

Compute and plot the Fourier synchrosqueezed transform of the signal. Display the time on the x-axis
and the frequency on the y-axis.

[sst,f] = fsst(x1+x2,fs);
fsst(x1+x2,fs,'yaxis')

 ifsst

1-1045

Extract the ridge corresponding to the higher-energy component of the signal, which is the chirp with
the larger amplitude. Use the ridge to reconstruct the signal.

[~,iridge] = tfridge(sst,f);

xrec = ifsst(sst,[],iridge);

Plot the spectrogram for the higher-energy component. Divide the component into 256-sample
sections and specify an overlap of 255 samples. Use 512 DFT points and a rectangular window.

spectrogram(xrec,rectwin(256),255,512,fs,'yaxis')

1 Functions

1-1046

To extract the second chirp, specify that tfridge search for two ridges. The second column of the
output is the lower-energy component of the signal.

[~,iridge] = tfridge(sst,f,'NumRidges',2);

xrec = ifsst(sst,[],iridge(:,2));

spectrogram(xrec,rectwin(256),255,512,fs,'yaxis')

 ifsst

1-1047

Input Arguments
s — Input synchrosqueezed transform
matrix

Input synchrosqueezed transform, specified as a matrix.
Example: fsst(cos(pi/4*(0:159))) specifies the synchrosqueezed transform of a sinusoid.
Data Types: single | double
Complex Number Support: Yes

window — Spectral window
kaiser(256,10) (default) | integer | vector | []

Spectral window, specified as an integer or as a row or column vector.

• If window is an integer, then ifsst assumes that the synchrosqueezed transform, s, was
computed using a Kaiser window of length window and β = 10.

• If window is a vector, then ifsst assumes that s was computed by windowing each segment of
the original signal using window.

• If window is not specified, then ifsst assumes that s was computed using a Kaiser window of
length 256 and β = 10. If the signal to be reconstructed, x, has fewer than 256 samples, then you
must provide a window length or window vector consistent with the length of x.

1 Functions

1-1048

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: double | single

f — Sampling frequencies
vector

Sampling frequencies, specified as a vector. The length of f must equal the number of elements in s.
Data Types: single | double

freqrange — Frequency range
two-element vector

Frequency range, specified as a two-element vector. The values of freqrange must be strictly
increasing and must lie in the range comprised by f.
Data Types: single | double

iridge — Time-frequency ridge indices
vector | matrix

Time-frequency ridge indices, specified as a vector or matrix. iridge is an output of tfridge.
Data Types: single | double

nbins — Number of neighboring bins
4 (default) | positive integer scalar

Number of neighboring bins on either side of the time-frequency ridges of interest, specified as the
comma-separated pair consisting of 'NumFrequencyBins' and a positive integer scalar. Indices
close to the frequency edges that have fewer than nbins bins on one side are reconstructed using a
smaller number of bins.
Data Types: single | double

Output Arguments
x — Inverse synchrosqueezed transform
vector

Inverse synchrosqueezed transform, returned as a vector. The length of x equals the number of
columns in s.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

 ifsst

1-1049

The length of the window must be smaller than or equal to the length of the input signal.

See Also
Apps
Signal Analyzer

Functions
fsst | pspectrum | spectrogram | tfridge

Topics
“Hilbert Transform and Instantaneous Frequency”
“Practical Introduction to Time-Frequency Analysis”
“Detect Closely Spaced Sinusoids”
“Fourier Synchrosqueezed Transform” on page 1-921
“Time-Frequency Gallery”

Introduced in R2016b

1 Functions

1-1050

ifwht
Inverse Fast Walsh-Hadamard transform

Syntax
y = ifwht(x)
y = ifwht(x,n)
y = ifwht(x,n,ordering)

Description
y = ifwht(x) returns the coefficients of the inverse discrete fast Walsh-Hadamard transform of the
input x. If x is a matrix, the inverse fast Walsh-Hadamard transform is calculated on each column of
x. The inverse fast Walsh-Hadamard transform operates only on signals with length equal to a power
of 2. If the length of x is less than a power of 2, its length is padded with zeros to the next greater
power of two before processing.

y = ifwht(x,n) returns the n-point inverse discrete Walsh-Hadamard transform, where n must be
a power of 2.

y = ifwht(x,n,ordering) specifies the ordering to use for the returned inverse Walsh-Hadamard
transform coefficients. To specify the ordering, you must enter a value for the length n or, to use the
default behavior, specify an empty vector ([]) for n. Valid values for the ordering are the following:

Ordering Description
'sequency' Coefficients in order of ascending sequency value, where each row has

an additional zero crossing. This is the default ordering.
'hadamard' Coefficients in normal Hadamard order.
'dyadic' Coefficients in Gray code order, where a single bit change occurs from

one coefficient to the next.

Examples

Walsh-Hadamard Transform for Spectral Analysis and Compression of ECG Signals

Use an electrocardiogram (ECG) signal to illustrate working with the Walsh-Hadamard transform.
ECG signals typically are very large and need to be stored for analysis and retrieval at a future time.
Walsh-Hadamard transforms are particularly well-suited to this application because they provide
compression and thus require less storage space. They also provide rapid signal reconstruction.

Start with an ECG signal. Replicate it to create a longer signal and insert some additional random
noise.

xe = ecg(512);
xr = repmat(xe,1,8);
x = xr + 0.1.*randn(1,length(xr));

 ifwht

1-1051

Transform the signal using the fast Walsh-Hadamard transform. Plot the original signal and the
transformed signal.

y = fwht(x);

subplot(2,1,1)
plot(x)
xlabel('Sample index')
ylabel('Amplitude')
title('ECG Signal')

subplot(2,1,2)
plot(abs(y))
xlabel('Sequency index')
ylabel('Magnitude')
title('WHT Coefficients')

The plot shows that most of the signal energy is in the lower sequency values, below approximately
1100. Store only the first 1024 coefficients (out of 4096). Try to reconstruct the signal accurately
from only these stored coefficients.

y(1025:length(x)) = 0;
xHat = ifwht(y);

figure
plot(x)
hold on

1 Functions

1-1052

plot(xHat)
xlabel('Sample Index')
ylabel('ECG Signal Amplitude')
legend('Original','Reconstructed')

The reproduced signal is very close to the original but has been compressed to a quarter of the size.
Storing more coefficients is a tradeoff between increased resolution and increased noise, while
storing fewer coefficients can cause loss of peaks.

Algorithms
The inverse fast Walsh-Hadamard transform algorithm is similar to the Cooley-Tukey algorithm used
for the inverse FFT. Both use a butterfly structure to determine the transform coefficients. See the
references for details.

References

[1] Beauchamp, Kenneth G. Applications of Walsh and Related Functions: With an Introduction to
Sequency Theory. London: Academic Press, 1984.

[2] Beer, Tom. “Walsh Transforms.” American Journal of Physics. Vol. 49, 1981, pp. 466–472.

 ifwht

1-1053

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fwht | dct | idct | fft | ifft

Introduced in R2008b

1 Functions

1-1054

impinvar
Impulse invariance method for analog-to-digital filter conversion

Syntax
[bz,az] = impinvar(b,a,fs)
[bz,az] = impinvar(b,a,fs,tol)

Description
[bz,az] = impinvar(b,a,fs) creates a digital filter with numerator and denominator
coefficients bz and az, respectively, whose impulse response is equal to the impulse response of the
analog filter with coefficients b and a, scaled by 1/fs, where fs is the sample rate.

[bz,az] = impinvar(b,a,fs,tol) uses the tolerance specified by tol to determine whether
poles are repeated.

Examples

Analog and Digital Butterworth Filters

Convert a sixth-order analog Butterworth lowpass filter to a digital filter using impulse invariance.
Specify a sample rate of 10 Hz and a cutoff frequency of 2 Hz. Display the frequency response of the
filter.

f = 2;
fs = 10;

[b,a] = butter(6,2*pi*f,'s');
[bz,az] = impinvar(b,a,fs);

freqz(bz,az,1024,fs)

 impinvar

1-1055

Analog and Digital Impulse Responses

Convert a third-order analog elliptic filter to a digital filter using impulse invariance. Specify a sample
rate fs = 10 Hz, a passband edge frequency of 2.5 Hz, a passband ripple of 1 dB, and a stopband
attenuation of 60 dB. Display the impulse response of the digital filter.

fs = 10;

[b,a] = ellip(3,1,60,2*pi*2.5,'s');
[bz,az] = impinvar(b,a,fs);

impz(bz,az,[],fs)

1 Functions

1-1056

Derive the impulse response of the analog filter by finding the residues, rk, and poles, pk, of the
transfer function and inverting the Laplace transform explicitly using

H(s) = ∑
k

rk
s− pk

h(t) = ∑
k

rkepkt .

Overlay the impulse response of the analog filter. Impulse invariance introduces a gain of 1/ fs to the
digital filter. Multiply the analog impulse response by this gain to enable meaningful comparison.

[r,p] = residue(b,a);
t = linspace(0,4,1000);
h = real(r.'*exp(p.*t)/fs);

hold on
plot(t,h)
hold off

 impinvar

1-1057

Input Arguments
b, a — Analog filter transfer function coefficients
vectors

Analog filter transfer function coefficients, specified as vectors.
Example: [b,a] = butter(6,2*pi*10,'s') specifies a 6th-order Butterworth filter with a cutoff
frequency of 10 Hz.
Data Types: single | double

fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar.
Data Types: single | double

tol — Tolerance
0.001 (default) | positive scalar

Tolerance, specified as a positive scalar. The tolerance determines whether poles are repeated. A
larger tolerance increases the likelihood that impinvar interprets closely located poles as
multiplicities (repeated ones). The default tolerance corresponds to 0.1% of a pole magnitude. The
accuracy of the pole values is still limited to the accuracy obtainable by the roots function.

1 Functions

1-1058

Data Types: single | double

Output Arguments
bz, az — Digital filter transfer function coefficients
vectors

Digital filter transfer function coefficients, returned as vectors.

Algorithms
impinvar performs the impulse-invariant method of analog-to-digital transfer function conversion
discussed in reference [2]:

1 It finds the partial fraction expansion of the system represented by b and a.
2 It replaces the poles p by the poles exp(p/fs).
3 It finds the transfer function coefficients of the system from the residues from step 1 and the

poles from step 2.

References
[1] Antoniou, Andreas. Digital Filters. New York: McGraw-Hill, Inc., 1993.

[2] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987.

See Also
bilinear | lp2bp | lp2bs | lp2hp | lp2lp

Introduced before R2006a

 impinvar

1-1059

impz
Impulse response of digital filter

Syntax
[h,t] = impz(b,a)
[h,t] = impz(sos)
[h,t] = impz(d)

[h,t] = impz(___ ,n)
[h,t] = impz(___ ,n,fs)

impz(___)

Description
[h,t] = impz(b,a) returns the impulse response of the digital filter with numerator coefficients b
and denominator coefficients a. The function chooses the number of samples and returns the
response coefficients in h and the sample times in t.

[h,t] = impz(sos) returns the impulse response of the filter specified by the second-order
sections matrix sos.

[h,t] = impz(d) returns the impulse response of the digital filter d. Use designfilt to generate
d based on frequency-response specifications.

[h,t] = impz(___ ,n) specifies what impulse-response samples to compute. You can specify the
filter using any of the previous syntaxes.

[h,t] = impz(___ ,n,fs) returns a vector t with consecutive samples spaced 1/fs units apart.

impz(___) with no output arguments plots the impulse response of the filter.

Examples

Impulse Response of Elliptic Lowpass Filter

Design a fourth-order lowpass elliptic filter with normalized passband frequency 0.4 rad/sample.
Specify a passband ripple of 0.5 dB and a stopband attenuation of 20 dB. Plot the first 50 samples of
the impulse response.

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)

1 Functions

1-1060

Design the same filter using designfilt. Plot the first 50 samples of its impulse response.

d = designfilt('lowpassiir','DesignMethod','ellip','FilterOrder',4, ...
 'PassbandFrequency',0.4, ...
 'PassbandRipple',0.5,'StopbandAttenuation',20);
impz(d,50)

 impz

1-1061

Impulse Response of Highpass FIR Filter

Design an FIR highpass filter of order 18 using a Kaiser window with β = 4. Specify a sample rate of
100 Hz and a cutoff frequency of 30 Hz. Display the impulse response of the filter.

b = fir1(18,30/(100/2),'high',kaiser(19,4));
impz(b,1,[],100)

1 Functions

1-1062

Design the same filter using designfilt and plot its impulse response.

d = designfilt('highpassfir','FilterOrder',18,'SampleRate',100, ...
 'CutoffFrequency',30,'Window',{'kaiser',4});
impz(d,[],100)

 impz

1-1063

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(e jω) = B(e jω)
A(e jω)

= b(1)+b(2) e− jω + b(3) e− j2ω +⋯+ b(M) e− j(M − 1)ω

a(1)+a(2) e− jω + a(3) e− j2ω +⋯+ a(N) e− j(N − 1)ω .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

sos — Second-order section coefficients
matrix

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, the function
treats the input as a numerator vector. Each row of sos corresponds to the coefficients of a second-
order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2)
ai(3)].

1 Functions

1-1064

Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

n — Sample numbers
positive integer | vector of nonnegative integers | []

Sample numbers, specified as a positive integer, a vector of nonnegative integers, or an empty vector.

• If n is a positive integer, impz computes the first n samples of the impulse response and returns t
as (0:n-1)'.

• If n is a vector of nonnegative integers, impz computes the impulse response at the locations
specified in the vector.

• If n is an empty vector, impz computes the number of samples automatically. See “Algorithms” on
page 1-1066 for more information.

Example: impz([2 4 2 6 0 2;3 3 0 6 0 0],5) computes the first five samples of the impulse
response of a Butterworth filter.
Example: impz([2 4 2 6 0 2;3 3 0 6 0 0],[0 3 2 1 4 5]) computes the first six samples
of the impulse response of a Butterworth filter.
Example: impz([2 4 2 6 0 2;3 3 0 6 0 0],[],5e3) computes the impulse response of a
Butterworth filter designed to filter signals sampled at 5 kHz.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. When the unit of time is seconds, fs is expressed in hertz.
Data Types: double

Output Arguments
h — Impulse response coefficients
column vector

Impulse response coefficients, returned as a column vector.

t — Sample times
column vector

Sample times, returned as a column vector.

 impz

1-1065

Algorithms
impz filters a length-n impulse sequence using

filter(b,a,[1 zeros(1,n-1)])

and plots the result using stem.

Note If the input to impz is single precision, the function computes the impulse response using
single-precision arithmetic and returns single-precision output.

When impz calculates n automatically, the algorithm depends on the properties of the filter:

• FIR filters — n is the length of b.
• IIR filters — impz first finds the poles of the transfer function using roots.

• If the filter is unstable, n is chosen to be the point at which the term from the largest pole
reaches 106 times its original value.

• If the filter is stable, n is chosen as the point at which the term from the largest-amplitude pole
is 5 × 10–5 times its original amplitude.

• If the filter is oscillatory with poles on the unit circle only, impz computes five periods of the
slowest oscillation.

• If the filter has both oscillatory and damped terms, n is the greater of five periods of the
slowest oscillation, or the point at which the term due to the largest pole is 5 × 10–5 times its
original amplitude.

impz also allows for delays in the numerator polynomial. The number of delays is incorporated into
the computation of the number of samples.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If the first input to impz is a variable-size matrix at compile time, then it must not become a vector at
runtime.

See Also
designfilt | digitalFilter | impulse | impzlength | stem

Introduced before R2006a

1 Functions

1-1066

impzlength
Impulse response length

Syntax
len = impzlength(b,a)
len = impzlength(sos)
len = impzlength(d)

len = impzlength(___ ,tol)

Description
len = impzlength(b,a) returns the impulse response length for the causal discrete-time filter
with the rational system function specified by the numerator, b, and denominator, a, polynomials in z–
1. For stable IIR filters, len is the effective impulse response sequence length. Terms in the IIR filter’s
impulse response after the len-th term are essentially zero.

len = impzlength(sos) returns the effective impulse response length for the IIR filter specified
by the second order sections matrix, sos. sos is a K-by-6 matrix, where the number of sections, K,
must be greater than or equal to 2. If the number of sections is less than 2, impzlength considers
the input to be the numerator vector, b. Each row of sos corresponds to the coefficients of a second
order (biquad) filter. The ith row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1)
ai(2) ai(3)].

len = impzlength(d) returns the impulse response length for the digital filter, d. Use
designfilt to generate d based on frequency-response specifications.

len = impzlength(___ ,tol) specifies a tolerance for estimating the effective length of an IIR
filter’s impulse response. By default, tol is 5e-5. Increasing the value of tol estimates a shorter
effective length for an IIR filter’s impulse response. Decreasing the value of tol produces a longer
effective length for an IIR filter’s impulse response.

Examples

IIR Filter Effective Impulse Response Length — Coefficients

Create a lowpass allpole IIR filter with a pole at 0.9. Calculate the effective impulse response length.
Obtain the impulse response. Plot the result.

b = 1;
a = [1 -0.9];
len = impzlength(b,a)

len = 93

[h,t] = impz(b,a);
stem(t,h)

 impzlength

1-1067

h(len)

ans = 6.1704e-05

IIR Filter Effective Impulse Response Length — Second-Order Sections

Design a 4th-order lowpass elliptic filter with a cutoff frequency of 0.4π rad/sample. Specify 1 dB of
passband ripple and 60 dB of stopband attenuation. Design the filter in pole-zero-gain form and
obtain the second-order section matrix using zp2sos. Determine the effective impulse response
sequence length from the second-order section matrix.

[z,p,k] = ellip(4,1,60,.4);
[sos,g] = zp2sos(z,p,k);
len = impzlength(sos)

len = 80

IIR Filter Effective Impulse Response Length — Digital Filter

Use designfilt to design a 4th-order lowpass elliptic filter with normalized passband frequency
0.4π rad/sample. Specify 1 dB of passband ripple and 60 dB of stopband attenuation. Determine the
effective impulse response sequence length and visualize it.

1 Functions

1-1068

d = designfilt('lowpassiir','FilterOrder',4,'PassbandFrequency',0.4, ...
 'PassbandRipple',1,'StopbandAttenuation',60, ...
 'DesignMethod','ellip');
len = impzlength(d)

len = 80

impz(d)

Input Arguments
b — Numerator coefficients
vector | scalar

Numerator coefficients, specified as a scalar (allpole filter) or a vector.
Example: b = fir1(20,0.25)
Data Types: single | double
Complex Number Support: Yes

a — Denominator coefficients
vector | scalar

Denominator coefficients, specified as a scalar (FIR filter) or vector.
Data Types: single | double

 impzlength

1-1069

Complex Number Support: Yes

sos — Matrix of second order sections
matrix

Matrix of second order sections, specified as a K-by-6 matrix. The system function of the K-th biquad
filter has the rational Z-transform

Hk(z) =
Bk(1) + Bk(2)z−1 + Bk(3)z−2

Ak(1) + Ak(2)z−1 + Ak(3)z−2 .

The coefficients in the Kth row of the matrix, sos, are ordered as follows.

Bk(1) Bk(2) Bk(3) Ak(1) Ak(2) Ak(3)

The frequency response of the filter is the system function evaluated on the unit circle with

z = e j2πf .

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample.

tol — Tolerance for IIR filter effective impulse response length
5e-5 (default) | positive scalar

Tolerance for IIR filter effective impulse response length, specified as a positive number. The
tolerance determines the term in the absolutely summable sequence after which subsequent terms
are considered to be 0. The default tolerance is 5e-5. Increasing the tolerance returns a shorter
effective impulse response sequence length. Decreasing the tolerance returns a longer effective
impulse response sequence length.

Output Arguments
len — Length of impulse response
positive integer

Length of the impulse response, specified as a positive integer. For stable IIR filters with absolutely
summable impulse responses, impzlength returns an effective length for the impulse response
beyond which the coefficients are essentially zero. You can control this cutoff point by specifying the
optional tol input argument.

Algorithms
To compute the impulse response for an FIR filter, impzlength uses the length of b. For IIR filters,
the function first finds the poles of the transfer function using roots.

If the filter is unstable, the length extends to the point at which the term from the largest pole
reaches 106 times its original value.

1 Functions

1-1070

If the filter is stable, the length extends to the point at which the term from the largest-amplitude
pole is tol times its original amplitude.

If the filter is oscillatory, with poles on the unit circle only, then impzlength computes five periods of
the slowest oscillation.

If the filter has both oscillatory and damped terms, the length extends to the greater of these values:

• Five periods of the slowest oscillation.
• The point at which the term due to the largest pole is tol times its original amplitude.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If the first input to impzlength is a variable-size matrix at compile time, then it must not become a
vector at runtime.

See Also
designfilt | digitalFilter | impz | zp2sos

Introduced in R2013a

 impzlength

1-1071

info
Information about digital filter

Syntax
s = info(d)

Description
s = info(d) returns a character array with information about the digital filter, d.

Examples

Information on a Lowpass FIR Filter

Design a lowpass FIR filter with normalized passband frequency 0 . 4π rad/sample and normalized
stopband frequency 0 . 45π rad/sample. Obtain information about the filter just designed.

d = designfilt('lowpassfir','PassbandFrequency',0.4,'StopbandFrequency',0.45);
s = info(d)

s = 17x44 char array
 'FIR Digital Filter (real) '
 '------------------------- '
 'Filter Length : 81 '
 'Stable : Yes '
 'Linear Phase : Yes (Type 1) '
 ' '
 'Design Method Information '
 'Design Algorithm : Equiripple '
 ' '
 'Design Specifications '
 'Sample Rate : N/A (normalized frequency)'
 'Response : Lowpass '
 'Specification : Fp,Fst,Ap,Ast '
 'Stopband Edge : 0.45 '
 'Stopband Atten. : 60 dB '
 'Passband Ripple : 1 dB '
 'Passband Edge : 0.4 '

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.

1 Functions

1-1072

Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
s — Information table
character array

Information table, returned as a character array.

See Also
designfilt | digitalFilter

Introduced in R2014a

 info

1-1073

instbw
Estimate instantaneous bandwidth

Syntax
ibw = instbw(x,fs)
ibw = instbw(x,t)
ibw = instbw(xt)

ibw = instbw(tfd,fd,td)

ibw = instbw(___ ,Name,Value)

[ibw,t] = instbw(___)

instbw(___)

Description
ibw = instbw(x,fs) estimates the instantaneous bandwidth of a signal, x, sampled at a rate fs. If
x is a matrix, then the function estimates the instantaneous bandwidth independently for each
column and returns the result in the corresponding column of ibw.

ibw = instbw(x,t) estimates the instantaneous bandwidth of x sampled at the time values stored
in t.

ibw = instbw(xt) estimates the instantaneous bandwidth of a signal stored in the MATLAB
timetable xt. The function treats all variables in the timetable and all columns inside each variable
independently.

ibw = instbw(tfd,fd,td) estimates the instantaneous bandwidth of the signal whose time-
frequency distribution, tfd, is sampled at the bandwidth values stored in fd and the time values
stored in td.

ibw = instbw(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value arguments. You can specify the scale factor or the frequency limits used in the
computation. For example, 'FrequencyLimits',[10 20] computes the instantaneous bandwidth
of the input in the range from 10 Hz to 20 Hz.

[ibw,t] = instbw(___) also returns t, a vector of sample times corresponding to ibw.

instbw(___) with no output arguments plots the estimated instantaneous bandwidth.

Examples

Instantaneous Bandwidth of Sinusoidal Chirp

Generate a signal sampled at 600 Hz for 2 seconds. The signal consists of a chirp with sinusoidally
varying frequency content.

1 Functions

1-1074

fs = 6e2;

x = vco(sin(2*pi*(0:1/fs:2)),[0.1 0.4]*fs,fs);

Compute the spectrogram of the signal and display it as a waterfall plot.

[p,f,t] = pspectrum(x,fs,'spectrogram');

waterfall(f,t,p')
ax = gca;
ax.XDir = 'reverse';
view(30,45)

Estimate and plot the instantaneous bandwidth of the signal.

instbw(x,fs)
ylim([0 50])

 instbw

1-1075

Instantaneous Bandwidth from Spectrogram

Generate a signal sampled at 2 kHz for 2 seconds. The signal consists of a superposition of
exponentially damped sinusoids of increasing frequency that are added at regular intervals. Plot the
signal.

fs = 2000;
t = 0:1/fs:2-1/fs;

frq = (50:100:950)';

amp = (t > 4*(frq-frq(1))/fs);
x = sum(amp.*sin(2*pi*t.*frq).*exp(-3*t));

% To hear, type sound(x,fs)

plot(t,x)
xlabel('Time (s)')

1 Functions

1-1076

Compute and display the instantaneous bandwidth of the signal.

[bw,bt] = instbw(x,t);

plot(bt,bw)
xlabel('Time (s)')
ylabel('Bandwidth (Hz)')

 instbw

1-1077

Compute the spectrogram of the signal. Specify a time resolution of 100 milliseconds and 0 overlap
between adjoining segments. Use the spectrogram to estimate the instantaneous frequency of the
signal.

[p,ff,tt] = pspectrum(x,t,'spectrogram','TimeResolution',0.1,'OverlapPercent',0);

instfreq(p,ff,tt)

1 Functions

1-1078

Use the spectrogram to compute the instantaneous bandwidth.

instbw(p,ff,tt)

 instbw

1-1079

Instantaneous Bandwidth of Timetable

Generate a signal sampled at 14 kHz for 2 seconds. The frequency of the signal varies as a chirp
modulated by a Gaussian. Save the signal as a MATLAB® timetable.

fs = 14000;
t = (0:1/fs:2)';
s = vco(chirp(t+.1,0,t(end),3).*exp(-2*(t-1).^2),[0.1 0.4]*fs,fs);

sx = timetable(s,'SampleRate',fs);

Compute the spectrogram of the signal. Specify a leakage of 0.2, a time resolution of 50 milliseconds,
and 99% of overlap between adjoining segments. Display the spectrogram.

opts = {'spectrogram','Leakage',0.2,'TimeResolution',0.05,'OverlapPercent',99};

[p,ff,tt] = pspectrum(sx,opts{:});

pspectrum(sx,opts{:})

1 Functions

1-1080

Estimate and display the instantaneous bandwidth of the signal.

instbw(p,ff,tt)

 instbw

1-1081

Instantaneous Frequency and Bandwidth as Conditional Spectral Moments

Generate a signal that consists of a chirp whose frequency varies sinusoidally between 300 Hz and
1200 Hz. The signal is sampled at 3 kHz for 2 seconds.

fs = 3e3;
t = 0:1/fs:2;
y = chirp(t,100,1,200,"quadratic");
y = vco(cos(2*pi*t),[0.1 0.4]*fs,fs);

Use instfreq to compute the instantaneous frequency of the signal and the corresponding sample
times. Verify that the output corresponds to the centralized first-order conditional spectral moment of
the time-frequency distribution of the signal as computed by tfsmoment (Predictive Maintenance
Toolbox).

[z,tz] = instfreq(y,fs);
[a,ta] = tfsmoment(y,fs,1,Centralize=false);

plot(tz,z,ta,a,'.')
legend("instfreq","tfsmoment")

1 Functions

1-1082

Use instbw to compute the instantaneous bandwidth of the signal and the corresponding sample
times. Specify a scale factor of 1. Verify that the output corresponds to the square root of the
noncentralized second-order conditional spectral moment of the time-distribution of the signal. In
other words, instbw generates a standard deviation and tfsmoment generates a variance.

[w,tw] = instbw(y,fs,ScaleFactor=1);
[m,tm] = tfsmoment(y,fs,2);

plot(tw,w,tm,sqrt(m),'.')
legend("instfreq","tfsmoment")

 instbw

1-1083

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then instbw treats it as a single channel.
If x is a matrix, then instbw computes the instantaneous bandwidth independently for each column
and returns the result in the corresponding column of ibw.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid.
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.
Data Types: single | double

t — Sample times
real vector | duration scalar | duration array | datetime array

Sample times, specified as a real vector, a duration scalar, a duration array, or a datetime array.

1 Functions

1-1084

• duration scalar — The time interval between consecutive samples of x.
• Real vector, duration array, or datetime array — The time instant corresponding to each

element of x.

Example: seconds(1) specifies a 1-second lapse between consecutive measurements of a signal.
Example: seconds(0:8) specifies that a signal is sampled at 1 Hz for 8 seconds.
Data Types: single | double | duration | datetime

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite row times.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1)) specifies a random process sampled at 1 Hz
for 4 seconds.
Example: timetable(seconds(0:4)',randn(5,3),randn(5,4)) contains a three-channel
random process and a four-channel random process, both sampled at 1 Hz for 4 seconds.
Data Types: single | double

tfd — Time-frequency distribution
matrix

Time-frequency distribution, specified as a matrix sampled at the frequencies stored in fd and the
time values stored in td. This input argument is supported only when 'Method' is set to
'tfmoment'.
Example: [p,f,t] = pspectrum(sin(2*pi*(0:511)/4),4,'spectrogram') specifies the
time-frequency distribution of a 1 Hz sinusoid sampled at 4 Hz for 128 seconds, and also the
frequencies and times at which it is computed.
Data Types: single | double

fd, td — Frequency and time values for time-frequency distribution
vectors

Frequency and time values for time-frequency distribution, specified as vectors. These input
arguments are supported only when 'Method' is set to 'tfmoment'.
Example: [p,f,t] = pspectrum(sin(2*pi*(0:511)/4),4,'spectrogram') specifies the
time-frequency distribution of a 1 Hz sinusoid sampled at 4 Hz for 128 seconds, and also the
frequencies and times at which it is computed.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FrequencyLimits',[25 50] computes the instantaneous bandwidth of the input in the
range from 25 Hz to 50 Hz.

 instbw

1-1085

FrequencyLimits — Frequency range
[0 fs/2] (default for real-valued signals) | [-fs/2 fs/2] (default for complex-valued signals) |
two-element vector in Hz

Frequency range, specified as a two-element vector in Hz. If not specified, 'FrequencyLimits'
defaults to [0 fs/2] for real-valued signals and to [-fs/2 fs/2] for complex-valued signals.
Data Types: single | double

ScaleFactor — Scaling factor for spectral moment
sqrt(4*pi) (default) | real scalar

Scaling factor for spectral moment, specified as a real scalar.
Data Types: single | double

Output Arguments
ibw — Instantaneous bandwidth
vector | matrix | timetable

Instantaneous bandwidth, returned as a vector, a matrix, or a timetable with the same dimensions as
the input.

t — Times of bandwidth estimates
real vector | duration array | datetime array

Times of bandwidth estimates, returned as a real vector, a duration array, or a datetime array.

More About
Instantaneous Bandwidth

The instantaneous bandwidth of a nonstationary signal is a time-varying parameter that relates to the
spread of the instantaneous frequency about its average at a given time instant [1], [2].

instbw estimates the instantaneous bandwidth as the square-root of the second conditional spectral
moment of the time-frequency distribution of the input signal. The function:

1 Computes the spectrogram power spectrum P(t,f) of the input using the pspectrum function and
uses the spectrum as a time-frequency distribution.

2 Estimates the instantaneous bandwidth using

σf2 t =
∫0 ∞ f − f inst t 2 P t, f df

∫0 ∞P t, f df
,

where f inst t is the instantaneous frequency returned by instfreq and estimated by

f inst(t) =
∫0 ∞ f P(t, f) df

∫0 ∞P(t, f) df
.

1 Functions

1-1086

References
[1] Boashash, Boualem. “Estimating and Interpreting the Instantaneous Frequency of a Signal. I.

Fundamentals.” Proceedings of the IEEE 80, no. 4 (April 1992): 520–538. https://doi.org/
10.1109/5.135376.

[2] Boashash, Boualem. "Estimating and Interpreting The Instantaneous Frequency of a Signal. II.
Algorithms and Applications." Proceedings of the IEEE 80, no. 4 (May 1992): 540–568. https://
doi.org/10.1109/5.135378.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
instfreq | pspectrum | tfmoment | tfsmoment | tftmoment

Introduced in R2021a

 instbw

1-1087

instfreq
Estimate instantaneous frequency

Syntax
ifq = instfreq(x,fs)
ifq = instfreq(x,t)
ifq = instfreq(xt)

ifq = instfreq(tfd,fd,td)

ifq = instfreq(___ ,Name,Value)

[ifq,t] = instfreq(___)

instfreq(___)

Description
ifq = instfreq(x,fs) estimates the instantaneous frequency of a signal, x, sampled at a rate fs.
If x is a matrix, then the function estimates the instantaneous frequency independently for each
column and returns the result in the corresponding column of ifq.

ifq = instfreq(x,t) estimates the instantaneous frequency of x sampled at the time values
stored in t.

ifq = instfreq(xt) estimates the instantaneous frequency of a signal stored in the MATLAB
timetable xt. The function treats all variables in the timetable and all columns inside each variable
independently.

ifq = instfreq(tfd,fd,td) estimates the instantaneous frequency of the signal whose time-
frequency distribution, tfd, is sampled at the frequency values stored in fd and the time values
stored in td.

ifq = instfreq(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can specify the algorithm used to estimate the instantaneous
frequency or the frequency limits used in the computation.

[ifq,t] = instfreq(___) also returns t, a vector of sample times corresponding to ifq.

instfreq(___) with no output arguments plots the estimated instantaneous frequency.

Examples

Instantaneous Frequency of Nonstationary Signal

Generate a signal sampled at 5 kHz for 4 seconds. The signal consists of a set of pulses of decreasing
duration separated by regions of oscillating amplitude and fluctuating frequency with an increasing
trend. Plot the signal.

1 Functions

1-1088

fs = 5000;
t = 0:1/fs:4-1/fs;

s = besselj(0,1000*(sin(2*pi*t.^2/8).^4));

% To hear, type sound(s,fs)

plot(t,s)

Estimate the time-dependent frequency of the signal as the first moment of the power spectrogram.
Plot the power spectrogram and overlay the instantaneous frequency.

instfreq(s,fs)

 instfreq

1-1089

Instantaneous Frequency of Complex-Valued Signal

Generate a complex-valued signal that consists of a chirp with sinusoidally varying frequency content.
The signal is sampled at 3 kHz for 1 second and is embedded in white Gaussian noise.

fs = 3000;
t = 0:1/fs:1-1/fs;
x = exp(2j*pi*100*cos(2*pi*2*t))+randn(size(t))/100;

Estimate the time-dependent frequency of the signal as the first moment of the power spectrogram.
This is the only method that instfreq supports for complex-valued signals. Plot the power
spectrogram and overlay the instantaneous frequency.

instfreq(x,t)

1 Functions

1-1090

Instantaneous Frequency of Multichannel Signal

Create a two-channel signal, sampled at 1 kHz for 2 seconds, consisting of two voltage-controlled
oscillators.

• In one channel, the instantaneous frequency varies with time as a sawtooth wave whose maximum
is at 75% of the period.

• In the other channel, the instantaneous frequency varies with time as a square wave with a duty
cycle of 30%.

Plot the spectrograms of the two channels. Specify a time resolution of 0.1 second for the sawtooth
channel and a frequency resolution of 10 Hz for the square channel.

fs = 1000;
t = (0:1/fs:2)';
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);
y = vco(square(2*pi*t,30),[0.1 0.3]*fs,fs);

subplot(1,2,1)
pspectrum(x,fs,'spectrogram','TimeResolution',0.1)
subplot(1,2,2)
pspectrum(y,fs,'spectrogram','FrequencyResolution',10)

 instfreq

1-1091

Store the signal in a timetable. Compute and display the instantaneous frequency.

xt = timetable(seconds(t),x,y);

clf
instfreq(xt)

1 Functions

1-1092

Repeat the computation using the analytic signal.

instfreq(xt,'Method','hilbert')

 instfreq

1-1093

Instantaneous Frequency of Chirp

Generate a quadratic chirp modulated by a Gaussian. Specify a sample rate of 2 kHz and a signal
duration of 4 seconds.

fs = 2000;
t = 0:1/fs:4-1/fs;

q = chirp(t-1,0,1/2,20,'quadratic',100,'convex').*exp(-1.7*(t-2).^2);
plot(t,q)

1 Functions

1-1094

Use the pspectrum function with default settings to estimate the power spectrum of the signal. Use
the estimate to compute the instantaneous frequency.

[p,f,t] = pspectrum(q,fs,'spectrogram');

instfreq(p,f,t)

 instfreq

1-1095

Repeat the calculation using the synchrosqueezed Fourier transform. Use a 500-sample Hann window
to divide the signal into segments and window them.

[s,sf,st] = fsst(q,fs,hann(500));

instfreq(abs(s).^2,sf,st)

1 Functions

1-1096

Compare the instantaneous frequencies found using the two different methods.

[psf,pst] = instfreq(p,f,t);
[fsf,fst] = instfreq(abs(s).^2,sf,st);

plot(fst,fsf,pst,psf)

 instfreq

1-1097

Instantaneous Frequency of Sinusoid

Generate a sinusoidal signal sampled at 1 kHz for 0.3 second and embedded in white Gaussian noise
of variance 1/16. Specify a sinusoid frequency of 200 Hz. Estimate and display the instantaneous
frequency of the signal.

fs = 1000;
t = (0:1/fs:0.3-1/fs)';

x = sin(2*pi*200*t) + randn(size(t))/4;

instfreq(x,t)

1 Functions

1-1098

Estimate the instantaneous frequency of the signal again, but now use a time-frequency distribution
with a coarse frequency resolution of 25 Hz as input.

[p,fd,td] = pspectrum(x,t,'spectrogram','FrequencyResolution',25);

instfreq(p,fd,td)

 instfreq

1-1099

Instantaneous Frequency and Bandwidth as Conditional Spectral Moments

Generate a signal that consists of a chirp whose frequency varies sinusoidally between 300 Hz and
1200 Hz. The signal is sampled at 3 kHz for 2 seconds.

fs = 3e3;
t = 0:1/fs:2;
y = chirp(t,100,1,200,"quadratic");
y = vco(cos(2*pi*t),[0.1 0.4]*fs,fs);

Use instfreq to compute the instantaneous frequency of the signal and the corresponding sample
times. Verify that the output corresponds to the centralized first-order conditional spectral moment of
the time-frequency distribution of the signal as computed by tfsmoment (Predictive Maintenance
Toolbox).

[z,tz] = instfreq(y,fs);
[a,ta] = tfsmoment(y,fs,1,Centralize=false);

plot(tz,z,ta,a,'.')
legend("instfreq","tfsmoment")

1 Functions

1-1100

Use instbw to compute the instantaneous bandwidth of the signal and the corresponding sample
times. Specify a scale factor of 1. Verify that the output corresponds to the square root of the
noncentralized second-order conditional spectral moment of the time-distribution of the signal. In
other words, instbw generates a standard deviation and tfsmoment generates a variance.

[w,tw] = instbw(y,fs,ScaleFactor=1);
[m,tm] = tfsmoment(y,fs,2);

plot(tw,w,tm,sqrt(m),'.')
legend("instfreq","tfsmoment")

 instfreq

1-1101

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then instfreq treats it as a single
channel. If x is a matrix, then instfreq computes the instantaneous frequency independently for
each column and returns the result in the corresponding column of ifq.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.
Data Types: single | double

t — Sample times
real vector | duration scalar | duration array | datetime array

Sample times, specified as a real vector, a duration scalar, a duration array, or a datetime array.

1 Functions

1-1102

• duration scalar — The time interval between consecutive samples of x.
• Real vector, duration array, or datetime array — The time instant corresponding to each

element of x.

Example: seconds(1) specifies a 1-second lapse between consecutive measurements of a signal.
Example: seconds(0:8) specifies that a signal is sampled at 1 Hz for 8 seconds.
Data Types: single | double | duration | datetime

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite row times.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1)) specifies a random process sampled at 1 Hz
for 4 seconds.
Example: timetable(seconds(0:4)',randn(5,3),randn(5,4)) contains a three-channel
random process and a four-channel random process, both sampled at 1 Hz for 4 seconds.
Data Types: single | double

tfd — Time-frequency distribution
matrix

Time-frequency distribution, specified as a matrix sampled at the frequencies stored in fd and the
time values stored in td. This input argument is supported only when 'Method' is set to
'tfmoment'.
Example: [p,f,t] = pspectrum(sin(2*pi*(0:511)/4),4,'spectrogram') specifies the
time-frequency distribution of a 1 Hz sinusoid sampled at 4 Hz for 128 seconds, and also the
frequencies and times at which it is computed.
Data Types: single | double

fd, td — Frequency and time values for time-frequency distribution
vectors

Frequency and time values for time-frequency distribution, specified as vectors. These input
arguments are supported only when 'Method' is set to 'tfmoment'.
Example: [p,f,t] = pspectrum(sin(2*pi*(0:511)/4),4,'spectrogram') specifies the
time-frequency distribution of a 1 Hz sinusoid sampled at 4 Hz for 128 seconds, and also the
frequencies and times at which it is computed.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 instfreq

1-1103

Example: 'Method','tfmoment','FrequencyLimits',[25 50] computes the instantaneous
frequency of the input in the range from 25 Hz to 50 Hz by finding the first conditional spectral
moment of the time-frequency distribution.

FrequencyLimits — Frequency range
[0 fs/2] (default for real-valued signals) | [-fs/2 fs/2] (default for complex-valued signals) |
two-element vector in Hz

Frequency range, specified as the comma-separated pair consisting of 'FrequencyLimits' and a
two-element vector in Hz. If not specified, 'FrequencyLimits' defaults to [0 fs/2] for real-
valued signals and to [-fs/2 fs/2] for complex-valued signals. This argument is supported only
when 'Method' is set to 'tfmoment'.
Data Types: single | double

Method — Computation method
'tfmoment' (default) | 'hilbert'

Computation method, specified as the comma-separated pair consisting of 'Method' and either
'tfmoment' or 'hilbert'.

• 'tfmoment' — Compute the instantaneous frequency as the first conditional spectral moment of
the time-frequency distribution of x. If x is nonuniformly sampled, then instfreq interpolates the
signal to a uniform grid to compute instantaneous frequencies.

• 'hilbert' — Compute the instantaneous frequency as the derivative of the phase of the analytic
signal of x found using the Hilbert transform. This method accepts only uniformly sampled, real-
valued signals and does not support time-frequency distribution input.

Output Arguments
ifq — Instantaneous frequency
vector | matrix | timetable

Instantaneous frequency, returned as a vector, a matrix, or a timetable with the same dimensions as
the input.

t — Times of frequency estimates
real vector | duration array | datetime array

Times of frequency estimates, returned as a real vector, a duration array, or a datetime array.

More About
Instantaneous Frequency

The instantaneous frequency of a nonstationary signal is a time-varying parameter that relates to the
average of the frequencies present in the signal as it evolves [1], [2].

• If 'Method' is set to 'tfmoment', then instfreq estimates the instantaneous frequency as the
first conditional spectral moment of the time-frequency distribution of the input signal. The
function:

1 Computes the spectrogram power spectrum P(t,f) of the input using the pspectrum function
and uses the spectrum as a time-frequency distribution.

1 Functions

1-1104

2 Estimates the instantaneous frequency using

f inst(t) =
∫0 ∞ f P(t, f) df

∫0 ∞P(t, f) df
.

• If 'Method' is set to 'hilbert', then instfreq estimates the instantaneous frequency as the
derivative of the phase of the analytic signal of the input. The function:

1 Computes the analytic signal, xA, of the input using the hilbert function.
2 Estimates the instantaneous frequency using

f inst(t) = 1
2π

dϕ
dt ,

where ϕ is the phase of the analytic signal of the input.

References
[1] Boashash, Boualem. “Estimating and Interpreting the Instantaneous Frequency of a Signal. I.

Fundamentals.” Proceedings of the IEEE 80, no. 4 (April 1992): 520–538. https://doi.org/
10.1109/5.135376.

[2] Boashash, Boualem. "Estimating and Interpreting The Instantaneous Frequency of a Signal. II.
Algorithms and Applications." Proceedings of the IEEE 80, no. 4 (May 1992): 540–568. https://
doi.org/10.1109/5.135378.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name-value pairs must be compile-time constants.
• Timetables are not supported for code generation.

See Also
hilbert | instbw | pspectrum | tfmoment | tfsmoment | tftmoment

Topics
“Hilbert Transform and Instantaneous Frequency”
“Instantaneous Frequency of Complex Chirp”

Introduced in R2018a

 instfreq

1-1105

interp
Interpolation — increase sample rate by integer factor

Syntax
y = interp(x,r)
y = interp(x,r,n,cutoff)
[y,b] = interp(x,r,n,cutoff)

Description
y = interp(x,r) increases the sample rate of x, the input signal, by a factor of r.

y = interp(x,r,n,cutoff) specifies two additional values:

• n is half the number of original sample values used to interpolate the expanded signal.
• cutoff is the normalized cutoff frequency of the input signal, specified as a fraction of the

Nyquist frequency.

[y,b] = interp(x,r,n,cutoff) also returns a vector, b, with the filter coefficients used for the
interpolation.

Examples

Interpolate Signal

Create a sinusoidal signal sampled at 1 kHz. Interpolate it by a factor of four.

t = 0:1/1e3:1;
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = interp(x,4);

Plot the original and interpolated signals.

subplot(2,1,1)
stem(0:30,x(1:31),'filled','MarkerSize',3)
grid on
xlabel('Sample Number')
ylabel('Original')

subplot(2,1,2)
stem(0:120,y(1:121),'filled','MarkerSize',3)
grid on
xlabel('Sample Number')
ylabel('Interpolated')

1 Functions

1-1106

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Data Types: double | single

r — Interpolation factor
positive integer

Interpolation factor, specified as a positive integer.
Data Types: double | single

n — Half the number of input samples used for interpolation
4 (default) | positive integer

Half the number of input samples used for interpolation, specified as a positive integer. For best
results, use n no larger than 10. The lowpass interpolation filter has length 2 × n × r + 1.
Data Types: double | single

cutoff — Normalized cutoff frequency
0.5 (default) | positive scalar

 interp

1-1107

Normalized cutoff frequency of the input signal, specified as a positive real scalar not greater than 1
that represents a fraction of the Nyquist frequency. A value of 1 means that the signal occupies the
full Nyquist interval.
Data Types: double | single

Output Arguments
y — Interpolated signal
vector

Interpolated signal, returned as a vector. y is r times as long as the original input, x.
Data Types: double | single

b — Lowpass interpolation filter coefficients
column vector

Lowpass interpolation filter coefficients, returned as a column vector.
Data Types: double | single

Algorithms
Interpolation increases the original sample rate of a sequence to a higher rate. It is the opposite of
decimation. interp inserts zeros into the original signal and then applies a lowpass interpolating
filter to the expanded sequence. The function uses the lowpass interpolation algorithm 8.1 described
in [1]:

1 Expand the input vector to the correct length by inserting 0s between the original data values.
2 Design a special symmetric FIR filter that allows the original data to pass through unchanged

and interpolates to minimize the mean-square error between the interpolated points and their
ideal values. The filter used by interp is the same as the filter returned by intfilt.

3 Apply the filter to the expanded input vector to produce the output.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979.

[2] Oetken, G., Thomas W. Parks, and H. W. Schüssler. “New results in the design of digital
interpolators.” IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. ASSP-23,
No. 3, June 1975, pp. 301–309.

See Also
decimate | downsample | interp1 | intfilt | resample | spline | upfirdn | upsample

Introduced before R2006a

1 Functions

1-1108

intfilt
Interpolation FIR filter design

Syntax
b = intfilt(l,p,alpha)
b = intfilt(l,n,'Lagrange')

Description
b = intfilt(l,p,alpha) designs a linear phase FIR filter that performs ideal bandlimited
interpolation using the nearest 2*p nonzero samples, when used on a sequence interleaved with l-1
consecutive zeros every l samples, assuming an original bandlimitedness of alpha times the Nyquist
frequency. The returned filter b is identical to that used by interp.

b = intfilt(l,n,'Lagrange') designs an FIR filter that performs nth-order Lagrange
polynomial interpolation on a sequence interleaved with l-1 consecutive zeros every l samples.

Examples

Digital Interpolation Filter

Design a digital interpolation filter to upsample a signal by seven, using the bandlimited method.
Specify a "bandlimitedness" factor of 0.5 and use 2 × 2 samples in the interpolation.

upfac = 7;
alpha = 0.5;
h1 = intfilt(upfac,2,alpha);

The filter works best when the original signal is bandlimited to alpha times the Nyquist frequency.
Create a bandlimited noise signal by generating 200 Gaussian random numbers and filtering the
sequence with a 40th-order FIR lowpass filter. Reset the random number generator for reproducible
results.

lowp = fir1(40,alpha);

rng('default')
x = filter(lowp,1,randn(200,1));

Increase the sample rate of the signal by inserting zeros between each pair of samples of x.

xr = upsample(x,upfac);

Use the filter function to produce an interpolated signal.

y = filter(h1,1,xr);

Compensate for the delay introduced by the filter. Plot the original and interpolated signals.

delay = mean(grpdelay(h1));

 intfilt

1-1109

y(1:delay) = [];

stem(1:upfac:upfac*length(x),x)
hold on
plot(y)

xlim([400 700])

intfilt also performs Lagrange polynomial interpolation.

• First-order polynomial interpolation is just linear interpolation, which is accomplished with a
triangular filter.

• Zeroth-order interpolation is accomplished with a moving average filter and resembles the output
of a sample-and-hold display.

Interpolate the original signal and overlay the result.

h2 = intfilt(upfac,1,'Lagrange');

y2 = filter(h2,1,xr);
y2(1:floor(mean(grpdelay(h2)))) = [];

plot(y2)
hold off

1 Functions

1-1110

Input Arguments
l — Number of samples
positive integer scalar

Number of samples, specified as a positive integer scalar. intfilt designs a linear phase FIR filter
using a sequence interspersed with l-1 consecutive zeros every l samples.

p — Number of nonzero samples
positive integer scalar

Number of nonzero samples, specified as a positive integer scalar. intfilt designs a linear phase
FIR filter that performs bandlimited interpolation using the nearest 2*p nonzero samples.

alpha — Inverse measure of transition bandwidth
scalar

Inverse measure of transition bandwidth, specified as a scalar. alpha is inversely proportional to the
transition bandwidth of the filter and it also affects the bandwidth of the don't-care regions in the
stopband. Specifying alpha allows you to specify how much of the Nyquist interval your input signal
occupies. This is beneficial for signals to be interpolated because it allows you to increase the
transition bandwidth without affecting the interpolation and results in better stopband attenuation
for a given l and p. If you set alpha to 1, your signal is assumed to occupy the entire Nyquist
interval. Setting alpha to less than one allows for don't-care regions in the stopband. For example, if
your input occupies half the Nyquist interval, you could set alpha to 0.5.

 intfilt

1-1111

n — Order of Lagrange polynomial
positive integer scalar

Order of Lagrange polynomial specified as a positive integer scalar. The FIR filter performs nth-order
Lagrange polynomial interpolation on a sequence interleaved with l-1 consecutive zeros every l
samples. If both n and l are even, the filter designed is not linear phase.

'Lagrange' — Polynomial interpolation method
'Lagrange'

Polynomial interpolation method, specified as 'Lagrange'.

Output Arguments
b — Filter coefficients
vector

Filter coefficients, returned as a vector. Elements of b are the coefficients of an FIR filter. If alpha is
specified, it assumes an original bandlimitedness of alpha times the Nyquist frequency. b is length
2*l*p-1.

For the nth-order Lagrange polynomial interpolation, b has length (n+1)*l for n even, and length (n
+1)*l-1 for n odd.

Algorithms
The bandlimited method uses firls to design an interpolation FIR filter. The polynomial method
uses Lagrange's polynomial interpolation formula on equally spaced samples to construct the
appropriate filter. Both types of filters are basically lowpass and have a gain of l in the passband.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
decimate | downsample | interp | resample | upsample

Introduced before R2006a

1 Functions

1-1112

invfreqs
Identify continuous-time filter parameters from frequency response data

Syntax
[b,a] = invfreqs(h,w,n,m)
[b,a] = invfreqs(h,w,n,m,wt)
[b,a] = invfreqs(___ ,iter)
[b,a] = invfreqs(___ ,tol)
[b,a] = invfreqs(___ ,'trace')
[b,a] = invfreqs(h,w,'complex',n,m, ___)

Description
[b,a] = invfreqs(h,w,n,m) returns the real numerator and denominator coefficient vectors b
and a of the transfer function h.

[b,a] = invfreqs(h,w,n,m,wt) weights the fit-errors versus frequency using wt.

[b,a] = invfreqs(___ ,iter) provides an algorithm that guarantees stability of the resulting
linear system by searching for the best fit using a numerical, iterative scheme. This syntax can
include any combination of input arguments from the previous syntaxes.

[b,a] = invfreqs(___ ,tol) uses tol to decide convergence of the iterative algorithm.

[b,a] = invfreqs(___ ,'trace') displays a textual progress report of the iteration.

[b,a] = invfreqs(h,w,'complex',n,m, ___) creates a complex filter. In this case no
symmetry is enforced, and the frequency is specified in radians between –π and π.

Examples

Transfer Function to Frequency Response Conversion

Convert a simple transfer function to frequency-response data and then back to the original filter
coefficients.

a = [1 2 3 2 1 4];
b = [1 2 3 2 3];

[h,w] = freqs(b,a,64);
[bb,aa] = invfreqs(h,w,4,5)

bb = 1×5

 1.0000 2.0000 3.0000 2.0000 3.0000

aa = 1×6

 invfreqs

1-1113

 1.0000 2.0000 3.0000 2.0000 1.0000 4.0000

bb and aa are equivalent to b and a, respectively. However, the system is unstable because aa has
poles with positive real part. View the poles of bb and aa.

zplane(bb,aa)

Use the iterative algorithm of invfreqs to find a stable approximation to the system.

[bbb,aaa] = invfreqs(h,w,4,5,[],30)

bbb = 1×5

 0.6816 2.1015 2.6694 0.9113 -0.1218

aaa = 1×6

 1.0000 3.4676 7.4060 6.2102 2.5413 0.0001

Verify that the system is stable by plotting the new poles.

zplane(bbb,aaa)

1 Functions

1-1114

Continuous-Time Transfer Function

Generate two vectors, mag and phase, that simulate magnitude and phase data gathered in a
laboratory. Also generate a vector, w, of frequencies.

rng('default')

fs = 1000;
t = 0:1/fs:2;
mag = periodogram(sin(2*pi*100*t)+randn(size(t))/10,[],[],fs);
phase = randn(size(mag))/10;
w = linspace(0,fs/2,length(mag))';

Use invfreqs to convert the data into a continuous-time transfer function. Plot the result.

[b,a] = invfreqs(mag.*exp(1j*phase),w,2,2,[],4);

freqs(b,a)

 invfreqs

1-1115

Input Arguments
h — Frequency response
vector

Frequency response, specified as a vector.

w — Angular frequencies
vector

Angular frequencies at which h is computed, specified as a vector.

n, m — Desired order
positive integer scalar

Desired order of the numerator and denominator polynomials, specified as positive integer scalars.
Data Types: single | double

wt — Weighting factors
vector

Weighting factors, specified as a vector. wt is a vector of weighting factors that is the same length as
w.
Data Types: single | double

1 Functions

1-1116

iter — Number of iterations in the search algorithm
positive real scalar

Number of iterations in the search algorithm, specified as a positive real scalar. The iter parameter
tells invfreqs to end the iteration when the algorithm has converged to a solution, or after iter
iterations, whichever occurs first.

tol — Tolerance
0.01 (default) | scalar

Tolerance, specified as a scalar. invfreqs defines convergence as occurring when the norm of the
(modified) gradient vector is less than tol.

To obtain a weight vector of all ones, use

invfreqs(h,w,n,m,[],iter,tol)

Output Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, returned as vectors. Express the transfer function in terms of b and a
as

H(s) = B(s)
A(s) = b(1)sn + b(2)sn− 1 +⋯+ b(n + 1)

a(1)sm + a(2)sm− 1 +⋯+ a(m + 1)

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

Tips
When building higher order models using high frequencies, it is important to scale the frequencies,
dividing by a factor such as half the highest frequency present in w, so as to obtain well-conditioned
values of a and b. This corresponds to a rescaling of time.

Algorithms
By default, invfreqs uses an equation error method to identify the best model from the data. This
finds b and a in

min
b, a
∑

k = 1

n
wt(k) h(k)A(w(k)) − B(w(k)) 2

by creating a system of linear equations and solving them with the MATLAB \ operator. Here A(w(k))
and B(w(k)) are the Fourier transforms of the polynomials a and b, respectively, at the frequency
w(k), and n is the number of frequency points (the length of h and w). This algorithm is based on Levi
[1]. Several variants have been suggested in the literature, where the weighting function wt gives
less attention to high frequencies.

 invfreqs

1-1117

The superior (“output-error”) algorithm uses the damped Gauss-Newton method for iterative search
[2], with the output of the first algorithm as the initial estimate. This solves the direct problem of
minimizing the weighted sum of the squared error between the actual and the desired frequency
response points.

min
b, a
∑

k = 1

n
wt(k) h(k) − B(w(k))

A(w(k))
2

References
[1] Levi, E. C. “Complex-Curve Fitting.” IRE Trans. on Automatic Control. Vol. AC-4, 1959, pp. 37–44.

[2] Dennis, J. E., Jr., and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.

See Also
freqs | freqz | invfreqz | prony

Introduced before R2006a

1 Functions

1-1118

invfreqz
Identify discrete-time filter parameters from frequency response data

Syntax
[b,a] = invfreqz(h,w,n,m)
[b,a] = invfreqz(h,w,n,m,wt)
[b,a] = invfreqz(___ ,iter)
[b,a] = invfreqz(___ ,tol)
[b,a] = invfreqz(___ ,'trace')
[b,a] = invfreqz(h,w,'complex',n,m, ___)

Description
[b,a] = invfreqz(h,w,n,m) returns the real numerator and denominator coefficient vectors b
and a of the transfer function h.

[b,a] = invfreqz(h,w,n,m,wt) weights the fit-errors versus frequency using wt.

[b,a] = invfreqz(___ ,iter) provides an algorithm that guarantees stability of the resulting
linear system by searching for the best fit using a numerical, iterative scheme. This syntax can
include any combination of input arguments from the previous syntaxes.

[b,a] = invfreqz(___ ,tol) uses tol to decide convergence of the iterative algorithm.

[b,a] = invfreqz(___ ,'trace') displays a textual progress report of the iteration.

[b,a] = invfreqz(h,w,'complex',n,m, ___) creates a complex filter. In this case no
symmetry is enforced, and the frequency is specified in radians between –π and π.

Examples

Stable Approximate Transfer Function

Convert a simple transfer function to frequency response data and then back to the original filter
coefficients. Sketch the zeros and poles of the function.

a = [1 2 3 2 1 4];
b = [1 2 3 2 3];

[h,w] = freqz(b,a,64);
[bb,aa] = invfreqz(h,w,4,5)

bb = 1×5

 1.0000 2.0000 3.0000 2.0000 3.0000

aa = 1×6

 invfreqz

1-1119

 1.0000 2.0000 3.0000 2.0000 1.0000 4.0000

zplane(bb,aa)

bb and aa are equivalent to b and a, respectively. However, the system is unstable because it has
poles outside the unit circle. Use invfreqz's iterative algorithm to find a stable approximation to the
system. Verify that the poles are within the unit circle.

[bbb,aaa] = invfreqz(h,w,4,5,[],30)

bbb = 1×5

 0.2427 0.2788 0.0069 0.0971 0.1980

aaa = 1×6

 1.0000 -0.8944 0.6954 0.9997 -0.8933 0.6949

zplane(bbb,aaa)

1 Functions

1-1120

Input Arguments
h — Frequency response
vector

Frequency response, specified as a vector.

w — Angular frequencies
vector

Angular frequencies at which h is computed, specified as a vector.

n, m — Desired order
positive integer scalar

Desired order of the numerator and denominator polynomials, specified as positive integer scalars.

wt — Weighting factors
vector

Weighting factors, specified as a vector. wt is a vector of weighting factors that is the same length as
w.

iter — Number of iterations in the search algorithm
positive real scalar

 invfreqz

1-1121

Number of iterations in the search algorithm, specified as a positive real scalar. The iter parameter
tells invfreqz to end the iteration when the solution has converged, or after iter iterations,
whichever comes first.

tol — Tolerance
0.01 (default) | scalar

Tolerance, specified as a scalar. invfreqz defines convergence as occurring when the norm of the
(modified) gradient vector is less than tol.

To obtain a weight vector of all ones, use

invfreqz(h,w,n,m,[],iter,tol)

Output Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, returned as vectors. Express the transfer function in terms of b and a
as

H(s) = B(s)
A(s) = b(1)sn + b(2)sn− 1 +⋯+ b(n + 1)

a(1)sm + a(2)sm− 1 +⋯+ a(m + 1)

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

Algorithms
By default, invfreqz uses an equation error method to identify the best model from the data. This
finds b and a in

min
b, a
∑

k = 1

n
wt(k) h(k)A(w(k)) − B(w(k)) 2

by creating a system of linear equations and solving them with the MATLAB \ operator. Here A(ω(k))
and B(ω(k)) are the Fourier transforms of the polynomials a and b, respectively, at the frequency
ω(k), and n is the number of frequency points (the length of h and w). This algorithm is a based on
Levi [1].

The superior (“output-error”) algorithm uses the damped Gauss-Newton method for iterative search
[2], with the output of the first algorithm as the initial estimate. This solves the direct problem of
minimizing the weighted sum of the squared error between the actual and the desired frequency
response points.

min
b, a
∑

k = 1

n
wt(k) h(k) − B(w(k))

A(w(k))
2

1 Functions

1-1122

References
[1] Levi, E. C. “Complex-Curve Fitting.” IRE Transactions on Automatic Control. Vol. AC-4, 1959,

pp. 37–44.

[2] Dennis, J. E., Jr., and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.

See Also
freqs | freqz | prony

Introduced before R2006a

 invfreqz

1-1123

isallpass
Determine whether filter is allpass

Syntax
flag = isallpass(b,a)
flag = isallpass(sos)
flag = isallpass(d)
flag = isallpass(...,tol)

Description
flag = isallpass(b,a) returns a logical output, flag, equal to true if the filter specified by
numerator coefficients, b, and denominator coefficients, a, is an allpass filter. If the filter is not an
allpass filter, flag is equal to false.

flag = isallpass(sos) returns true if the filter specified by second order sections matrix, sos,
is an allpass filter. sos is a K-by-6 matrix, where the number of sections, K, must be greater than or
equal to 2. Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith
row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = isallpass(d) returns true if the digital filter, d, is an allpass filter. Use designfilt to
generate d based on frequency-response specifications.

flag = isallpass(...,tol) uses the tolerance, tol, to determine when two numbers are close
enough to be considered equal. If not specified, tol, defaults to eps^(2/3). Specifying a tolerance
may be most helpful in fixed-point allpass filters.

Examples

Allpass Filters

Create an allpass filter and verify that the frequency response is allpass.

b = [1/3 1/4 1/5 1];
a = fliplr(b);
flag = isallpass(b,a)

flag = logical
 1

fvtool(b,a)

1 Functions

1-1124

Create a lattice allpass filter and verify that the filter is allpass.

k = [1/2 1/3 1/4 1/5];
[b,a] = latc2tf(k,'allpass');
flag_isallpass = isallpass(b,a)

flag_isallpass = logical
 1

fvtool(b,a)

 isallpass

1-1125

See Also
designfilt | digitalFilter | islinphase | ismaxphase | isminphase | isstable

Introduced in R2013a

1 Functions

1-1126

iscola
Determine whether window-overlap combination is COLA compliant

Syntax
tf = iscola(window,noverlap)
tf = iscola(window,noverlap,method)

[tf,m] = iscola(___)
[tf,m,maxDeviation] = iscola(___)

Description
tf = iscola(window,noverlap) checks that the specified window and overlap satisfy the
“Constant Overlap-Add (COLA) Constraint” on page 1-1131 to ensure that the “Inverse Short-Time
Fourier Transform” on page 1-1129 results in perfect reconstruction for nonmodified spectra.

tf = iscola(window,noverlap,method) specifies the inversion method to use.

[tf,m] = iscola(___) also returns the median of the COLA summation. You can use these
output arguments with any of the previous input syntaxes.

[tf,m,maxDeviation] = iscola(___) returns the maximum deviation from the median m.

Examples

Check COLA Compliance For Root-Hann window

Create a periodic root-Hann window of length 120. Test whether the window is COLA compliant with
a 50% overlap.

win = sqrt(hann(120,'periodic'));
noverlap = 60;

Check whether the window is COLA compliant with a 50% overlap.

tf = iscola(win,noverlap)

tf = logical
 1

COLA Compliance of Periodic Hamming Window

Create a periodic Hamming window of length 256. Set the method of Overlap-Add as 'ola'.

 iscola

1-1127

window = hamming(256,'periodic');
method = 'ola';
noverlap = 128;

Test whether the window is COLA compliant with a 50% overlap. Also calculate the median of the
COLA summation and the maximum deviation from that summation.

[tf,m,maxDeviation] = iscola(window,noverlap,method)

tf = logical
 1

m = 1.0800

maxDeviation = 2.2204e-16

Input Arguments
window — Analysis window
vector

Analysis window, specified as a vector.
Example: win = bartlett(120) is a Bartlett window of length 120.
Data Types: double | single

noverlap — Number of overlapped samples
positive scalar

Number of overlapped samples, specified as a positive integer smaller than the length of window.
Data Types: double | single

method — Method of overlap-add
'wola' (default) | 'ola'

Method of overlap-add, specified as:

• 'wola' — Weighted Overlap-Add.
• 'ola' — Overlap-Add.

Output Arguments
tf — COLA compliance
logical scalar

COLA compliance, returned as a logical scalar. If the function returns a 1 (true), then the window and
overlap length satisfy the COLA constraint.

m — Median
real scalar

Median of the COLA summation, returned as a real scalar. If the inputs are COLA compliant, then m is
equal to the COLA summation constant.

1 Functions

1-1128

maxDeviation — Maximum deviation
real scalar

Maximum deviation from the median m. If window and noverlap are COLA compliant, the
maxDeviation is close to the expected numeric precision error of the COLA summation.

Note You can conclude strong COLA-compliance if m = 1 and maxDeviation is close to the
numeric precision error.

More About
Inverse Short-Time Fourier Transform

The inverse short-time Fourier transform is computed by taking the IFFT of each DFT vector of the
STFT and overlap-adding the inverted signals. The ISTFT is calculated as follows:

x(n) = ∫
−1/2

1/2

∑
m = −∞

∞
Xm(f)e j2πfndf

= ∑
m = −∞

∞ ∫
−1/2

1/2
Xm(f)e j2πfndf

= ∑
m = −∞

∞
xm(n)

where R is the hop size between successive DFTs, Xm is the DFT of the windowed data centered
about time mR and xm(n) = x(n) g(n−mR). The inverse STFT is a perfect reconstruction of the

original signal as long as ∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ where the analysis window g(n) was used

to window the original signal and c is a constant. The following figure depicts the steps followed in
reconstructing the original signal.

 iscola

1-1129

1 Functions

1-1130

Constant Overlap-Add (COLA) Constraint

To ensure successful reconstruction of nonmodified spectra, the analysis window must satisfy the
COLA constraint. In general, if the analysis window satisfies the condition

∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ, the window is considered to be COLA-compliant. Additionally, COLA

compliance can be described as either weak or strong.

• Weak COLA compliance implies that the Fourier transform of the analysis window has zeros at
frame-rate harmonics such that

G(fk) = 0, k = 1, 2, …, R− 1, fk ≜
k
R .

Alias cancellation is disturbed by spectral modifications. Weak COLA relies on alias cancellation in
the frequency domain. Therefore, perfect reconstruction is possible using weakly COLA-compliant
windows as long as the signal has not undergone any spectral modifications.

• For strong COLA compliance, the Fourier transform of the window must be bandlimited
consistently with downsampling by the frame rate such that

G(f) = 0, f ≥ 1
2R .

This equation shows that no aliasing is allowed by the strong COLA constraint. Additionally, for
strong COLA compliance, the value of the constant c must equal 1. In general, if the short-time
spectrum is modified in any way, a stronger COLA compliant window is preferred.

You can use the iscola function to check for weak COLA compliance. The number of summations
used to check COLA compliance is dictated by the window length and hop size. In general, it is

common to use a = 1 in ∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ for weighted overlap-add (WOLA), and a = 0

for overlap-add (OLA). By default, istft uses the WOLA method, by applying a synthesis window
before performing the overlap-add method.

In general, the synthesis window is the same as the analysis window. You can construct useful WOLA
windows by taking the square root of a strong OLA window. You can use this method for all
nonnegative OLA windows. For example, the root-Hann window is a good example of a WOLA
window.

Perfect Reconstruction

In general, computing the STFT of an input signal and inverting it does not result in perfect
reconstruction. If you want the output of ISTFT to match the original input signal as closely as
possible, the signal and the window must satisfy the following conditions:

• Input size — If you invert the output of stft using istft and want the result to be the same
length as the input signal x, the value of k = (length(x) − noverlap)

(length(window) − noverlap) must be an integer.

• COLA compliance — Use COLA-compliant windows, assuming that you have not modified the
short-time Fourier transform of the signal.

• Padding — If the length of the input signal is such that the value of k is not an integer, zero-pad
the signal before computing the short-time Fourier transform. Remove the extra zeros after
inverting the signal.

 iscola

1-1131

References
[1] Allen, J. B. "Short Term Spectral Analysis, Synthesis, and Modification by Discrete Fourier

Transform." IEEE Transactions on Acoustics, Speech and Signal Processing. Vol. 25, Number
3, June 1977, pp. 235–238.

[2] Griffin, Daniel W., and Jae S. Lim. "Signal Estimation from Modified Short-Time Fourier
Transform." IEEE Transactions on Acoustics, Speech and Signal Processing. Vol. 32, Number
2, April 1984, pp. 236–243.

[3] Sharpe, Bruce. Invertibility of Overlap-Add Processing. https://gauss256.github.io/blog/cola.html,
accessed July 2019.

[4] Smith, Julius Orion. Spectral Audio Signal Processing. https://ccrma.stanford.edu/~jos/sasp/,
online book, 2011 edition, accessed Nov 2018.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pspectrum | stft | istft | bartlett

Introduced in R2019a

1 Functions

1-1132

https://gauss256.github.io/blog/cola.html
https://ccrma.stanford.edu/~jos/sasp/

isdouble
Determine if digital filter coefficients are double precision

Syntax
flag = isdouble(d)

Description
flag = isdouble(d) returns true if the coefficients of a digital filter, d, are double precision.

Examples

Double- and Single-Precision Filter

Use designfilt to design a sixth-order highpass IIR filter. Specify a normalized passband frequency
of 0 . 6π rad/sample. Convert it to a single-precision filter. Identify the precision in each case.

fd = designfilt('highpassiir','FilterOrder',6,'PassbandFrequency',0.6);
isd = isdouble(fd)

isd = logical
 1

fs = single(fd);
iss = isdouble(fs)

iss = logical
 0

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate d. If you want a
single-precision filter, apply single to the output of designfilt.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample.

Output Arguments
flag — Type identification
logical scalar

Type identification, returned as a logical scalar.

 isdouble

1-1133

See Also
designfilt | digitalFilter | double | issingle | single

Introduced in R2014a

1 Functions

1-1134

isfir
Determine if digital filter has finite impulse response

Syntax
flag = isfir(d)

Description
flag = isfir(d) returns true if a digital filter, d, has a finite impulse response.

Examples

FIR and IIR Digital Filters

Use designfilt to design FIR and IIR versions of a highpass filter. Specify a normalized stopband
frequency of 0.3 and a normalized passband frequency of 0.6. Verify that each filter is of the correct
class. Display the frequency responses of the filters.

fir = designfilt('highpassfir','StopbandFrequency',0.3,'PassbandFrequency',0.6);
iir = designfilt('highpassiir','StopbandFrequency',0.3,'PassbandFrequency',0.6);
isfirFIR = isfir(fir)

isfirFIR = logical
 1

isiirFIR = isfir(iir)

isiirFIR = logical
 0

fvt = fvtool(fir,iir);
legend(fvt,'FIR','IIR')

 isfir

1-1135

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
flag — Filter class identification
logical scalar

Filter class identification, returned as a logical scalar.

See Also
designfilt | digitalFilter | firtype | isdouble | issingle

Introduced in R2014a

1 Functions

1-1136

islinphase
Determine whether filter has linear phase

Syntax
flag = islinphase(b,a)
flag = islinphase(sos)
flag = islinphase(d)
flag = islinphase(...,tol)

Description
flag = islinphase(b,a) returns a logical output, flag, equal to true if the filter coefficients in
b and a define a linear phase filter. flag is equal to false if the filter does not have linear phase.

flag = islinphase(sos) returns true if the filter specified by second order sections matrix, sos,
has linear phase. sos is a K-by-6 matrix, where the number of sections, K, must be greater than or
equal to 2. Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith
row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = islinphase(d) returns true if the digital filter, d, has linear phase. Use designfilt to
generate d based on frequency-response specifications.

flag = islinphase(...,tol) uses the tolerance, tol, to determine when two numbers are close
enough to be considered equal. If not specified, tol, defaults to eps^(2/3).

Examples

Linear and Nonlinear Phase

Use the window method to design a tenth-order lowpass FIR filter with normalized cutoff frequency
0.55. Verify that the filter has linear phase.

d = designfilt('lowpassfir','DesignMethod','window', ...
 'FilterOrder',10,'CutoffFrequency',0.55);
flag = islinphase(d)

flag = logical
 1

[phs,w] = phasez(d);

plot(w/pi,phs)
xlabel('Frequency \omega/\pi')
ylabel('Phase')

 islinphase

1-1137

IIR filters in general do not have linear phase. Verify the statement by constructing eighth-order
Butterworth, Chebyshev, and elliptic filters with similar specifications.

ord = 8;
Wcut = 0.35;
atten = 20;
rippl = 1;

[zb,pb,kb] = butter(ord,Wcut);
sosb = zp2sos(zb,pb,kb);

[zc,pc,kc] = cheby1(ord,rippl,Wcut);
sosc = zp2sos(zc,pc,kc);

[zd,pd,kd] = cheby2(ord,atten,Wcut);
sosd = zp2sos(zd,pd,kd);

[ze,pe,ke] = ellip(ord,rippl,atten,Wcut);
sose = zp2sos(ze,pe,ke);

Plot the phase responses of the filters. Determine whether they have linear phase.

fv = fvtool(sosb,sosc,sosd,sose,'Analysis','phase');
legend(fv,'Butterworth','Chebyshev I','Chebyshev II','Elliptic')

1 Functions

1-1138

phs = [islinphase(sosb) islinphase(sosc) ...
 islinphase(sosd) islinphase(sose)]

phs = 1x4 logical array

 0 0 0 0

See Also
designfilt | digitalFilter | isallpass | ismaxphase | isminphase | isstable

Introduced in R2013a

 islinphase

1-1139

isminphase
Determine whether filter is minimum phase

Syntax
flag = isminphase(b,a)
flag = isminphase(sos)
flag = isminphase(d)
flag = isminphase(...,tol)

Description
flag = isminphase(b,a) returns a logical output, flag, equal to true if the filter specified by
numerator coefficients, b, and denominator coefficients, a, is a minimum phase filter.

flag = isminphase(sos) returns true if the filter specified by second order sections matrix, sos,
is minimum phase. sos is a K-by-6 matrix, where the number of sections, K, must be greater than or
equal to 2. Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith
row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = isminphase(d) returns true if the digital filter, d, has minimum phase. Use designfilt
to generate d based on frequency-response specifications.

flag = isminphase(...,tol) uses the tolerance, tol, to determine when two numbers are close
enough to be considered equal. If not specified, tol, defaults to eps^(2/3).

Examples

Minimum Phase Filters

Design a sixth-order lowpass Butterworth IIR filter using second order sections. Specify a normalized
3-dB frequency of 0.15. Check if the filter has minimum phase.

[z,p,k] = butter(6,0.15);
SOS = zp2sos(z,p,k);
min_flag = isminphase(SOS)

min_flag = logical
 1

Redesign the filter using designfilt. Check that the zeros and poles of the transfer function are on
or within the unit circle.

d = designfilt('lowpassiir','DesignMethod','butter','FilterOrder',6, ...
 'HalfPowerFrequency',0.25);
d_flag = isminphase(d)

d_flag = logical
 1

1 Functions

1-1140

zplane(d)

Given a filter defined with a set of single-precision numerator and denominator coefficients, check if
it has minimum phase for different tolerance values.

b = single([1 1.00001]);
a = single([1 0.45]);
min_flag1 = isminphase(b,a)

min_flag1 = logical
 0

min_flag2 = isminphase(b,a,1e-3)

min_flag2 = logical
 1

See Also
designfilt | digitalFilter | isallpass | islinphase | ismaxphase | isstable

Introduced in R2013a

 isminphase

1-1141

ismaxphase
Determine whether filter is maximum phase

Syntax
flag = ismaxphase(b,a)
flag = ismaxphase(sos)
flag = ismaxphase(d)
flag = ismaxphase(...,tol)

Description
flag = ismaxphase(b,a) returns a logical output, flag, equal to true if the filter specified by
numerator coefficients, b, and denominator coefficients, a, is a maximum phase filter.

flag = ismaxphase(sos) returns true if the filter specified by second order sections matrix, sos,
is a maximum phase filter. sos is a K-by-6 matrix, where the number of sections, K, must be greater
than or equal to 2. Each row of sos corresponds to the coefficients of a second order (biquad) filter.
The ith row of the sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = ismaxphase(d) returns true if the digital filter, d, has maximum phase. Use designfilt
to generate d based on frequency-response specifications.

flag = ismaxphase(...,tol) uses the tolerance, tol, to determine when two numbers are close
enough to be considered equal. If not specified, tol, defaults to eps^(2/3).

Examples

Maximum- and Minimum-Phase Filters

Design maximum-phase and minimum-phase lattice filters and verify their phase type.

k = [1/6 1/1.4];
bmax = latc2tf(k,'max');
bmin = latc2tf(k,'min');
max_flag = ismaxphase(bmax)

max_flag = logical
 1

min_flag = isminphase(bmin)

min_flag = logical
 1

Given a filter defined with a set of single precision numerator and denominator coefficients, check if
it is maximum phase for different values of the tolerance.

1 Functions

1-1142

b = single([1 -0.9999]);
a = single([1 0.45]);
max_flag1 = ismaxphase(b,a)

max_flag1 = logical
 0

max_flag2 = ismaxphase(b,a,1e-3)

max_flag2 = logical
 1

See Also
designfilt | digitalFilter | isallpass | islinphase | isminphase | isstable

Introduced in R2013a

 ismaxphase

1-1143

issingle
Determine if digital filter coefficients are single precision

Syntax
flag = issingle(d)

Description
flag = issingle(d) returns true if the coefficients of a digital filter, d, are single precision.

Examples

Single- and Double-Precision Filters

Use designfilt to design a 6th-order highpass IIR filter. Specify a normalized passband frequency
of 0 . 6π rad/sample. Convert it to a single-precision filter. Identify the precision in each case.

fd = designfilt('highpassiir','FilterOrder',6,'PassbandFrequency',0.6);
isd = issingle(fd)

isd = logical
 0

fs = single(fd);
iss = issingle(fs)

iss = logical
 1

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate d based on
frequency-response specifications. If you want a single-precision filter, apply single to the output of
designfilt.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample.

Output Arguments
flag — Type identification
logical scalar

1 Functions

1-1144

Type identification, returned as a logical scalar.

See Also
designfilt | digitalFilter | double | single | isdouble

Introduced in R2014a

 issingle

1-1145

isstable
Determine whether filter is stable

Syntax
flag = isstable(b,a)
flag = isstable(sos)
flag = isstable(d)

Description
flag = isstable(b,a) returns a logical output, flag, equal to true if the filter specified by
numerator coefficients, b, and denominator coefficients, a, is a stable filter. If the poles lie on or
outside the circle, isstable returns false. If the poles are inside the circle, isstable returns
true.

flag = isstable(sos) returns true if the filter specified by second order sections matrix, sos, is
stable. sos is a K-by-6 matrix, where the number of sections, K, must be greater than or equal to 2.
Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith row of the
sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

flag = isstable(d) returns true if the digital filter, d, is stable. Use designfilt to generate d
based on frequency-response specifications.

Examples

Filter Stability

Design a sixth-order Butterworth highpass IIR filter using second order sections. Specify a
normalized 3-dB frequency of 0.7. Determine if the filter is stable.

[z,p,k] = butter(6,0.7,'high');
SOS = zp2sos(z,p,k);
flag = isstable(SOS)

flag = logical
 1

zplane(z,p)

1 Functions

1-1146

Redesign the filter using designfilt and check it for stability.

d = designfilt('highpassiir','DesignMethod','butter','FilterOrder',6, ...
 'HalfPowerFrequency',0.7);
dflg = isstable(d)

dflg = logical
 1

zplane(d)

 isstable

1-1147

Create a filter and determine its stability at double and single precision.

b = [1 -0.5];
a = [1 -0.999999999];
act_flag1 = isstable(b,a)

act_flag1 = logical
 1

act_flag2 = isstable(single(b),single(a))

act_flag2 = logical
 0

See Also
designfilt | digitalFilter | isallpass | islinphase | ismaxphase | isminphase | zplane

Introduced in R2013a

1 Functions

1-1148

is2rc
Convert inverse sine parameters to reflection coefficients

Syntax
k = is2rc(isin)

Description
k = is2rc(isin) returns a vector of reflection coefficients, k, from a vector of inverse sine
parameters, isin.

Examples

Compute Reflection Coefficients

Define a vector, isin, of inverse sine parameters and determine the corresponding reflection
coefficients.

isin = [0.2000 0.8727 0.0020 0.0052 -0.0052];
k = is2rc(isin)

k = 1×5

 0.3090 0.9801 0.0031 0.0082 -0.0082

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

See Also
ac2rc | lar2rc | poly2rc | rc2is

Introduced before R2006a

 is2rc

1-1149

istft
Inverse short-time Fourier transform

Syntax
x = istft(s)
x = istft(s,fs)
x = istft(s,ts)

x = istft(___ ,Name,Value)

[x,t] = istft(___)

Description
x = istft(s) returns the “Inverse Short-Time Fourier Transform” on page 1-1162 (ISTFT) of s.

x = istft(s,fs) returns the ISTFT of s using sample rate fs.

x = istft(s,ts) returns the ISTFT using sample time ts.

x = istft(___ ,Name,Value) specifies additional options using name-value pair arguments.
Options include the FFT window length and number of overlapped samples. These arguments can be
added to any of the previous input syntaxes.

[x,t] = istft(___) returns the signal times at which the ISTFT is evaluated.

Examples

ISTFT of Multichannel Signals

Generate a three-channel signal consisting of three different chirps sampled at 1 kHz for 1 second.

1 The first channel consists of a concave quadratic chirp with instantaneous frequency 100 Hz at t
= 0 and crosses 300 Hz at t = 1 second. It has an initial phase equal to 45 degrees.

2 The second channel consists of a convex quadratic chirp with instantaneous frequency 200 Hz at
t = 0 and crosses 600 Hz at t = 1 second.

3 The third channel consists of a logarithmic chirp with instantaneous frequency 300 Hz at t = 0
and crosses 500 Hz at t = 1 second.

Compute the STFT of the multichannel signal using a periodic Hamming window of length 256 and an
overlap length of 15 samples.

fs = 1e3;
t = 0:1/fs:1-1/fs;
x = [chirp(t,100,1,300,'quadratic',45,'concave');
 chirp(t,200,1,600,'quadratic',[],'convex');
 chirp(t,300,1,500,'logarithmic')]';

[S,F,T] = stft(x,fs,'Window',hamming(256,'periodic'),'OverlapLength',15);

1 Functions

1-1150

Plot the original and reconstructed versions of the first and second channels.

[ix,ti] = istft(S,fs,'Window',hamming(256,'periodic'),'OverlapLength',15);

plot(t,x(:,1)','LineWidth',1.5)
hold on
plot(ti,ix(:,1)','r--')
hold off
legend('Original Channel 1','Reconstructed Channel 1')

plot(t,x(:,2)','LineWidth',1.5)
hold on
plot(ti,ix(:,2)','r--')

legend('Original Channel 2','Reconstructed Channel 2')

 istft

1-1151

Phase Vocoder with Different Synthesis and Analysis Windows

The phase vocoder performs time stretching and pitch scaling by transforming the audio into the
frequency domain. This diagram shows the operations involved in the phase vocoder implementation.

1 Functions

1-1152

The phase vocoder takes the STFT of a signal with an analysis window of hop size R1 and then
performs an ISTFT with a synthesis window of hop size R2. The vocoder thus takes advantage of the
WOLA method. To time stretch a signal, the analysis window uses a larger number of overlap samples
than the synthesis. As a result, there are more samples at the output than at the input
(NS, Out > NS, In), although the frequency content remains the same. Now, you can pitch scale this
signal by playing it back at a higher sample rate, which produces a signal with the original duration
but a higher pitch.

Load an audio file containing a fragment of Handel's "Hallelujah Chorus" sampled at 8192 Hz.

load handel

Design a root-Hann window of length 512. Set analysis overlap length as 192 and synthesis overlap
length as 166.

wlen = 512;
win = sqrt(hann(wlen,'periodic'));
noverlapA = 192;
noverlapS = 166;

Implement the phase vocoder by using an analysis window of overlap 192 and a synthesis window of
overlap 166.

S = stft(y,Fs,'Window',win,'OverlapLength',noverlapA);
iy = istft(S,Fs,'Window',win,'OverlapLength',noverlapS);

%To hear, type soundsc(w,Fs), pause(10), soundsc(iw,Fs);

If the analysis and synthesis windows are the same but the overlap length is changed, there will be an
additional gain/loss that you will need to adjust. This is a common approach to implementing a phase
vocoder.

 istft

1-1153

Calculate the hop ratio and use it to adjust the gain of the reconstructed signal. Also calculate
frequency of pitch-shifted data using the hop ratio.

hopRatio = (wlen-noverlapS)/(wlen-noverlapA);
iyg = iy*hopRatio;
Fp = Fs*hopRatio;

%To hear, type soundsc(iwg,Fs), pause(15), soundsc(iwg,Fp);

Plot the original signal and the time stretched signal with fixed gain.

plot((0:length(iyg)-1)/Fs,iyg,(0:length(y)-1)/Fs,y)
xlabel('Time (s)')
xlim([0 (length(iyg)-1)/Fs])
legend('Time Stretched Signal with Fixed Gain','Original Signal','Location','best')

Compare the time-stretched signal and the pitch shifted signal on the same plot.

plot((0:length(iy)-1)/Fs,iy,(0:length(iy)-1)/Fp,iy)
xlabel('Time (s)')
xlim([0 (length(iyg)-1)/Fs])
legend('Time Stretched Signal','Pitch Shifted Signal','Location','best')

1 Functions

1-1154

To better understand the effect of pitch shifting data, consider the following sinusoid of frequency Fs
over 2 seconds.

t = 0:1/Fs:2;
x = sin(2*pi*10*t);

Calculate the short-time Fourier transform and the inverse short-time Fourier transform with overlap
lengths 192 and 166 respectively.

Sx = stft(x,Fs,'Window',win,'OverlapLength',noverlapA);
ix = istft(Sx,Fs,'Window',win,'OverlapLength',noverlapS);

Plot the original signal on one plot and the time-stretched and pitch shifted signal on another.

subplot(2,1,1)
plot((0:length(ix)-1)/Fs,ix,'LineWidth',2)
xlabel('Time (s)')
ylabel('Signal Amplitude')
xlim([0 (length(ix)-1)/Fs])
legend('Time Stretched Signal')

subplot(2,1,2)
hold on
plot((0:length(x)-1)/Fs,x)
plot((0:length(ix)-1)/Fp,ix,'--','LineWidth',2)
legend('Original Signal','Pitch Shifted Signal','Location','best')

 istft

1-1155

hold off
xlabel('Time (s)')
ylabel('Signal Amplitude')
xlim([0 (length(ix)-1)/Fs])

ISTFT of Zero-Padded Complex Signal

Generate a complex sinusoid of frequency 1 kHz and duration 2 seconds.

fs = 1e3;
ts = 0:1/fs:2-1/fs;

x = exp(2j*pi*100*cos(2*pi*2*ts));

Design a periodic Hann window of length 100 and set the number of overlap samples to 75. Check
the window and overlap length for COLA compliance.

nwin = 100;
win = hann(nwin,'periodic');
noverlap = 75;

tf = iscola(win,noverlap)

tf = logical
 1

1 Functions

1-1156

Zero-pad the signal to remove edge-effects. To avoid truncation, pad the input signal with zeros such
that

length(xZero) − noverlap
nwin − noverlap

is an integer. Set the FFT length to 128. Compute the short-time Fourier transform of the complex
signal.

nPad = 100;
xZero = [zeros(1,nPad) x zeros(1,nPad)];
fftlen = 128;
s = stft(xZero,fs,'Window',win,'OverlapLength',noverlap,'FFTLength',fftlen);

Calculate the inverse short-time Fourier transform and remove the zeros for perfect reconstruction.

[is,ti] = istft(s,fs,'Window',win,'OverlapLength',noverlap,'FFTLength',fftlen);
is(1:nPad) = [];
is(end-nPad+1:end) = [];
ti = ti(1:end-2*nPad);

Plot the real parts of the original and reconstructed signals. The imaginary part of the signal is also
reconstructed perfectly.

plot(ts,real(x))
hold on
plot(ti,real(is),'--')
xlim([0 0.5])
xlabel('Time (s)')
ylabel('Amplitude (V)')
legend('Original Signal','Reconstructed Signal')
hold off

 istft

1-1157

ISTFT of Real Signal Using COLA Compliant Window and Overlap

Generate a sinusoid sampled at 2 kHz for 1 second.

fs = 2e3;
t = 0:1/fs:1-1/fs;
x = 5*sin(2*pi*10*t);

Design a periodic Hamming window of length 120. Check the COLA constraint for the window with
an overlap of 80 samples. The window-overlap combination is COLA compliant.

win = hamming(120,'periodic');
noverlap = 80;
tf = iscola(win,noverlap)

tf = logical
 1

Set the FFT length to 512. Compute the short-time Fourier transform.

fftlen = 512;
s = stft(x,fs,'Window',win,'OverlapLength',noverlap,'FFTLength',fftlen);

Calculate the inverse short-time Fourier transform.

1 Functions

1-1158

[X,T] = istft(s,fs,'Window',win,'OverlapLength',noverlap,'FFTLength',fftlen,'Method','ola','ConjugateSymmetric',true);

Plot the original and reconstructed signals.

plot(t,x,'b')
hold on
plot(T,X,'-.r')
xlabel('Time (s)')
ylabel('Amplitude (V)')
title('Original and Reconstructed Signal')
legend('Original Signal','Reconstructed Signal')
hold off

Input Arguments
s — Short-time Fourier transform
matrix | 3-D array

Short-time Fourier transform, specified as a matrix or a 3-D array. For single-channel signals, specify
s as a matrix with time increasing across the columns and frequency increasing down the rows. For
multichannel signals, specify s as a 3-D array with the third dimension corresponding to the
channels. The frequency and time vectors are obtained as outputs of stft.

Note If you invert s using istft and want the result to be the same length as x, the value of
(length(x)-noverlap)/(length(window)-noverlap) must be an integer.

 istft

1-1159

Data Types: double | single
Complex Number Support: Yes

fs — Sample rate
2π (default) | positive scalar

Sample rate in hertz, specified as a positive scalar.
Data Types: double | single

ts — Sample time
duration scalar

Sample time, specified as a duration scalar.
Example: seconds(1) is a duration scalar representing a 1-second time difference between
consecutive signal samples.
Data Types: duration

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: istft(s,'Window',win,'OverlapLength',50,'FFTLength',128) windows the data
using the window win, with 50 samples overlap between adjoining segments and 128 DFT points.

Window — Windowing function
hann(128,'periodic') (default) | vector

Windowing function, specified as the comma-separated pair consisting of 'Window' and a vector. If
you do not specify the window or specify it as empty, the function uses a periodic Hann window of
length 128. The length of Window must be greater than or equal to 2.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: double | single

OverlapLength — Number of overlapped samples
75% of window length (default) | nonnegative integer

Number of overlapped samples, specified as the comma-separated pair consisting of
'OverlapLength' and a positive integer smaller than the length of window. If you omit
'OverlapLength' or specify it as empty, it is set to the largest integer less than 75% of the window
length, which turns out to be 96 samples for the default Hann window.
Data Types: double | single

FFTLength — Number of DFT points
128 (default) | positive integer

1 Functions

1-1160

Number of DFT points, specified as the comma-separated pair consisting of 'FFTLength' and a
positive integer. To achieve perfect time-domain reconstruction, you should set the number of DFT
points to match that used in stft.
Data Types: double | single

Method — Method of overlap-add
'wola' (default) | 'ola'

Method of overlap-add, specified as the comma-separated pair consisting of 'Method' and one of
these:

• 'wola' — Weighted overlap-add
• 'ola' — Overlap-add

ConjugateSymmetric — Conjugate symmetry of original signal
false (default) | true

Conjugate symmetry of the original signal, specified as the comma-separated pair consisting of
'ConjugateSymmetric' and true or false. If this option is set to true, istft assumes that the
input s is symmetric, otherwise no symmetric assumption is made. When s is not exactly conjugate
symmetric due to round-off error, setting the name-value pair to true ensures that the STFT is
treated as if it were conjugate symmetric. If s is conjugate symmetric, then the inverse transform
computation is faster, and the output is real.

FrequencyRange — STFT frequency range
'centered' (default) | 'twosided' | 'onesided'

STFT frequency range, specified as the comma-separated pair consisting of 'FrequencyRange' and
'centered', 'twosided', or 'onesided'.

• 'centered' — Treat s as a two-sided, centered STFT. If nfft is even, then s is considered to be
computed over the interval (–π, π] rad/sample. If nfft is odd, then s is considered to be computed
over the interval (–π, π) rad/sample. If you specify time information, then the intervals are (–fs,
fs/2] cycles/unit time and (–fs, fs/2) cycles/unit time, respectively, where fs is the sample rate.

• 'twosided' — Treat s as a two-sided STFT computed over the interval [0, 2π) rad/sample. If you
specify time information, then the interval is [0, fs) cycles/unit time.

• 'onesided' — Treat s as a one-sided STFT. If nfft is even, then s is considered to be computed
over the interval [0, π] rad/sample. If nfft is odd, then s is considered to be computed over the
interval [0, π) rad/sample. If you specify time information, then the intervals are [0, fs/2] cycles/
unit time and [0, fs/2) cycles/unit time, respectively, where fs is the sample rate.

Note When this argument is set to 'onesided', istft assumes the values in the positive
Nyquist range were computed without conserving the total power.

For an example, see “STFT Frequency Ranges” on page 1-2530.
Data Types: char | string

InputTimeDimension — Input time dimension
'acrosscolumns' (default) | 'downrows'

Input time dimension, specified as the comma-separated pair consisting of 'InputTimeDimension'
and 'acrosscolumns' or 'downrows'. If this value is set to 'downrows', istft assumes that the

 istft

1-1161

time dimension of s is down the rows and the frequency is across the columns. If this value is set to
'acrosscolumns', the function istft assumes that the time dimension of s is across the columns
and frequency dimension is down the rows.

Output Arguments
x — Reconstructed signal
vector | matrix

Reconstructed signal in the time domain, returned as a vector or a matrix.
Data Types: single | double

t — Time instants
vector

Time instants, returned as a vector.

• If a sample rate fs is provided, then t contains time values in seconds.
• If a duration ts is provided, then t has the same time format as the input duration and is a

duration array.
• If no time information is provided, then t contains sample numbers.

Data Types: double | single

More About
Inverse Short-Time Fourier Transform

The inverse short-time Fourier transform is computed by taking the IFFT of each DFT vector of the
STFT and overlap-adding the inverted signals. The ISTFT is calculated as follows:

x(n) = ∫
−1/2

1/2

∑
m = −∞

∞
Xm(f)e j2πfndf

= ∑
m = −∞

∞ ∫
−1/2

1/2
Xm(f)e j2πfndf

= ∑
m = −∞

∞
xm(n)

where R is the hop size between successive DFTs, Xm is the DFT of the windowed data centered
about time mR and xm(n) = x(n) g(n−mR). The inverse STFT is a perfect reconstruction of the

original signal as long as ∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ where the analysis window g(n) was used

to window the original signal and c is a constant. The following figure depicts the steps followed in
reconstructing the original signal.

1 Functions

1-1162

 istft

1-1163

Constant Overlap-Add (COLA) Constraint

To ensure successful reconstruction of nonmodified spectra, the analysis window must satisfy the
COLA constraint. In general, if the analysis window satisfies the condition

∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ, the window is considered to be COLA-compliant. Additionally, COLA

compliance can be described as either weak or strong.

• Weak COLA compliance implies that the Fourier transform of the analysis window has zeros at
frame-rate harmonics such that

G(fk) = 0, k = 1, 2, …, R− 1, fk ≜
k
R .

Alias cancellation is disturbed by spectral modifications. Weak COLA relies on alias cancellation in
the frequency domain. Therefore, perfect reconstruction is possible using weakly COLA-compliant
windows as long as the signal has not undergone any spectral modifications.

• For strong COLA compliance, the Fourier transform of the window must be bandlimited
consistently with downsampling by the frame rate such that

G(f) = 0, f ≥ 1
2R .

This equation shows that no aliasing is allowed by the strong COLA constraint. Additionally, for
strong COLA compliance, the value of the constant c must equal 1. In general, if the short-time
spectrum is modified in any way, a stronger COLA compliant window is preferred.

You can use the iscola function to check for weak COLA compliance. The number of summations
used to check COLA compliance is dictated by the window length and hop size. In general, it is

common to use a = 1 in ∑
m = −∞

∞
ga + 1(n−mR) = c ∀n ∈ ℤ for weighted overlap-add (WOLA), and a = 0

for overlap-add (OLA). By default, istft uses the WOLA method, by applying a synthesis window
before performing the overlap-add method.

In general, the synthesis window is the same as the analysis window. You can construct useful WOLA
windows by taking the square root of a strong OLA window. You can use this method for all
nonnegative OLA windows. For example, the root-Hann window is a good example of a WOLA
window.

Perfect Reconstruction

In general, computing the STFT of an input signal and inverting it does not result in perfect
reconstruction. If you want the output of ISTFT to match the original input signal as closely as
possible, the signal and the window must satisfy the following conditions:

• Input size — If you invert the output of stft using istft and want the result to be the same
length as the input signal x, the value of k = (length(x) − noverlap)

(length(window) − noverlap) must be an integer.

• COLA compliance — Use COLA-compliant windows, assuming that you have not modified the
short-time Fourier transform of the signal.

• Padding — If the length of the input signal is such that the value of k is not an integer, zero-pad
the signal before computing the short-time Fourier transform. Remove the extra zeros after
inverting the signal.

1 Functions

1-1164

References
[1] Crochiere, R. E. "A Weighted Overlap-Add Method of Short-Time Fourier Analysis/Synthesis." IEEE

Transactions on Acoustics, Speech and Signal Processing. Vol. 28, Number 1, Feb. 1980, pp.
99–102.

[2] Gotzen, A. D., N. Bernardini, and D. Arfib. "Traditional Implementations of a Phase-Vocoder: The
Tricks of the Trade." Proceedings of the COST G-6 Conference on Digital Audio Effects
(DAFX-00), Verona, Italy, Dec 7–9, 2000.

[3] Griffin, Daniel W., and Jae S. Lim. "Signal Estimation from Modified Short-Time Fourier
Transform." IEEE Transactions on Acoustics, Speech and Signal Processing. Vol. 32, Number
2, April 1984, pp. 236–243.

[4] Portnoff, M. R. "Time-Frequency Representation of Digital Signals and Systems Based on Short-
Time Fourier analysis." IEEE Transactions on Acoustics, Speech and Signal Processing. Vol.
28, Number 1, Feb 1980, pp. 55–69.

[5] Smith, Julius Orion. Spectral Audio Signal Processing. https://ccrma.stanford.edu/~jos/sasp/,
online book, 2011 edition, accessed Nov. 2018.

[6] Sharpe, Bruce. Invertibility of Overlap-Add Processing. https://gauss256.github.io/blog/cola.html,
accessed July 2019.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

'InputTimeDimension' must be always specified and set to 'downrows'.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The 'ConjugateSymmetric' argument is not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

The 'ConjugateSymmetric' argument is not supported for code generation.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

 istft

1-1165

https://ccrma.stanford.edu/~jos/sasp/
https://gauss256.github.io/blog/cola.html

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

Unless 'ConjugateSymmetric' is set to true, the output x is always complex even if all the
imaginary parts are zero.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
Functions
iscola | pspectrum | stft | stftmag2sig

Topics
“Time-Frequency Gallery”

Introduced in R2019a

1 Functions

1-1166

kaiser
Kaiser window

Syntax
w = kaiser(L,beta)

Description
w = kaiser(L,beta) returns an L-point Kaiser window with shape factor beta.

Examples

Kaiser Window

Create a 200-point Kaiser window with a beta of 2.5. Display the result using wvtool.

w = kaiser(200,2.5);
wvtool(w)

 kaiser

1-1167

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

beta — Shape factor
0.5 (default) | positive real scalar

Shape factor, specified as a positive real scalar. The parameter beta affects the sidelobe attenuation
of the Fourier transform of the window.
Data Types: single | double

Output Arguments
w — Kaiser window
column vector

Kaiser window, returned as a column vector.

Algorithms
The coefficients of a Kaiser window are computed from the following equation:

w(n) =
I0 β 1 − n− N/2

N/2
2

I0(β) , 0 ≤ n ≤ N,

where I0 is the zeroth-order modified Bessel function of the first kind. The length L = N + 1.
kaiser(L,beta) is equivalent to

besseli(0,beta*sqrt(1-(((0:L-1)-(L-1)/2)/((L-1)/2)).^2))/besseli(0,beta)

To obtain a Kaiser window that represents an FIR filter with sidelobe attenuation of α dB, use the
following β.

β =
0.1102(α− 8.7), α > 50

0.5842(α− 21)0.4 + 0.07886(α− 21), 50 ≥ α ≥ 21
0, α < 21

Increasing β widens the mainlobe and decreases the amplitude of the sidelobes (i.e., increases the
attenuation).

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Selected Papers in Digital Signal Processing. Vol. II. New York: IEEE Press,
1976.

1 Functions

1-1168

[2] Kaiser, James F. "Nonrecursive Digital Filter Design Using the I0-Sinh Window Function."
Proceedings of the 1974 IEEE International Symposium on Circuits and Systems. April, 1974,
pp. 20–23.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer | Signal Analyzer

Functions
chebwin | gausswin | kaiserord | tukeywin | WVTool | pspectrum

Introduced before R2006a

 kaiser

1-1169

kaiserord
Kaiser window FIR filter design estimation parameters

Syntax
[n,Wn,beta,ftype] = kaiserord(f,a,dev)
[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs)
c = kaiserord(f,a,dev,fs,'cell')

Description
[n,Wn,beta,ftype] = kaiserord(f,a,dev) returns a filter order n, normalized frequency band
edges Wn, and a shape factor beta that specify a Kaiser window for use with the fir1 function. To
design an FIR filter b that approximately meets the specifications given by f, a, and dev, use b =
fir1(n,Wn,kaiser(n+1,beta),ftype,'noscale').

[n,Wn,beta,ftype] = kaiserord(f,a,dev,fs) uses a sample rate fs in Hz.

c = kaiserord(f,a,dev,fs,'cell') returns a cell array whose elements are the parameters to
fir1.

Examples

Kaiser Window Lowpass Filter Design

Design a lowpass filter with passband defined from 0 to 1 kHz and stopband defined from 1500 Hz to
4 kHz. Specify a passband ripple of 5% and a stopband attenuation of 40 dB.

fsamp = 8000;
fcuts = [1000 1500];
mags = [1 0];
devs = [0.05 0.01];

[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

freqz(hh,1,1024,fsamp)

1 Functions

1-1170

Kaiser Window Bandpass Filter Design

Design an odd-length bandpass filter. Note that odd length means even order, so the input to fir1
must be an even integer.

fsamp = 8000;
fcuts = [1000 1300 2210 2410];
mags = [0 1 0];
devs = [0.01 0.05 0.01];

[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
n = n + rem(n,2);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

[H,f] = freqz(hh,1,1024,fsamp);
plot(f,abs(H))
grid

 kaiserord

1-1171

Lowpass Filter Design with 'cell' Option

Design a lowpass filter with a passband cutoff of 1500 Hz, a stopband cutoff of 2000 Hz, a passband
ripple of 0.01, a stopband ripple of 0.1, and a sample rate of 8000 Hz. Design an equivalent filter
using the 'cell' option.

fs = 8000;
[n,Wn,beta,ftype] = kaiserord([1500 2000],[1 0],...
 [0.01 0.1],fs);
b = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

c = kaiserord([1500 2000],[1 0],[0.01 0.1],fs,'cell');
bcell = fir1(c{:});

hfvt = fvtool(b,1,bcell,1,'Fs',fs);
legend(hfvt,'b','bcell')

1 Functions

1-1172

Input Arguments
f — Band edges
vector

Band edges, specified as a vector. The length of f is 2*length(a)-2.

a — Band amplitude
vector

Band amplitude, specified as a vector. The amplitude is specified on the bands defined by f. Together,
f and a define a piecewise-constant response function.

dev — Maximum allowable deviation
positive vector

Maximum allowable deviation, specified as a vector. dev is a vector the same size as a that specifies
the maximum allowable deviation between the frequency response of the output filter and its band
amplitude, for each band. The entries in dev specify the passband ripple and the stopband
attenuation. Specify each entry in dev as a positive number, representing absolute filter gain (unit-
less).

fs — Sample rate
2 (default) | positive scalar

 kaiserord

1-1173

Sample rate, specified as a positive scalar measured in Hz. If you do not specify the argument fs, or
if you specify it as the empty vector [], the sample rate defaults to 2 Hz, and the Nyquist frequency is
1 Hz. Use this syntax to specify band edges scaled to a particular application's sample rate. The
frequency band edges in f must be from 0 to fs/2.

Output Arguments
n — Filter order
positive integer

Filter order, returned as a positive integer.

Wn — Normalized frequency band edges
real vector

Normalized frequency band edges, returned as a real vector.

beta — Shape factor
positive real scalar

Shape factor, returned as a positive real scalar. The parameter beta affects the sidelobe attenuation
of the Fourier transform of the window.

ftype — Filter type
'low' | 'bandpass' | 'high' | 'stop' | 'DC-0' | 'DC-1'

Filter type, intended for use with fir1, returned as:

• 'low' — lowpass filter with cutoff frequency Wn.
• 'high' — highpass filter with cutoff frequency Wn.
• 'bandpass' — bandpass filter if Wn is a two-element vector.
• 'stop' — bandstop filter if Wn is a two-element vector.
• 'DC-0' — the first band of a multiband filter is a stopband.
• 'DC-1' — the first band of a multiband filter is a passband.

c — FIR parameters
cell array

FIR parameters, returned as a cell array.

Tips
• Be careful to distinguish between the meanings of filter length and filter order. The filter length is

the number of impulse response samples in the FIR filter. Generally, the impulse response is
indexed from n = 0 to n = L – 1, where L is the filter length. The filter order is the highest power
in a Z-transform representation of the filter. For an FIR transfer function, this representation is a
polynomial in z, where the highest power is zL–1 and the lowest power is z0. The filter order is one
less than the length (L – 1) and is also equal to the number of zeros of the z polynomial.

• If, in the vector dev, you specify unequal deviations across bands, the minimum specified
deviation is used, since the Kaiser window method is constrained to produce filters with minimum
deviation in all of the bands.

1 Functions

1-1174

• In some cases, kaiserord underestimates or overestimates the order n. If the filter does not
meet the specifications, try a higher order such as n+1, n+2, and so on, or a try lower order.

• Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist frequency, or if dev is
large (greater than 10%).

Algorithms
Given a set of specifications in the frequency domain, kaiserord estimates the minimum FIR filter
order that will approximately meet the specifications. kaiserord converts the given filter
specifications into passband and stopband ripples and converts cutoff frequencies into the form
needed for windowed FIR filter design.

kaiserord uses empirically derived formulas for estimating the orders of lowpass filters, as well as
differentiators and Hilbert transformers. Estimates for multiband filters (such as bandpass filters) are
derived from the lowpass design formulas.

The design formulas that underlie the Kaiser window and its application to FIR filter design are

β =
0.1102(α− 8.7), α > 50

0.5842(α− 21)0.4 + 0.07886(α− 21), 21 ≤ α ≤ 50
0, α < 21

where α = –20log10δ is the stopband attenuation expressed in decibels, and

n = α− 7.95
2.285(Δω)

where n is the filter order and Δω is the width of the smallest transition region.

References
[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing

Society, eds. Selected Papers in Digital Signal Processing. Vol. II. New York: IEEE Press,
1976.

[2] Kaiser, James F. “Nonrecursive Digital Filter Design Using the I0-Sinh Window Function.”
Proceedings of the 1974 IEEE International Symposium on Circuits and Systems. 1974,
pp. 20–23.

[3] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fir1 | kaiser | firpmord

 kaiserord

1-1175

Introduced before R2006a

1 Functions

1-1176

kaiserwin
Kaiser window filter from specification object

Syntax
h = design(d,'kaiserwin')
h = design(d,'kaiserwin',Name,Value)

Description
h = design(d,'kaiserwin') designs a digital filter using a Kaiser window. For kaiserwin to
work properly, the filter order in the specifications object must be even. In addition, higher order
filters (filter order greater than 120) tend to be more accurate for smaller transition widths.
kaiserwin returns a warning when your filter order may be too low to design your filter accurately.

h = design(d,'kaiserwin',Name,Value) returns a filter designed with the Kaiser window
technique and with design options specified as Name,Value pairs.

To determine the available design options, use designmethods with the specification object and the
design method as input arguments as shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line help system. For example, to
get specific information about using kaiserwin with d, the specification object, enter the following
at the MATLAB prompt.

help(d,'kaiserwin')

Examples

Design Filter Using Kaiser Window

Design a direct-form FIR filter starting from the default lowpass filter specification object. Use a
Kaiser window for the design. Visualize the magnitude response.

d = fdesign.lowpass;
Hd = design(d,'kaiserwin');

fvtool(Hd)

 kaiserwin

1-1177

See Also
Apps
Filter Designer

Functions
designfilt | fdesign

Introduced in R2009a

1 Functions

1-1178

kurtogram
Visualize spectral kurtosis

Syntax
kgram = kurtogram(x)
kgram = kurtogram(x,sampx)
kgram = kurtogram(xt)
kgram = kurtogram(___ ,level)

[kgram,f,w,fc,wc,bw] = kurtogram(___)

kurtogram(___)

Description
kgram = kurtogram(x) returns the fast kurtogram on page 1-1187 kgram of signal vector x as a
matrix. kurtogram uses normalized frequency (evenly spaced frequency vector spanning [0 π]) to
compute the time values.

kgram = kurtogram(x,sampx) returns the fast kurtogram on page 1-1187 of signal vector x
sampled at rate or time interval sampx, as a matrix.

kgram = kurtogram(xt) returns the fast kurtogram on page 1-1187 kgram of timetable xt as a
matrix.

kgram = kurtogram(___ ,level) returns the fast kurtogram on page 1-1187 using a specified
level. level determines the level of window resolution to use, and therefore how many spectral
kurtosis cases to calculate.

[kgram,f,w,fc,wc,bw] = kurtogram(___) returns the fast kurtogram on page 1-1187 along
with a set of parameters you can use for follow-on bandpass filter design and spectral kurtosis:

• f — Frequency vector for kgram
• w — Window size vector for kgram
• fc — Frequency where the maximal spectral kurtosis is located
• wc — Window size where the maximal spectral kurtosis on the kurtogram is located
• bw — Suggested bandwidth for the optimal bandpass filter

You can use this syntax with any of the input arguments in previous syntaxes.

kurtogram(___) plots the kurtogram, along with key critical optimization parameters, without
returning any data. You can use this syntax with any of the input arguments in previous syntaxes.

Examples

 kurtogram

1-1179

Compute the Kurtogram of a Nonstationary Signal

Compute the kurtogram of a nonstationary signal. Compare different level settings for the kurtogram.
Examine a kurtogram that uses normalized frequency. Use the kurtogram to provide filter settings
that can be used to preprocess the signal to enhance transient detection.

Generate a signal with a chirp component and white Gaussian noise.

fs = 1000;
t = 0:1/fs:10;
f1 = 300;
f2 = 400;
xc = chirp(t,f1,10,f2);
x = xc+randn(1,length(t));

Plot the kurtogram using the sample rate fs.

kurtogram(x,fs)

The kurtogram shows kurtosis results for a range of window lengths and frequencies. A high kurtosis
level corresponds to a high level of nonstationary or non-Gaussian behavior. The peak kurtosis is
provided in the text at the top, along with the window length and center frequency associated with it.
The bandwidth is a function of the window length.

Explore the effects of lowering the maximum level to 5.

level = 5;
kurtogram(x,fs,level)

1 Functions

1-1180

The lower resolution is apparent and leads to a lower peak kurtosis value and a displaced center
frequency.

Now plot the kurtosis without specifying sample rate or time.

kurtogram(x)

 kurtogram

1-1181

The kurtogram is now shown with normalized frequency.

The parameters at the top of the plot provide recommendations for a bandpass filter that could be
used to prefilter the data and enhance the differentiation of the nonstationary component. You can
also have kurtogram return these values so they can be input more directly into filtering or spectral
kurtosis functions.

[kgram,f,w,fc,wc,bw] = kurtogram(x);
wc

wc = 256

fc

fc = 2.4421

bw

bw = 0.0245

These values match the optimal window size, center frequency, and bandwidth of the first plot. kgram
is the actual kurtogram matrix, and f and w are the frequency and window-size vectors that
accompany it.

1 Functions

1-1182

Plot Spectral Kurtosis Using a Customized Window Size

The pkurtosis function uses the default pspectrum window size (time resolution). You can specify
the window size to use instead. In this example, use the function kurtogram to return an optimal
window size and use that result for pkurtosis.

Create a chirp signal with white Gaussian noise.

fs = 1000;
t = 0:1/fs:10;
f1 = 300;
f2 = 400;
x = chirp(t,f1,10,f2)+randn(1,length(t));

Plot the spectral kurtosis with the default window size.

pkurtosis(x,fs)
title('Spectral Kurtosis with Default Window Size')

Now compute the optimal window size using kurtogram.

kurtogram(x,fs)

 kurtogram

1-1183

The kurtogram plot also illustrates the chirp between 300 and 400 Hz, and shows that the optimum
window size is 256. Feed w0 into pkurtosis.

w0 = 256;
pkurtosis(x,fs,w0)
title('Spectral Kurtosis with Optimum Window Size of 256')

1 Functions

1-1184

The main excursion has higher kurtosis values. The higher values improve the differentiation between
stationary and nonstationary components, and enhance your ability to extract the nonstationary
component as a feature.

Input Arguments
x — Time-series signal
vector

Time-series signal for which kurtogram returns the fast kurtogram, specified as a vector.

sampx — Sample rate or sample time of signal
normalized frequency (default) | positive numeric scalar | duration scalar | numeric vector in
seconds | duration array | datetime array

Sample rate or sample time, specified as one of the following:

• Positive numeric scalar — Frequency in hertz
• duration scalar — Time interval between consecutive samples of X
• Vector, duration array, or datetime array — Time instant or duration corresponding to each

element of x

For an example, see “Compute the Kurtogram of a Nonstationary Signal” on page 1-1179.

 kurtogram

1-1185

When sampx represents a time vector, time samples can be nonuniform, with the pspectrum
constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

If you specify sampx as empty, then kurtogram uses normalized frequency. In other words, it
assumes an evenly spaced frequency vector spanning [0 π].

xt — Signal timetable
timetable

Signal timetable from which kurtogram returns the fast kurtogram, specified as a timetable that
contains a single variable with a single column. xt must contain increasing, finite row times. If the
timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable with
Missing, Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the pspectrum
constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

level — maximum kurtogram level
positive integer

Maximum kurtogram level, which drives number of cases to compute, specified as a positive integer.
Level drives the frequency window sizes that kurtogram uses, and therefore, the frequency
resolution. As frequency resolution, goes up, time resolution goes down. The spectral kurtosis
estimate will be poor if either resolution is too low. When you specify level, balance the impact on
both time and frequency resolution.

Output Arguments
kgram — Fast kurtogram
matrix

Fast kurtogram, returned as a matrix with dimensions defined by level. kgram has 2*level rows
and 3* 2level columns. Each row of the matrix represents the spectral kurtosis results for each
element in the frequency vector, and for the window size defined by the position of the row, with
respect to the sequence:

0, 1, log2 3 , 2, 1 + log2 3 , 3, 3 + log2 3 , ..., n, n + log2 3 , ..., level ,

where the equivalent window size for a level n is 2n+1 samples.

f — Frequency vector
vector

Frequency vector associated with kgram, returned as a vector. The length of f is equal to the number
of columns in kgram.

w — Window-size vector
vector

Window-size vector associated with kgram, returned as a vector. The length of f is equal to the
number of columns in kgram.

1 Functions

1-1186

fc — Frequency of maximal spectral kurtosis value
scalar

Frequency of maximal spectral kurtosis value in kgram, returned as a scalar:

• In rad/second, if you have not specified sampx, causing kurtogram to use normalized frequency
• In hertz, if sampx is defined

You can use fc as the central frequency for an optimal bandpass filter that maximizes the kurtosis of
the envelope of the filtered signal. Maximizing the envelope kurtosis allows you to more easily extract
the resulting impulsive component as a feature.

wc — Window size of maximal spectral kurtosis value
scalar

Window size of maximal spectral kurtosis value in kgram, returned as a scalar in samples. You can
use wc to provide the optimal window size for pkurtosis. For an example, see “Plot Spectral
Kurtosis Using a Customized Window Size” on page 1-1182.

bw — Suggested bandwidth for optimal bandpass filter
scalar

Suggested bandwidth for optimal bandpass filter, returned as a scalar:

• In rad/second, if you have not specified sampx, causing kurtogram to use normalized frequency
• In hertz, if you have specified sampx

You can use bw to create a filter that maximizes the kurtosis of the envelope of the filtered signal. bw
is equal to fx/wc, where fx is the signal sample frequency that kurtogram derives from sampx.

More About
Kurtogram

The kurtogram function provides key information that you can use when you are performing
“Spectral Kurtosis” on page 1-1593 analysis using pkurtosis. kurtogram calculates the spectral
kurtosis for multiple window sizes using a fast kurtogram algorithm. Along with the kurtogram and
its associated frequency and window vectors, kurtogram returns the optimal window size and other
filter-tuning parameters. And it can visualize the results of its computations.

The fast kurtogram algorithm uses bandpass filtering along with a simplified computation to
approximate the spectral kurtosis for each window size and frequency rather than compute the short-
time Fourier transform (STFT) as the higher-fidelity pkurtosis does. It also reduces the number of
iterations the algorithm requires to span the frequency-window plane relative to the full kurtogram
[1].

References
[1] Antoni, J., and R. B. Randall. "Fast Computation of the Kurtogram for the Detection of Transient

Faults." Mechanical Systems and Signal Processing . Vol. 20, Issue 1, 2007, pp. 108–124.

 kurtogram

1-1187

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Inputs must be double precision.
• Timetables are not supported for code generation.

See Also
pkurtosis | pentropy | pspectrum

Introduced in R2018a

1 Functions

1-1188

labelDefinitionsHierarchy
Get hierarchical list of label and sublabel names

Syntax
str = labelDefinitionsHierarchy(lbldefs)
str = labelDefinitionsHierarchy(lss)

Description
str = labelDefinitionsHierarchy(lbldefs) returns a character array with a hierarchical list
of label and sublabel names contained in lbldefs, a vector of signalLabelDefinition objects.

str = labelDefinitionsHierarchy(lss) returns a character array with a hierarchical list of
label and sublabel names contained in the labeledSignalSet object lss.

Examples

Label Hierarchy

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Visualize the label hierarchy of the set.

labelDefinitionsHierarchy(lss)

ans =
 'WhaleType
 Sublabels: []
 MoanRegions
 Sublabels: []
 TrillRegions
 Sublabels: TrillPeaks
 '

 labelDefinitionsHierarchy

1-1189

Input Arguments
lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.
Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
str — List of label and sublabel names
character array

List of label and sublabel names, returned as a character array.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1190

labelDefinitionsSummary
Get summary table of signal label definitions

Syntax
T = labelDefinitionsSummary(lbldefs)
T = labelDefinitionsSummary(lss)

T = labelDefinitionsSummary(___ ,lblname)
T = labelDefinitionsSummary(___ ,lblname,'sublbls')

Description
T = labelDefinitionsSummary(lbldefs) returns a table, T, with the properties of the label
definitions contained in lbldefs, a vector of signalLabelDefinition objects.

T = labelDefinitionsSummary(lss) returns a table, T, with the properties of the label
definitions contained in the labeledSignalSet object lss.

T = labelDefinitionsSummary(___ ,lblname) returns a table with the properties of the label
lblname.

T = labelDefinitionsSummary(___ ,lblname,'sublbls') returns a table of the properties of
the sublabels defined for lblname.

Examples

Label Properties

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Visualize the label properties of the set.

labelDefinitionsSummary(lss)

 labelDefinitionsSummary

1-1191

ans=3×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ____________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "MoanRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {0x0 double } "" "Regions where moans occur"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"

Visualize the properties of the TrillRegions label.

labelDefinitionsSummary(lss,"TrillRegions")

ans=1×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ _________ _____________ __________ __________________ ____________ ___________________________ ___ ____________________________

 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"

Visualize the properties of the TrillRegions sublabels.

labelDefinitionsSummary(lss,"TrillRegions",'sublbls')

ans=1×8 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Tag Description
 ____________ _________ _____________ __________ __________________ ____________ ___ _____________

 "TrillPeaks" "point" "numeric" {["N/A"]} {0x0 double} {0x0 double} "" "Trill peaks"

Input Arguments
lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.
Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

1 Functions

1-1192

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

Output Arguments
T — Summary table
table

Summary table with the properties of a label.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 labelDefinitionsSummary

1-1193

labeledSignalSet
Create labeled signal set

Description
Use labeledSignalSet to store labeled signals along with the label definitions. Create signal label
definitions using signalLabelDefinition.

Creation

Syntax
lss = labeledSignalSet

lss = labeledSignalSet(src)
lss = labeledSignalSet(src,lbldefs)

lss = labeledSignalSet(src,lbldefs,'MemberNames',mnames)
lss = labeledSignalSet(src,lbldefs,Name,Value)

Description

lss = labeledSignalSet creates an empty labeled signal set. Use addMembers to add signals to
the set. Use addLabelDefinitions to add label definitions to the set.

lss = labeledSignalSet(src) creates a labeled signal set for the input data source src. Use
addLabelDefinitions to add label definitions to the set.

lss = labeledSignalSet(src,lbldefs) creates a labeled signal set for the input data source
src using the signal label definitions lbldefs. Use signalLabelDefinition to create signal label
definitions.

lss = labeledSignalSet(src,lbldefs,'MemberNames',mnames) creates a labeled signal set
for the input data source src and specifies names for the members of the set. Use setMemberNames
to modify the member names. lbldefs is optional.

lss = labeledSignalSet(src,lbldefs,Name,Value) sets “Properties” on page 1-1196 using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in quotes. lbldefs is optional.

Input Arguments

src — Input data source
matrix | cell array | timetable | signalDatastore object | audioDatastore object

Input data source, specified as a matrix, a cell array, a timetable, a signalDatastore object, or an
audioDatastore object. src implicitly specifies the number of members of the set, the number of
signals in each member, and the data in each signal.

1 Functions

1-1194

Example: {randn(10,3),randn(17,9)} has two members. The first member contains three 10-
sample signals. The second member contains nine 17-sample signals.
Example: {{randn(10,1)},{randn(17,1),randn(27,1)}} has two members. The first member
contains one 10-sample signal. The second member contains a 17-sample signal and a 27-sample
signal.
Example:
{{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1:7)',randn(7,2))},
{timetable(seconds(1:3)',randn(3,1))}} has two members. The first member contains three
signals sampled at 1 Hz for 10 seconds and two signals sampled at 1 Hz for 7 seconds. The second
member contains one signal sampled at 1 Hz for 3 seconds.

Example: signalDatastore Object Pointing to Files

Specify the path to a set of sample sound signals included as MAT-files with MATLAB®. Each file
contains a signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }
 {'laughter.mat'}
 {'mtlb.mat' }
 {'splat.mat' }
 {'train.mat' }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat,
which differs from the other files in that the signal variable is not called y.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sdss = subset(sds,~strcmp(nms,"mtlb.mat"));

Use the subset datastore as the source for a labeledSignalSet object.

lss = labeledSignalSet(sdss)

lss =
 labeledSignalSet with properties:

 Source: [1x1 signalDatastore]
 NumMembers: 6
 TimeInformation: "inherent"
 Labels: [6x0 table]
 Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

lbldefs — Label definitions
vector of signalLabelDefinition objects

 labeledSignalSet

1-1195

Label definitions, specified as a vector of signalLabelDefinition objects.

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

Properties
Description — Labeled signal set description
character vector | string scalar

Labeled signal set description, specified as a character vector or string scalar.
Example: 'Description','Sleep test patients by sex and age'
Data Types: char | string

SampleRate — Sample rate values
positive scalar | vector

This property is read-only.

Sample rate values, specified as a positive scalar or a vector. This property is valid only when the data
source does not contain inherent time information.

• Set SampleRate to a positive numeric scalar to specify the same sample rate for all signals in the
labeled set.

• Set SampleRate to a vector to specify that each member of the labeled set has signals sampled at
the same rate, but the sample rates differ from member to member. The vector must have a
number of elements equal to the number of members of the set. If a member of a set has signals
with different sample rates, then specify the sample rates using timetables.

Example: 'SampleRate',[1e2 1e3] specifies that the signals in the first member of a set are
sampled at a rate of 100 Hz and the signals in the second member are sampled at 1 kHz.

SampleTime — Sample time values
positive scalar | vector | duration scalar | duration vector

This property is read-only.

Sample time values, specified as a positive scalar, a vector, a duration scalar, or a duration vector.
This property is valid only when the data source does not contain inherent time information.

• Set SampleTime to a numeric or duration scalar to specify the same sample time for all signals
in the labeled set.

• Set SampleTime to a numeric or duration vector to specify that each member of the labeled set
has signals with the same time interval between samples, but the intervals differ from member to
member. The vector must have a number of elements equal to the number of members of the set.
If a member of a set has signals with different sample times, then specify the sample times using
timetables.

1 Functions

1-1196

Example: 'SampleTime',seconds([1e-2 1e-3]) specifies that the signals in the first member of
a set have 0.01 second between samples, and the signals in the second member have 1 millisecond
between samples.

TimeValues — Time values
vector | duration vector | matrix | cell array

This property is read-only.

Time values, specified as a vector, a duration vector, a matrix, or a cell array. This property is valid
only when the data source does not contain inherent time information. Time values must be unique
and increasing.

• Set TimeValues to a numeric or duration vector to specify the same time values for all signals
in the labeled set. The vector must have the same length as all the signals in the set.

• Set TimeValues to a numeric or duration matrix or cell array to specify that each member of
the labeled set has signals with the same time values, but the time values differ from member to
member.

• If TimeValues is a matrix, then it must have a number of columns equal to the number of
members of the set. All signals in the set must have a length equal to the number of rows of the
matrix.

• If TimeValues is a cell array, then it must contain a number of vectors equal to the number of
members of the set. All signals in a member must have a length equal to the number of
elements of the corresponding vector in the cell array.

If a member of a set has signals with different time values, then specify the time values using
timetables.
Example: 'TimeValues',[1:1000;0:1/500:2-1/500]' specifies that the signals in the first
member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are sampled
at 500 Hz for 2 seconds.
Example: 'TimeValues',seconds([1:1000;0:1/500:2-1/500]') specifies that the signals in
the first member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are
sampled at 500 Hz for 2 seconds.
Example: 'TimeValues',{1:1000,0:1/500:2-1/500} specifies that the signals in the first
member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are sampled
at 500 Hz for 2 seconds.
Example: 'TimeValues',{seconds(1:1000),seconds(0:1/500:2-1/500)} specifies that the
signals in the first member of a set are sampled 1 Hz for 1000 seconds. The signals in the second
member are sampled at 500 Hz for 2 seconds.

NumMembers — Number of members in set
positive integer

This property is read-only.

Number of members in set, specified as a positive integer.

Labels — Labels table
table

This property is read-only.

 labeledSignalSet

1-1197

Labels table, specified as a MATLAB table. Each variable of Labels corresponds to a label defined for
the set. Each row of Labels corresponds to a member of the data source. The row names of Labels
are the member names.
Data Types: table

TimeInformation — Time information of source
'none' | 'sampleRate' | 'sampleTime' | 'timeValues' | 'inherent'

Time information of source, specified as one of the following:

• 'none' — The signals in the source have no time information.
• 'sampleRate' — The signals in the source are sampled at a specified rate.
• 'sampleTime' — The signals in the source have a specified time interval between samples.
• 'timeValues — The signals in the source have a time value corresponding to each sample.
• 'inherent' — The signals in the source contain inherent time information. MATLAB timetables

are an example of such signals.

Data Types: char | string

Source — Data source of labeled signal set
matrix | cell array | timetable

This property is read-only.

Data source of labeled signal set, specified as a matrix, a timetable, a cell array, or an audio
datastore.

• If Source is a numeric matrix, then the labeled signal set has one member that contains a number
of signals equal to the number of matrix columns.

Example: labeledSignalSet(randn(10,3)) has one member that contains three 10-sample
signals.

• If Source is a cell array of matrices, then the labeled signal set has a number of members equal
to the number of matrices in the cell array. Each member contains a number of signals equal to
the number of columns of the corresponding matrix.

Example: labeledSignalSet({randn(10,3),randn(17,9)}) has two members. The first
member contains three 10-sample signals. The second member contains nine 17-sample signals.

• If Source is a cell array, and each element of the cell array is a cell array of numeric vectors, then
the labeled signal set has a number of members equal to the number of cell array elements. Each
signal within a member can have any length.

Example: labeledSignalSet({{randn(10,1)},{randn(17,1),randn(27,1)}}) has two
members. The first member contains one 10-sample signal. The second member contains a 17-
sample signal and a 27-sample signal.

• If Source is a timetable with variables containing numeric values, then the labeled signal set has
one member that contains a number of signals equal to the number of variables. The time values
of the timetable must be of type duration, unique, and increasing.

Example: labeledSignalSet(timetable(seconds(1:10)',randn(10,3))) has one
member that contains three signals sampled at 1 Hz for 10 seconds.

1 Functions

1-1198

• If Source is a cell array of timetables, and each timetable has an arbitrary number of variables
with numeric values, then the labeled signal set has a number of members equal to the number of
timetables. Each member contains a number of signals equal to the number of variables in the
corresponding timetable.

Example:
labeledSignalSet({timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1
:5)',randn(5,13))}) has two members. The first member contains three signals sampled at 1
Hz for 10 seconds. The second member contains 13 signals sampled at 1 Hz for 5 seconds.

• If Source is a cell array, and each element of the cell array is a cell array of timetables, then the
labeled signal set has a number of members equal to the number of cell array elements. Each
member can have any number of timetables, and each timetable within a member can have any
number of variables.

Example:
labeledSignalSet({{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(
1:7)',randn(7,2))},{timetable(seconds(1:3)',randn(3,1))}}) has two members.
The first member contains three signals sampled at 1 Hz for 10 seconds and two signals sampled
at 1 Hz for 7 seconds. The second member contains one signal sampled at 1 Hz for 3 seconds.

• If the input data source, src, is an audio datastore, then the labeled signal set has a number of
members equal to the number of files to which the datastore points. The Source property
contains a cell array of character vectors with the file names. Each member contains all the
signals returned by the read of the corresponding datastore file.

Object Functions
addLabelDefinitions Add label definitions to labeled signal set
addMembers Add members to labeled signal set
countLabelValues Count label values
createDatastores Create datastores pointing to signal and label data
editLabelDefinition Edit label definition properties
getLabelDefinitions Get label definitions in labeled signal set
getLabeledSignal Get labeled signals from labeled signal set
getLabelNames Get label names in labeled signal set
getLabelValues Get label values from labeled signal set
getMemberNames Get member names in labeled signal set
getSignal Get signals from labeled signal set
head Get top rows of labels table
labelDefinitionsHierarchy Get hierarchical list of label and sublabel names
labelDefinitionsSummary Get summary table of signal label definitions
merge Merge two or more labeled signal sets
removeLabelDefinition Remove label definition from labeled signal set
removeMembers Remove members from labeled signal set
removePointValue Remove row from point label
removeRegionValue Remove row from ROI label
resetLabelValues Reset labels to default values
setLabelValue Set label value in labeled signal set
setMemberNames Set member names in labeled signal set
subset Get new labeled signal set with subset of members

Examples

 labeledSignalSet

1-1199

Label Definitions for Whale Songs

Consider a set of whale sound recordings. The recorded whale sounds consist of trills and moans.
Trills sound like series of clicks. Moans are low-frequency cries similar to the sound made by a ship's
horn. You want to look at each signal and label it to identify the whale type, the trill regions, and the
moan regions. For each trill region, you also want to label the signal peaks higher than a certain
threshold.

Signal Label Definitions

Define an attribute label to store whale types. The possible categories are blue whale, humpback
whale, and white whale.

dWhaleType = signalLabelDefinition('WhaleType',...
 'LabelType','attribute',...
 'LabelDataType','categorical',...
 'Categories',{'blue','humpback','white'},...
 'Description','Whale type');

Define a region-of-interest (ROI) label to capture moan regions. Define another ROI label to capture
trill regions.

dMoans = signalLabelDefinition('MoanRegions',...
 'LabelType','roi',...
 'LabelDataType','logical',...
 'Description','Regions where moans occur');

dTrills = signalLabelDefinition('TrillRegions',...
 'LabelType','roi',...
 'LabelDataType','logical',...
 'Description','Regions where trills occur');

Finally, define a point label to capture the trill peaks. Set this label as a sublabel of the dTrills
definition.

dTrillPeaks = signalLabelDefinition('TrillPeaks',...
 'LabelType','point',...
 'LabelDataType','numeric',...
 'Description','Trill peaks');

dTrills.Sublabels = dTrillPeaks;

Labeled Signal Set

Create a labeledSignalSet with the whale signals and the label definitions. Add label values to
identify the whale type, the moan and trill regions, and the peaks of the trills.

load labelwhalesignals
lbldefs = [dWhaleType dMoans dTrills];

lss = labeledSignalSet({whale1 whale2},lbldefs,'MemberNames',{'Whale1','Whale2'}, ...
 'SampleRate',Fs,'Description','Characterize whale song regions');

Visualize the label hierarchy and label properties using labelDefinitionsHierarchy and
labelDefinitionsSummary.

labelDefinitionsHierarchy(lss)

1 Functions

1-1200

ans =
 'WhaleType
 Sublabels: []
 MoanRegions
 Sublabels: []
 TrillRegions
 Sublabels: TrillPeaks
 '

labelDefinitionsSummary(lss)

ans=3×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ____________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "MoanRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {0x0 double } "" "Regions where moans occur"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"

The signals in the loaded data correspond to songs of two blue whales. Set the 'WhaleType' values
for both signals.

setLabelValue(lss,1,'WhaleType','blue');
setLabelValue(lss,2,'WhaleType','blue');

Visualize the 'Labels' property. The table has the newly added 'WhaleType' values for both
signals.

lss.Labels

ans=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Whale1 blue {0x2 table} {0x3 table}
 Whale2 blue {0x2 table} {0x3 table}

Visualize Region Labels

Visualize the whale songs to identify the trill and moan regions.

subplot(2,1,1)
plot((0:length(whale1)-1)/Fs,whale1)
ylabel('Whale 1')

subplot(2,1,2)
plot((0:length(whale2)-1)/Fs,whale2)
ylabel('Whale 2')

 labeledSignalSet

1-1201

Moan regions are sustained low-frequency wails.

• whale1 has moans centered at about 7 seconds, 12 seconds, and 17 seconds.
• whale2 has moans centered at about 3 seconds, 7 seconds, and 16 seconds.

Add the moan regions to the labeled set. Specify the ROI limits in seconds and the label values.

moanRegionsWhale1 = [6.1 7.7; 11.4 13.1; 16.5 18.1];
mrsz1 = [size(moanRegionsWhale1,1) 1];
setLabelValue(lss,1,'MoanRegions',moanRegionsWhale1,true(mrsz1));

moanRegionsWhale2 = [2.5 3.5; 5.8 8; 15.4 16.7];
mrsz2 = [size(moanRegionsWhale2,1) 1];
setLabelValue(lss,2,'MoanRegions',moanRegionsWhale2,true(mrsz2));

Trill regions have distinct bursts of sound punctuated by silence.

• whale1 has a trill centered at about 2 seconds.
• whale2 has a trill centered at about 12 seconds.

Add the trill regions to the labeled set.

trillRegionWhale1 = [1.4 3.1];
trsz1 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,1,'TrillRegions',trillRegionWhale1,true(trsz1));

trillRegionWhale2 = [11.1 13];

1 Functions

1-1202

trsz2 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,2,'TrillRegions',trillRegionWhale2,true(trsz2));

Create a signalMask object for each whale song and use it to visualize and label the different
regions. For better visualization, change the label values from logical to categorical.

mr1 = getLabelValues(lss,1,'MoanRegions');
mr1.Value = categorical(repmat("moan",mrsz1));
tr1 = getLabelValues(lss,1,'TrillRegions');
tr1.Value = categorical(repmat("trill",trsz1));

msk1 = signalMask([mr1;tr1],'SampleRate',Fs);

subplot(2,1,1)
plotsigroi(msk1,whale1)
ylabel('Whale 1')
hold on

mr2 = getLabelValues(lss,2,'MoanRegions');
mr2.Value = categorical(repmat("moan",mrsz2));
tr2 = getLabelValues(lss,2,'TrillRegions');
tr2.Value = categorical(repmat("trill",trsz2));

msk2 = signalMask([mr2;tr2],'SampleRate',Fs);

subplot(2,1,2)
plotsigroi(msk2,whale2)
ylabel('Whale 2')
hold on

 labeledSignalSet

1-1203

Visualize Point Labels

Label three peaks for each trill region. For point labels, you specify the point locations and the label
values. In this example, the point locations are in seconds.

peakLocsWhale1 = [1.553 1.626 1.7];
peakValsWhale1 = [0.211 0.254 0.211];

setLabelValue(lss,1,{'TrillRegions','TrillPeaks'}, ...
 peakLocsWhale1,peakValsWhale1,'LabelRowIndex',1);

subplot(2,1,1)
plot(peakLocsWhale1,peakValsWhale1,'v')
hold off

peakLocsWhale2 = [11.214 11.288 11.437];
peakValsWhale2 = [0.119 0.14 0.15];

setLabelValue(lss,2,{'TrillRegions','TrillPeaks'}, ...
 peakLocsWhale2,peakValsWhale2,'LabelRowIndex',1);

subplot(2,1,2)
plot(peakLocsWhale2,peakValsWhale2,'v')
hold off

1 Functions

1-1204

Explore Label Values

Explore the label values using getLabelValues.

getLabelValues(lss)

ans=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Whale1 blue {3x2 table} {1x3 table}
 Whale2 blue {3x2 table} {1x3 table}

Retrieve the moan regions for the first member of the labeled set.

getLabelValues(lss,1,'MoanRegions')

ans=3×2 table
 ROILimits Value
 ____________ _____

 6.1 7.7 {[1]}
 11.4 13.1 {[1]}
 16.5 18.1 {[1]}

Use a second output argument to list the sublabels of a label.

 labeledSignalSet

1-1205

[value,valueWithSublabel] = getLabelValues(lss,1,'TrillRegions')

value=1×2 table
 ROILimits Value
 __________ _____

 1.4 3.1 {[1]}

valueWithSublabel=1×3 table
 ROILimits Value Sublabels
 TrillPeaks
 __________ _____ ___________

 1.4 3.1 {[1]} {3x2 table}

To retrieve the values in a sublabel, express the label name as a two-element array.

getLabelValues(lss,1,{'TrillRegions','TrillPeaks'})

ans=3×2 table
 Location Value
 ________ __________

 1.553 {[0.2110]}
 1.626 {[0.2540]}
 1.7 {[0.2110]}

Find the value of the third trill peak corresponding to the second member of the set.

getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
 'LabelRowIndex',1,'SublabelRowIndex',3)

ans=1×2 table
 Location Value
 ________ __________

 11.437 {[0.1500]}

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }
 {'laughter.mat'}
 {'mtlb.mat' }

1 Functions

1-1206

 {'splat.mat' }
 {'train.mat' }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet on page 1-1194 object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
 'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
 'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
 'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-0 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)

 [sig,info] = read(sds);
 fs = info.SampleRate;

 [~,fn] = fileparts(info.FileName);
 if fn=="handel" || fn=="laughter"
 setLabelValue(lss,kj,"Voice",true)
 end

 xm = find(islocalmax(sig,'MaxNumExtrema',1));
 setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

 N = length(sig);

 labeledSignalSet

1-1207

 rois = randROI(N,round(N/10),round(N/6));
 setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

 kj = kj+1;

end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
 Voice Count Percent
 _____ _____ _______

 false 4 66.667
 true 2 33.333

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
 Maximum Count Percent MemberCount
 ______________________ _____ _______ ___________

 0.80000000000000004441 1 16.667 1
 0.89113331915798421612 1 16.667 1
 0.94730769230769229505 1 16.667 1
 1 2 33.333 2
 1.0575668990330560071 1 16.667 1

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
 RanROI Count Percent MemberCount
 ______ _____ _______ ___________

 ROI 24 100 6
 other 0 0 0

Create two datastores with the data in the labeled signal set:

• The signalDatastore object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.

1 Functions

1-1208

• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

 [sg,nf] = read(sd);

 lbls = read(ld);

 nexttile

 msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);
 plotsigroi(msk,sg)
 colorbar off
 xlabel('')

 xline(lbls{:}.Maximum{:}.Location, ...
 'LineWidth',2,'Color','#EDB120')

 if lbls{:}.Voice{:}
 ylabel('VOICED','Color','#D95319')
 end

end

function roilims = randROI(N,wid,sep)

 labeledSignalSet

1-1209

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

See Also
Apps
Signal Labeler

Objects
signalLabelDefinition | signalMask

Introduced in R2018b

1 Functions

1-1210

addLabelDefinitions
Add label definitions to labeled signal set

Syntax
addLabelDefinitions(lss,lbldefs)
addLabelDefinitions(lss,lbldefs,lblname)

Description
addLabelDefinitions(lss,lbldefs) adds the labels defined in the vector of signal label
definitions lbldefs to the labeled signal set lss.

addLabelDefinitions(lss,lbldefs,lblname) adds the labels defined in lbldefs as sublabels
of the label lblname.

Examples

Add Label Definition

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a label definition that specifies whether a signal corresponds to a calf or to an adult whale.

calf = signalLabelDefinition('Calf','LabeldataType','logical','DefaultValue',false, ...
 'Description','Is the specimen a calf, or an adult?')

calf =
 signalLabelDefinition with properties:

 Name: "Calf"
 LabelType: "attribute"
 LabelDataType: "logical"
 ValidationFunction: []

 addLabelDefinitions

1-1211

 DefaultValue: 0
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Is the specimen a calf, or an adult?"

 Use labeledSignalSet to create a labeled signal set.

Add the definition to the labeled signal set. Retrieve the names of the labels.

addLabelDefinitions(lss,calf)

getLabelNames(lss)

ans = 4x1 string
 "WhaleType"
 "MoanRegions"
 "TrillRegions"
 "Calf"

Create a label definition that specifies the sex of the whale. Add the label to the set as a sublabel of
'WhaleType'.

sx = signalLabelDefinition('Sex','LabelDataType','categorical', ...
 'Categories',["male" "female"]);
addLabelDefinitions(lss,sx,'WhaleType')

labelDefinitionsHierarchy(lss)

ans =
 'WhaleType
 Sublabels: Sex
 MoanRegions
 Sublabels: []
 TrillRegions
 Sublabels: TrillPeaks
 Calf
 Sublabels: []
 '

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.

1 Functions

1-1212

Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or a string scalar.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 addLabelDefinitions

1-1213

addMembers
Add members to labeled signal set

Syntax
addMembers(lss,src)
addMembers(lss,src,tinfo)
addMembers(lss,src,tinfo,mnames)

Description
addMembers(lss,src) adds members to the labeled signal set lss from the input data source src.

addMembers(lss,src,tinfo) sets the time information for the new members to tinfo.

addMembers(lss,src,tinfo,mnames) sets the names of the new members to mnames. The length
of mnames must be equal to the number of new members.

Examples

Add Member to Labeled Signal Set

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the second member of the set and plot it.

[song,tinfo] = getSignal(lss,2);

t = (0:length(song)-1)/tinfo.SampleRate;

plot(t,song)

1 Functions

1-1214

Remove the first and last seconds of the retrieved signal.

song2 = song(t>1 & t<t(end)-1);
t2 = (0:length(song2)-1)/tinfo.SampleRate;

plot(t2,song2)

 addMembers

1-1215

Add the shorter signal as a new member of the labeled set.

addMembers(lss,song2)
lss

lss =
 labeledSignalSet with properties:

 Source: {3x1 cell}
 NumMembers: 3
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [3x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Flip the shorter signal upside-down and add it as a new member of the labeled set. Specify that the
new member is sampled at 1 kHz.

addMembers(lss,flipud(song2),1000)
lss.SampleRate

ans = 4×1

 4000

1 Functions

1-1216

 4000
 4000
 1000

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

src — Input data source
matrix | cell array | timetable | signalDatastore object | audioDatastore object

Input data source, specified as a matrix, a cell array, a timetable, a signalDatastore object, or an
audioDatastore object. The particular form of src depends on the “Source” on page 1-0
property of lss.

• If “Source” on page 1-0 is a cell array of matrices:

• Specify src as a matrix to add one member to the set.
• Specify src as a cell array of matrices to add multiple members to the set.

• If “Source” on page 1-0 is a cell array containing cell arrays of vectors:

• Specify src as a cell array of vectors to add one member to the set.
• Specify src as a cell array containing cell arrays of vectors to add multiple members to the set.

• If “Source” on page 1-0 is a cell array of timetables:

• Specify src as a timetable to add one member to the set.
• Specify src as a cell array of timetables to add multiple members to the set.

• If “Source” on page 1-0 is a datastore, then add members by setting src as another datastore
that points to new files.

Example: {randn(10,3),randn(17,9)} specifies two members. The first member contains three
10-sample signals. The second member contains nine 17-sample signals.
Example: {{randn(10,1)},{randn(17,1),randn(27,1)}} specifies two members. The first
member contains one 10-sample signal. The second member contains a 17-sample signal and a 27-
sample signal.
Example:
{{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1:7)',randn(7,2))},
{timetable(seconds(1:3)',randn(3,1))}} specifies two members. The first member contains
three signals sampled at 1 Hz for 10 seconds and two signals sampled at 1 Hz for 7 seconds. The
second member contains one signal sampled at 1 Hz for 3 seconds.

 addMembers

1-1217

Example: signalDatastore Object Pointing to Files

Specify the path to a set of sample sound signals included as MAT-files with MATLAB®. Each file
contains a signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }
 {'laughter.mat'}
 {'mtlb.mat' }
 {'splat.mat' }
 {'train.mat' }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat,
which differs from the other files in that the signal variable is not called y.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sdss = subset(sds,~strcmp(nms,"mtlb.mat"));

Use the subset datastore as the source for a labeledSignalSet object.

lss = labeledSignalSet(sdss)

lss =
 labeledSignalSet with properties:

 Source: [1x1 signalDatastore]
 NumMembers: 6
 TimeInformation: "inherent"
 Labels: [6x0 table]
 Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

tinfo — Time information for new members
scalar | vector | matrix | duration scalar | duration vector

Time information for new members, specified as a scalar, a vector, a matrix, a duration scalar, or a
duration vector. This argument is valid only if the “TimeInformation” on page 1-0 property of lss
is 'sampleRate', 'sampleTime', or 'timeValues'.

• If “TimeInformation” on page 1-0 is 'sampleRate', then tinfo specifies sample rate values.
• If “TimeInformation” on page 1-0 is 'sampleTime', then tinfo specifies sample time values.
• If “TimeInformation” on page 1-0 is 'timeValues', then tinfo specifies time values.

If you add multiple members to a set, then specifying only one value of tinfo sets the same value for
all members. If you want to specify a different value for each new member, then set tinfo to have
multiple values.

1 Functions

1-1218

When no source has been specified, or when the labeled signal set source is empty, you can change
the “TimeInformation” on page 1-0 property to 'sampleRate', 'sampleTime', or
'timeValues' to make lss interpret tinfo correctly.
Example: addMembers(ks,{randn(10,5),randn(10,3)},seconds([1 2])) adds two new
members with different time information to ks =
labeledSignalSet(randn(10,3),'SampleTime',seconds(1)).
Example: addMembers(ks,{randn(10,5),randn(10,3)},[1:10;2:2:20]') adds two new
members with different time information to ks =
labeledSignalSet(randn(10,3),'TimeValues',1:10).

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 addMembers

1-1219

concatenate
Concatenate two or more labeled signal sets

Syntax
lssnew = concatenate(lss1,...,lssN)

Description
lssnew = concatenate(lss1,...,lssN) concatenates N labeled signal set objects,
lss1,...,lssN, and returns a labeled signal set lssnew containing all the members and label
values of the input sets.

Examples

Concatenate Labeled Signal Sets

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a new signal set with the same data source, time information, and labels as lss.

newlss = copy(lss)

newlss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.

1 Functions

1-1220

 Use setLabelValue to add data to the set.

Concatenate the two signal sets.

lssconcat = concatenate(lss,newlss)

lssconcat =
 labeledSignalSet with properties:

 Source: {4x1 cell}
 NumMembers: 4
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [4x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Input Arguments
lss1,...,lssN — Input labeled signal sets
labeledSignalSet objects

Input labeled signal sets, specified as labeledSignalSet objects. All input sets must have the same
time information settings, label definitions, and data source type.

Output Arguments
lssnew — Concatenated labeled signal set
labeledSignalSet object

Concatenated labeled signal set, returned as a labeledSignalSet object. The set lssnew contains
a signal source, label definitions, and label values that are independent of those in the input labeled
signal sets. Changing any of the input labeled signal sets does not affect the concatenated labeled
signal set. Changing the concatenated labeled signal set does not affect the input label signal sets.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 concatenate

1-1221

countLabelValues
Count label values

Syntax
cnt = countLabelValues(lss,lblname)

Description
cnt = countLabelValues(lss,lblname) counts the values of the label named lblname and
returns results in table cnt. cnt contains label value counts and percentages. When lblname is an
ROI or point label, cnt also contains the number of members with at least one value of a particular
category. countLabelValues does not support:

• Sublabels
• Label definitions with the LabelDataType property set to 'table' or 'timetable'
• Labels with instance values that cannot be converted to a vector with a discrete set of categories.

It must be possible to group label values using a set of unique discrete categories. Examples of
labels that are not supported include:

• Cell arrays of timetables
• Cell arrays containing matrices of different sizes

Examples

Count Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names of the labels in the set.

getLabelNames(lss)

1 Functions

1-1222

ans = 3x1 string
 "WhaleType"
 "MoanRegions"
 "TrillRegions"

Verify that the two members of the set are blue whales.

countLabelValues(lss,"WhaleType")

ans=3×3 table
 WhaleType Count Percent
 _________ _____ _______

 blue 2 100
 humpback 0 0
 white 0 0

Verify that each member has three moan regions.

countLabelValues(lss,"MoanRegions")

ans=2×4 table
 MoanRegions Count Percent MemberCount
 ___________ _____ _______ ___________

 false 0 0 0
 true 6 100 2

Verify that each member has one trill region.

countLabelValues(lss,"TrillRegions")

ans=2×4 table
 TrillRegions Count Percent MemberCount
 ____________ _____ _______ ___________

 false 0 0 0
 true 2 100 2

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }

 countLabelValues

1-1223

 {'laughter.mat'}
 {'mtlb.mat' }
 {'splat.mat' }
 {'train.mat' }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet on page 1-1194 object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
 'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
 'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
 'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-0 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)

 [sig,info] = read(sds);
 fs = info.SampleRate;

 [~,fn] = fileparts(info.FileName);
 if fn=="handel" || fn=="laughter"
 setLabelValue(lss,kj,"Voice",true)
 end

 xm = find(islocalmax(sig,'MaxNumExtrema',1));
 setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

1 Functions

1-1224

 N = length(sig);
 rois = randROI(N,round(N/10),round(N/6));
 setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

 kj = kj+1;

end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
 Voice Count Percent
 _____ _____ _______

 false 4 66.667
 true 2 33.333

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
 Maximum Count Percent MemberCount
 ______________________ _____ _______ ___________

 0.80000000000000004441 1 16.667 1
 0.89113331915798421612 1 16.667 1
 0.94730769230769229505 1 16.667 1
 1 2 33.333 2
 1.0575668990330560071 1 16.667 1

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
 RanROI Count Percent MemberCount
 ______ _____ _______ ___________

 ROI 24 100 6
 other 0 0 0

Create two datastores with the data in the labeled signal set:

• The signalDatastore object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

 countLabelValues

1-1225

• Use a signalMask object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

 [sg,nf] = read(sd);

 lbls = read(ld);

 nexttile

 msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);
 plotsigroi(msk,sg)
 colorbar off
 xlabel('')

 xline(lbls{:}.Maximum{:}.Location, ...
 'LineWidth',2,'Color','#EDB120')

 if lbls{:}.Voice{:}
 ylabel('VOICED','Color','#D95319')
 end

end

1 Functions

1-1226

function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
cnt — Results table
table

Results table, returned as a table with the following variables:

• Count — Number of label values for a particular category.
• Percent — Number of label values for a particular category as a percentage of all label values.
• MemberCount — Number of members with at least one value of a particular category. This

variable is returned only for an ROI or a point label.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2021a

 countLabelValues

1-1227

createDatastores
Create datastores pointing to signal and label data

Syntax
[sigdata,lbldata] = createDatastores(lss,lblnames)

Description
[sigdata,lbldata] = createDatastores(lss,lblnames) creates a datastore, sigdata,
containing signal member data, and a datastore, lbldata, containing label data from labels specified
in the string array lblnames. createDatastores does not apply to sublabels. Set lblnames to one
or more parent label names to get the parent labels and the corresponding sublabel values.

Examples

Create Datastores

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Display the labels for the first member of the set.

lss.Labels(1,:)

ans=1×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Member{1} blue {3x2 table} {1x3 table}

Get the names of the labels in the set. Create a signal datastore with the signal information and an
array datastore with the label information.

1 Functions

1-1228

lbls = getLabelNames(lss);
[sgd,lbd] = createDatastores(lss,lbls)

sgd =
 signalDatastore with properties:

 MemberNames:{
 'Member{1}';
 'Member{2}'
 }
 Members: {2x1 cell}
 ReadSize: 1
 SampleRate: 4000

lbd =
 ArrayDatastore with properties:

 ReadSize: 1
 IterationDimension: 1
 OutputType: "cell"

Display the labels for the first member of the set.

lbls = read(lbd);
lbls{:}

ans=1×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 blue {3x2 table} {1x3 table}

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }
 {'laughter.mat'}
 {'mtlb.mat' }
 {'splat.mat' }
 {'train.mat' }

 createDatastores

1-1229

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet on page 1-1194 object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
 'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
 'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
 'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-0 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)

 [sig,info] = read(sds);
 fs = info.SampleRate;

 [~,fn] = fileparts(info.FileName);
 if fn=="handel" || fn=="laughter"
 setLabelValue(lss,kj,"Voice",true)
 end

 xm = find(islocalmax(sig,'MaxNumExtrema',1));
 setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

 N = length(sig);
 rois = randROI(N,round(N/10),round(N/6));
 setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

 kj = kj+1;

1 Functions

1-1230

end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
 Voice Count Percent
 _____ _____ _______

 false 4 66.667
 true 2 33.333

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
 Maximum Count Percent MemberCount
 ______________________ _____ _______ ___________

 0.80000000000000004441 1 16.667 1
 0.89113331915798421612 1 16.667 1
 0.94730769230769229505 1 16.667 1
 1 2 33.333 2
 1.0575668990330560071 1 16.667 1

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
 RanROI Count Percent MemberCount
 ______ _____ _______ ___________

 ROI 24 100 6
 other 0 0 0

Create two datastores with the data in the labeled signal set:

• The signalDatastore object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
• Add a red axis label to the signals that contain human voices.

tiledlayout flow

 createDatastores

1-1231

while hasdata(sd)

 [sg,nf] = read(sd);

 lbls = read(ld);

 nexttile

 msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);
 plotsigroi(msk,sg)
 colorbar off
 xlabel('')

 xline(lbls{:}.Maximum{:}.Location, ...
 'LineWidth',2,'Color','#EDB120')

 if lbls{:}.Voice{:}
 ylabel('VOICED','Color','#D95319')
 end

end

function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

1 Functions

1-1232

end

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblnames — Label names
character vector | string scalar | cell array of character vectors | string array

Label names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Data Types: char | string

Output Arguments
sigdata — Signal data
signalDatastore object | audioDatastore object

Signal data, returned as a signalDatastore object or an audioDatastore object.

lbldata — Label data
arrayDatastore object

Label data, returned as an arrayDatastore object.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2021a

 createDatastores

1-1233

editLabelDefinition
Edit label definition properties

Syntax
editLabelDefinition(lss,lblname,propname,val)

Description
editLabelDefinition(lss,lblname,propname,val) changes the propname property of the
label or sublabel definition lblname to val.

The function can edit only the “Name” on page 1-0 , “DefaultValue” on page 1-0 , “Tag” on page
1-0 , “Description” on page 1-0 , and “Categories” on page 1-0 properties. To change any
other property of the label definition, remove the definition using removeLabelDefinition and add
a definition with the desired property values using addLabelDefinitions.

• If you edit the “DefaultValue” on page 1-0 property, all existing label values remain
unchanged. The new default value applies only to new members, new regions, or new points.

• You can edit the “Categories” on page 1-0 property only when the “LabelDataType” on page 1-
0 of the target label or sublabel definition is 'Categorical'.

New specified categories do not replace any existing categories. They are appended to the existing
values.

Examples

Edit Label Definition

Load a labeled signal set containing recordings of whale songs. Get the names of the labels.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

getLabelNames(lss)

1 Functions

1-1234

ans = 3x1 string
 "WhaleType"
 "MoanRegions"
 "TrillRegions"

The first label corresponds to the type of whale. Get the types available in the set.

lbldefs = getLabelDefinitions(lss);
types = lbldefs(1)

types =
 signalLabelDefinition with properties:

 Name: "WhaleType"
 LabelType: "attribute"
 LabelDataType: "categorical"
 Categories: [3x1 string]
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Whale type"

 Use labeledSignalSet to create a labeled signal set.

types = types.Categories

types = 3x1 string
 "blue"
 "humpback"
 "white"

Modify the label to incorporate sperm whales and killer whales. Verify that the labeled signal set
includes the two new whale types.

editLabelDefinition(lss,'WhaleType', ...
 'Categories',{'sperm','killer'})

lbldefs = getLabelDefinitions(lss);
types = lbldefs(1).Categories

types = 5x1 string
 "blue"
 "humpback"
 "white"
 "sperm"
 "killer"

The definition for trill regions has a sublabel that identifies peaks.

lbldefs(3).Sublabels

ans =
 signalLabelDefinition with properties:

 Name: "TrillPeaks"
 LabelType: "point"

 editLabelDefinition

1-1235

 LabelDataType: "numeric"
 ValidationFunction: []
 PointLocationsDataType: "double"
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Trill peaks"

 Use labeledSignalSet to create a labeled signal set.

Change the description of the sublabel.

editLabelDefinition(lss,["TrillRegions" "TrillPeaks"],'Description','Peaks of trill regions')

lbldefs = getLabelDefinitions(lss);
lbldefs(3).Sublabels

ans =
 signalLabelDefinition with properties:

 Name: "TrillPeaks"
 LabelType: "point"
 LabelDataType: "numeric"
 ValidationFunction: []
 PointLocationsDataType: "double"
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Peaks of trill regions"

 Use labeledSignalSet to create a labeled signal set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

1 Functions

1-1236

propname — Property name
'Name' | 'DefaultValue' | 'Tag' | 'Description' | 'Categories'

Property name, specified as 'Name', 'DefaultValue', 'Tag', 'Description', or
'Categories'.
Data Types: char | string

val — Property value
numeric value | logical value | character vector | string | vector of strings | cell array of character
vectors

Label values, specified as a numeric or logical value, a character vector or string, a vector of strings,
or a cell array of character vectors. val must be of the data type specified for propname.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 editLabelDefinition

1-1237

getLabelDefinitions
Get label definitions in labeled signal set

Syntax
lbldefs = getLabelDefinitions(lss)

Description
lbldefs = getLabelDefinitions(lss) returns a vector of signalLabelDefinition objects
with the labels of the labeled signal set lss.

Changing lbldefs does not affect the labeled set. To modify label definitions, use
editLabelDefinition, addLabelDefinitions, and removeLabelDefinition.

Examples

Get Label Definitions

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the definitions of the labels in the set.

dfs = getLabelDefinitions(lss);

for k = 1:length(dfs)
 dfs(k)
end

ans =
 signalLabelDefinition with properties:

 Name: "WhaleType"
 LabelType: "attribute"

1 Functions

1-1238

 LabelDataType: "categorical"
 Categories: [3x1 string]
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Whale type"

 Use labeledSignalSet to create a labeled signal set.

ans =
 signalLabelDefinition with properties:

 Name: "MoanRegions"
 LabelType: "roi"
 LabelDataType: "logical"
 ValidationFunction: []
 ROILimitsDataType: "double"
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: "Regions where moans occur"

 Use labeledSignalSet to create a labeled signal set.

ans =
 signalLabelDefinition with properties:

 Name: "TrillRegions"
 LabelType: "roi"
 LabelDataType: "logical"
 ValidationFunction: []
 ROILimitsDataType: "double"
 DefaultValue: []
 Sublabels: [1x1 signalLabelDefinition]
 Tag: ""
 Description: "Regions where trills occur"

 Use labeledSignalSet to create a labeled signal set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
lbldefs — Signal label definitions
signalLabelDefinition object

Signal label definitions, returned as a signalLabelDefinition object or a vector of such objects.

 getLabelDefinitions

1-1239

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1240

getLabeledSignal
Get labeled signals from labeled signal set

Syntax
[t,info] = getLabeledSignal(lss)
[t,info] = getLabeledSignal(lss,midx)

Description
[t,info] = getLabeledSignal(lss) returns a table with all the signals and labeled data in the
labeled signal set lss.

[t,info] = getLabeledSignal(lss,midx) returns a table with the signals specified in midx.

Examples

Get Labeled Signal

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get a table with all the signals in lss.

t = getLabeledSignal(lss)

t=2×4 table
 Signal WhaleType MoanRegions TrillRegions
 ________________ _________ ___________ ____________

 Member{1} {79572x1 double} blue {3x2 table} {1x3 table}
 Member{2} {76579x1 double} blue {3x2 table} {1x3 table}

Identify the sublabels of the trill regions.

 getLabeledSignal

1-1241

d = getLabelNames(lss,'TrillRegions')

d =
"TrillPeaks"

Get the labeled signal corresponding to the second member of the set. Determine the sample rate.

idx = 2;

[lbs,info] = getLabeledSignal(lss,idx)

lbs=1×4 table
 Signal WhaleType MoanRegions TrillRegions
 ________________ _________ ___________ ____________

 Member{2} {76579x1 double} blue {3x2 table} {1x3 table}

info = struct with fields:
 TimeInformation: "sampleRate"
 SampleRate: 4000

fs = info.SampleRate;

Identify the moan and trill regions of interest. Use a signalMask object to plot the signal and
highlight the moans and trills.

mvals = getLabelValues(lss,idx,'MoanRegions');
tvals = getLabelValues(lss,idx,'TrillRegions');

tb = [mvals;tvals];
tb.Value = categorical(...
 [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
 ["moan" "trill"]);
sm = signalMask(tb,"SampleRate",fs);
plotsigroi(sm,getSignal(lss,idx))

1 Functions

1-1242

Identify three peaks of the trill region and plot them.

peaks = getLabelValues(lss,idx,{'TrillRegions','TrillPeaks'});

hold on
pk = plot(peaks.Location,cell2mat(peaks.Value),'v');
hold off
legend(pk,'trill peaks')

 getLabeledSignal

1-1243

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

Output Arguments
t — Labeled signal
table

Labeled signal, specified as a table.

1 Functions

1-1244

info — Time information
structure

Time information, returned as a structure.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 getLabeledSignal

1-1245

getLabelNames
Get label names in labeled signal set

Syntax
lblnames = getLabelNames(lss)
sublblnames = getLabelNames(lss,lblname)

Description
lblnames = getLabelNames(lss) returns a string array containing the label names in the
labeled signal set lss.

sublblnames = getLabelNames(lss,lblname) returns a string array containing the sublabel
names for the label named lblname in the labeled signal set lss.

Examples

Get Label Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names of the labels in the set.

str = getLabelNames(lss)

str = 3x1 string
 "WhaleType"
 "MoanRegions"
 "TrillRegions"

Verify that only the 'TrillRegions' label has sublabels.

1 Functions

1-1246

for kj = 1:length(str)
 sbstr = str{kj};
 sbl = [sbstr getLabelNames(lss,sbstr)]
end

sbl =
'WhaleType'

sbl =
'MoanRegions'

sbl = 1x2 string
 "TrillRegions" "TrillPeaks"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or a string scalar.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.

Output Arguments
lblnames — Label names
string array

Label names, returned as a string array.

sublblnames — Sublabel names
string array

Sublabel names, returned as a string array.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 getLabelNames

1-1247

getLabelValues
Get label values from labeled signal set

Syntax
val = getLabelValues(lss)
val = getLabelValues(lss,midx)

[val,sublbltbl] = getLabelValues(lss,midx,lblname)

[___] = getLabelValues(___ ,'LabelRowIndex',ridx)
[___] = getLabelValues(___ ,'SublabelRowIndex',sridx)

Description
val = getLabelValues(lss) returns a table containing the label values for all members of the
labeled signal set lss.

val = getLabelValues(lss,midx) returns a table containing the label values for the member
specified by midx.

[val,sublbltbl] = getLabelValues(lss,midx,lblname) returns the value of the label
named lblname. If lblname has sublabels, then the table sublbltbl shows the structure of the
label value and its sublabel variables.

[___] = getLabelValues(___ ,'LabelRowIndex',ridx) specifies the row index, ridx, of an
ROI or point label whose value you want to get.

[___] = getLabelValues(___ ,'SublabelRowIndex',sridx) specifies the row index, sridx,
of an ROI or point sublabel whose value you want to get.

Examples

Get Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

1 Functions

1-1248

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the values of the labels.

lbls = getLabelValues(lss)

lbls=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Member{1} blue {3x2 table} {1x3 table}
 Member{2} blue {3x2 table} {1x3 table}

Display the moan ROI limits for the second signal of the set.

lbb = getLabelValues(lss,2,'MoanRegions')

lbb=3×2 table
 ROILimits Value
 ____________ _____

 2.5 3.5 {[1]}
 5.8 8 {[1]}
 15.4 16.7 {[1]}

Plot the trill region of the signal between the ROI limits. Display the labeled trill peaks.

tvals = getLabelValues(lss,2,'TrillRegions');
peaks = getLabelValues(lss,2,{'TrillRegions','TrillPeaks'});

sg = getSignal(lss,2);
plot((0:length(sg)-1)/lss.SampleRate,sg)
xlim(tvals.ROILimits)
hold on
plot(peaks.Location,cell2mat(peaks.Value),'v')
hold off

 getLabelValues

1-1249

Display the coordinates of the third trill peak.

pcoor = getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
 'LabelRowIndex',1,'SublabelRowIndex',3)

pcoor=1×2 table
 Location Value
 ________ __________

 11.437 {[0.1500]}

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

1 Functions

1-1250

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

Output Arguments
val — Label values
table

Label values, returned as a table.

sublbltbl — Sublabel values
table

Sublabel values, returned as a table showing the structure of the label value and its sublabel
variables.

• If lblname has no sublabels, then sublbltbl is empty.
• If you specify lblname as a string or cell array, then sublbltbl is empty.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 getLabelValues

1-1251

getMemberNames
Get member names in labeled signal set

Syntax
mnames = getMemberNames(lss)

Description
mnames = getMemberNames(lss) returns a string array containing the member names in the
order in which they are stored in the labeled signal set lss.

Examples

Get Member Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Return a string array with the names of the members.

getMemberNames(lss)

ans = 2x1 string
 "Member{1}"
 "Member{2}"

Set the names of the set members to the whales' nicknames.

setMemberNames(lss,{'Brutus' 'Lucy'})

Verify that the members have the nicknames as names.

getMemberNames(lss)

1 Functions

1-1252

ans = 2x1 string
 "Brutus"
 "Lucy"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
mnames — Member names
string array

Member names, returned as a string array.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 getMemberNames

1-1253

getSignal
Get signals from labeled signal set

Syntax
[s,info] = getSignal(lss,midx)

Description
[s,info] = getSignal(lss,midx) returns the values for the signals contained in member midx
of the labeled signal set lss.

Examples

Get Signal

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the second member of the set and plot it.

[song,tinfo] = getSignal(lss,2);
t = (0:length(song)-1)/tinfo.SampleRate;
plot(t,song)

1 Functions

1-1254

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

Output Arguments
s — Signal values
vector | matrix | timetable | cell array

Signal values, returned as vector, matrix, timetable, or cell array.

 getSignal

1-1255

info — Time information
structure

Time information, returned as a structure.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1256

head
Get top rows of labels table

Syntax
val = head(lss)

Description
val = head(lss) returns the top rows of the labels table of the labeled signal set lss.

Examples

Top Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the top rows of the labels table.

head(lss)

ans=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Member{1} blue {3x2 table} {1x3 table}
 Member{2} blue {3x2 table} {1x3 table}

Input Arguments
lss — Labeled signal set
labeledSignalSet object

 head

1-1257

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
val — Top rows of labels
table

Top rows of labels, returned as a table.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1258

merge
Merge two or more labeled signal sets

Syntax
lssnew = merge(lss1,...,lssN)

Description
lssnew = merge(lss1,...,lssN) merges N labeled signal set objects, lss1,...,lssN, and
returns a labeled signal set lssnew containing all the members and label values of the input sets.

Examples

Merge Labeled Signal Sets

Load a labeled signal set containing recordings of whale songs. Display the names of the set's
members and a summary of its label definitions.

load whales

getMemberNames(lss)

ans = 2x1 string
 "Member{1}"
 "Member{2}"

labelDefinitionsSummary(lss)

ans=3×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ____________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "MoanRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {0x0 double } "" "Regions where moans occur"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"

Create a new signal set with the same data source, time information, and labels as lss. Remove the
first member of the new set and change the name of the remaining one. Display the names of the new
set's members.

newlss = copy(lss);

removeMembers(newlss,1)
setMemberNames(newlss,"YoungOne")

getMemberNames(newlss)

ans =
"YoungOne"

 merge

1-1259

Create a label definition that specifies whether a signal corresponds to a calf or to an adult whale.
Add the definition to the new labeled signal set and label the member. Remove the label that specifies
the moan regions. Display a summary of the new member's label definitions

calf = signalLabelDefinition('Calf','LabeldataType','logical','DefaultValue',false, ...
 'Description','Is the specimen a calf, or an adult?');

addLabelDefinitions(newlss,calf)
setLabelValue(newlss,1,"Calf",true)

removeLabelDefinition(newlss,"MoanRegions")
labelDefinitionsSummary(newlss)

ans=3×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ______________________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"
 "Calf" "attribute" "logical" {["N/A"]} {0x0 double} {[0]} {0x0 double } "" "Is the specimen a calf, or an adult?"

Merge the two labeled signal sets. Verify that the merged set contains the members, definitions, and
labels of the original sets.

lssmerge = merge(lss,newlss);

getMemberNames(lssmerge)

ans = 3x1 string
 "Member{1}"
 "Member{2}"
 "YoungOne"

labelDefinitionsSummary(lssmerge)

ans=4×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ______________________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "MoanRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {0x0 double } "" "Regions where moans occur"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"
 "Calf" "attribute" "logical" {["N/A"]} {0x0 double} {[0]} {0x0 double } "" "Is the specimen a calf, or an adult?"

Input Arguments
lss1,...,lssN — Input labeled signal sets
labeledSignalSet objects

Input labeled signal sets, specified as labeledSignalSet objects. All input sets must have the same
time information settings and data source type.

1 Functions

1-1260

Output Arguments
lssnew — Merged labeled signal set
labeledSignalSet object

Merged labeled signal set, returned as a labeledSignalSet object. The set lssnew contains a
signal source, label definitions, and label values that are independent of those in the input labeled
signal sets.

• Changing any of the input labeled signal sets does not affect the merged labeled signal set.
• Changing the merged labeled signal set does not affect any of the input labeled signal sets.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2020a

 merge

1-1261

removeLabelDefinition
Remove label definition from labeled signal set

Syntax
removeLabelDefinition(lss,lblname)

Description
removeLabelDefinition(lss,lblname) removes the label definition lblname from the labeled
signal set lss. If you want to remove a sublabel, specify lblname as a two-element string array or
two-element cell array of character vectors:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Examples

Remove Label Definition

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve a hierarchical list of labels and sublabels.

labelDefinitionsHierarchy(lss)

ans =
 'WhaleType
 Sublabels: []
 MoanRegions
 Sublabels: []
 TrillRegions
 Sublabels: TrillPeaks

1 Functions

1-1262

 '

Remove the sublabel that labels peaks in the trill regions.

removeLabelDefinition(lss,{'TrillRegions' 'TrillPeaks'})

labelDefinitionsHierarchy(lss)

ans =
 'WhaleType
 Sublabels: []
 MoanRegions
 Sublabels: []
 TrillRegions
 Sublabels: []
 '

Remove the label that specifies the whale type.

removeLabelDefinition(lss,"WhaleType")

getLabelNames(lss)

ans = 2x1 string
 "MoanRegions"
 "TrillRegions"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

 removeLabelDefinition

1-1263

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1264

removeMembers
Remove members from labeled signal set

Syntax
removeMembers(lss,midxvect)

Description
removeMembers(lss,midxvect) removes the members specified in midxvect from the labeled
signal set lss.

Examples

Remove Member

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Remove the second member of the set.

removeMembers(lss,2)
lss

lss =
 labeledSignalSet with properties:

 Source: {[79572x1 double]}
 NumMembers: 1
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [1x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.

 removeMembers

1-1265

 Use setLabelValue to add data to the set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midxvect — Subset member row numbers
vector of positive integers

Subset member row numbers, specified as a vector of positive integers. Each element of midxvect
specifies a member row number as it appears in the “Labels” on page 1-0 table of the
labeledSignalSet object lss.
Example: [2 3 5 7 11 13 17] chooses a subset of signals indexed by prime numbers.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1266

removePointValue
Remove row from point label

Syntax
removePointValue(lss,midx,lblname)
removePointValue(lss,midx,lblname,'LabelRowIndex',ridx)
removePointValue(lss,midx,lblname,'SublabelRowIndex',sridx)
removePointValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx)

Description
removePointValue(lss,midx,lblname) removes all rows of the point label lblname for the
member specified by midx.

• If lblname is a character vector or a string scalar, the function targets a parent label.
• If lblname is a two-element string array or a two-element cell array of character vectors, the

function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of a point label.
• Removes all the points of the sublabel.

removePointValue(lss,midx,lblname,'LabelRowIndex',ridx) removes a row, specified by
ridx, of the point label lblname for the member midx.

If lblname is a two-element string array or a two-element cell array of character vectors, the
function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of a point label.
• Removes all the points of the sublabel contained in row ridx.

removePointValue(lss,midx,lblname,'SublabelRowIndex',sridx) removes the sublabel
row specified by sridx. In this case, lblname must be a two-element string array or a two-element
cell array of character vectors:

• The first element is the name of a parent attribute label.
• The second element is the sublabel name of a point label.

removePointValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx) removes the sublabel row specified by sridx of the ROI or point label row specified by ridx.
In this case, lblname must be a two-element string array or a two-element cell array of character
vectors:

• The first element is the name of a parent ROI or point label.
• The second element is the sublabel name of a point label.

 removePointValue

1-1267

Examples

Remove Point Value

Load a labeled signal set containing recordings of whale songs. Get the names of the labels and the
number of members.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

nm = lss.NumMembers;

Define a point label associated with the signal maximum.

themax = signalLabelDefinition('Maximum','LabelType','point', ...
 'LabelDataType','numeric')

themax =
 signalLabelDefinition with properties:

 Name: "Maximum"
 LabelType: "point"
 LabelDataType: "numeric"
 ValidationFunction: []
 PointLocationsDataType: "double"
 DefaultValue: []
 Sublabels: [0x0 signalLabelDefinition]
 Tag: ""
 Description: ""

 Use labeledSignalSet to create a labeled signal set.

addLabelDefinitions(lss,themax)

Find the maxima of the signals and add their values to the labeled set.

figure
for idx = 1:nm
 sg = getSignal(lss,idx);
 [mx,ix] = max(sg);
 setLabelValue(lss,idx,'Maximum',ix,mx)

 subplot(nm,1,idx)

1 Functions

1-1268

 plot((0:length(sg)-1)/lss.SampleRate,sg,ix/lss.SampleRate,mx,'*')
end

Verify that the set includes the new point label.

getLabelValues(lss)

ans=2×4 table
 WhaleType MoanRegions TrillRegions Maximum
 _________ ___________ ____________ ___________

 Member{1} blue {3x2 table} {1x3 table} {1x2 table}
 Member{2} blue {3x2 table} {1x3 table} {1x2 table}

Remove the 'Maximum' value for the first member of the set. Verify that the label is empty for the
first member.

removePointValue(lss,1,'Maximum')

getLabelValues(lss,1)

ans=1×4 table
 WhaleType MoanRegions TrillRegions Maximum
 _________ ___________ ____________ ___________

 Member{1} blue {3x2 table} {1x3 table} {0x2 table}

 removePointValue

1-1269

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1270

removeRegionValue
Remove row from ROI label

Syntax
removeRegionValue(lss,midx,lblname)
removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx)
removeRegionValue(lss,midx,lblname,'SublabelRowIndex',sridx)
removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx)

Description
removeRegionValue(lss,midx,lblname) removes all rows of the ROI label lblname for the
member specified by midx.

• If lblname is a character vector or a string scalar, the function targets a parent label.
• If lblname is a two-element string array or a two-element cell array of character vectors, the

function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of an ROI label.
• Removes all the regions of the sublabel.

removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx) removes a row, specified by
ridx, of the ROI label lblname for the member midx.

If lblname is a two-element string array or a two-element cell array of character vectors, the
function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of an ROI label.
• Removes all the regions of the sublabel contained in row ridx.

removeRegionValue(lss,midx,lblname,'SublabelRowIndex',sridx) removes the sublabel
row specified by sridx. In this case, lblname must be a two-element string array or a two-element
cell array of character vectors:

• The first element is the name of a parent attribute label.
• The second element is the sublabel name of an ROI label.

removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx) removes the sublabel row specified by sridx of the ROI or point label row specified by ridx.
In this case, lblname must be a two-element string array or a two-element cell array of character
vectors:

• The first element is the name of a parent ROI or point label.
• The second element is the sublabel name of an ROI label.

 removeRegionValue

1-1271

Examples

Remove Region Value

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names and values of the labels in the set. For the following, concentrate on the second
member of the set.

lbldefs = getLabelValues(lss)

lbldefs=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Member{1} blue {3x2 table} {1x3 table}
 Member{2} blue {3x2 table} {1x3 table}

idx = 2;

Retrieve the moan and trill regions. Use a signalMask object to plot the signal and highlight the
moans and trills.

mvals = getLabelValues(lss,idx,'MoanRegions');
tvals = getLabelValues(lss,idx,'TrillRegions');

tb = [mvals;tvals];
tb.Value = categorical(...
 [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
 ["moan" "trill"]);

sm = signalMask(tb,"SampleRate",lss.SampleRate);

plotsigroi(sm,getSignal(lss,idx))

1 Functions

1-1272

Remove the second moan from the labels. Plot the signal again. Highlight the moans and trills.

removeRegionValue(lss,idx,'MoanRegions','LabelRowIndex',2)

mvals = getLabelValues(lss,idx,'MoanRegions');

tb = [mvals;tvals];
tb.Value = categorical(...
 [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
 ["moan" "trill"]);

sm = signalMask(tb,"SampleRate",lss.SampleRate);

plotsigroi(sm,getSignal(lss,idx))

 removeRegionValue

1-1273

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.

1 Functions

1-1274

• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

 removeRegionValue

1-1275

resetLabelValues
Reset labels to default values

Syntax
resetLabelValues(lss)
resetLabelValues(lss,midx)

resetLabelValues(lss,midx,lblname)
resetLabelValues(___ ,'LabelRowIndex',ridx)

Description
resetLabelValues(lss) resets all label values for all members of the labeled signal set lss.

resetLabelValues(lss,midx) resets all label values for the signals in the member specified by
midx.

resetLabelValues(lss,midx,lblname) resets the values of label lblname for the signals in the
member specified by midx. To reset a sublabel, make lblname a two-element string array or a two-
element cell array of character vectors, with the first element containing the parent label name and
the second element containing the sublabel name.

By default, the function resets all sublabels of a parent label. To target a sublabel of an ROI or point
parent label, specify the parent label row index using ridx.

resetLabelValues(___ ,'LabelRowIndex',ridx) specifies the row index of the ROI or point
parent label for which you want to reset a sublabel value.

Examples

Reset Label Values

Load a labeled signal set containing recordings of whale songs. Get the names of the labels.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

1 Functions

1-1276

getLabelNames(lss)

ans = 3x1 string
 "WhaleType"
 "MoanRegions"
 "TrillRegions"

Get the label values corresponding to the trill regions for the second signal in the set.

idx = 2;
getLabelValues(lss,idx,'TrillRegions')

ans=1×2 table
 ROILimits Value
 ____________ _____

 11.1 13 {[1]}

Reset the values. Verify that 'TrillRegions' becomes an empty array.

resetLabelValues(lss,idx,'TrillRegions')

getLabelValues(lss,idx,'TrillRegions')

ans =

 0x2 empty table

getLabelValues(lss,idx)

ans=1×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Member{2} blue {3x2 table} {0x3 table}

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

 resetLabelValues

1-1277

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1278

setLabelValue
Set label value in labeled signal set

Syntax
setLabelValue(lss,midx,lblname,val)
setLabelValue(lss,midx,lblname,limits,val)
setLabelValue(lss,midx,lblname,locs,val)
setLabelValue(___ ,'LabelRowIndex',ridx)
setLabelValue(___ ,'SublabelRowIndex',sridx)

Description
setLabelValue(lss,midx,lblname,val) sets the attribute label lblname to value val, for the
member of labeled signal set lss specified in midx. Omit val if lblname has a default value and you
want to set the label to the default value.

setLabelValue(lss,midx,lblname,limits,val) adds regions delimited by limits to the ROI
label named lblname. The number of rows of limits specifies the number of added regions.

setLabelValue(lss,midx,lblname,locs,val) adds points to the point label named lblname.
locs specifies the number of added points and their locations.

setLabelValue(___ ,'LabelRowIndex',ridx) specifies the row index, ridx, of an ROI or point
label. The specified value replaces the current value of that row. If you omit this argument, the
function appends ROI or point values to any existing label values.

setLabelValue(___ ,'SublabelRowIndex',sridx) specifies the row index, sridx, of an ROI
or point sublabel. The specified value replaces the current value of that sublabel row.

Examples

Set Label Value

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.

 setLabelValue

1-1279

 Use setLabelValue to add data to the set.

Add a new label to the signal set, corresponding to the maximum value of each member.

theMax = signalLabelDefinition('Maximum', ...
 'LabelDataType','numeric', ...
 'Description','Maximum value of the signal');
addLabelDefinitions(lss,theMax)

For each labeled signal, set the value of the new label to the signal maximum. Plot the signals and
their maxima.

fs = lss.SampleRate;
for k = 1:lss.NumMembers
 sg = getSignal(lss,k);
 [mx,ix] = max(sg);

 setLabelValue(lss,k,'Maximum',mx)

 subplot(2,1,k)
 plot((0:length(sg)-1)/fs,sg,ix/fs,mx,'*')
end

Display the names and values of the labels in the set.

lbldefs = getLabelValues(lss)

1 Functions

1-1280

lbldefs=2×4 table
 WhaleType MoanRegions TrillRegions Maximum
 _________ ___________ ____________ __________

 Member{1} blue {3x2 table} {1x3 table} {[0.2850]}
 Member{2} blue {3x2 table} {1x3 table} {[0.3791]}

Decide that the signal maximum is better represented as a point label than as an attribute. Remove
the numeric definition and redefine the maximum.

removeLabelDefinition(lss,'Maximum')
theMax = signalLabelDefinition('Maximum', ...
 'LabelType','point','LabelDataType','numeric', ...
 'Description','Maximum value of the signal');
addLabelDefinitions(lss,theMax)

For each labeled signal, set the value of the new label to the signal maximum.

for k = 1:lss.NumMembers
 sg = getSignal(lss,k);
 [mx,ix] = max(sg);
 setLabelValue(lss,k,'Maximum',ix/fs,mx)
end

Plot the signals and their maxima.

for k = 1:lss.NumMembers
 subplot(2,1,k)
 sg = getSignal(lss,k);
 peaks = getLabelValues(lss,k,'Maximum');
 plot((0:length(sg)-1)/fs,sg, ...
 peaks.Location,cell2mat(peaks.Value),'*')
end

 setLabelValue

1-1281

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label name, specified as a character vector or string scalar.

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

1 Functions

1-1282

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

When targeting a sublabel of an ROI or point label, you must also specify the 'LabelRowIndex' of
the parent label whose label you want to set. The row of the parent must already exist before you can
set a sublabel value to it.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

val — Label values
numeric value or array | logical value or array | categorical value or array | character vector or cell
array of character vectors | string or string array | table or table array | timetable or timetable array

Label values, specified as a numeric, logical, or categorical value, as a string, as a table, or as a
timetable. val can also be an array of any of the previous types. val must be of the data type
specified for lblname.

• If you specify locs, then val must have the same number of elements as locs.
• If you specify limits, then val must have a number of elements equal to the number of rows in

limits.

• If limits has more than one row, and lblname is of type 'numeric' or 'logical', then
val must be a vector or a cell array.

• If limits has more than one row, and lblname is of type 'string' or 'categorical', then
val must be a string array or a cell array of character vectors.

• If limits has more than one row, and lblname is of type 'table' or 'timetable', then
val must be a cell array of tables or timetables.

Assign Nonscalar Label Values

To assign nonscalar label values to several points or regions of interest, you must use cell arrays. For
example, given the labeled signal set

lss = labeledSignalSet(randn(10,1), [...
 signalLabelDefinition('pl','LabelType','point', ...
 'LabelDataType','numeric') ...
 signalLabelDefinition('rl','LabelType','ROI', ...
 'LabelDataType','numeric')]);

the commands

setLabelValue(lss,1,'pl',5,{[3 4]'})
setLabelValue(lss,1,'rl',[2 3; 8 9],{[2 1]' [6 7]})

label point 5 with the column vector [3 4]', the region limited by 2 and 3 with the column vector [2
1]', and the region limited by 8 and 9 with the row vector [6 7].

limits — Region limits
two-column matrix

Region limits, specified as a two-column matrix.

 setLabelValue

1-1283

• If lss does not have time information, then limits defines the minimum and maximum indices
over which the regions are defined.

• If lss has time information, then limits defines the minimum and maximum instants over which
the regions are defined.

limits must be of the data type specified by the “ROILimitsDataType” on page 1-0 property of
the label definition for lblname.
Example: seconds([0:3;1:4]')
Example: [0:3;1:4]'

locs — Point locations
vector

Point locations, specified as a vector.

• If lss does not have time information, then locs defines the indices corresponding to the point
locations.

• If lss has time information, then locs defines the instants corresponding to the point locations.

locs must be of the data type specified by the “PointLocationsDataType” on page 1-0 property of
the label definition for lblname.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1284

setMemberNames
Set member names in labeled signal set

Syntax
setMemberNames(lss,mnames)
setMemberNames(lss,mnames,midx)

Description
setMemberNames(lss,mnames) sets the names of the members of the labeled signal set lss to
mnames. The length of mnames must be equal to the number of members.

setMemberNames(lss,mnames,midx) sets the name of the member specified by midx.

Examples

Set Member Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Set the names of the set members to the whales' nicknames.

setMemberNames(lss,{'Brutus' 'Lucy'})

Return a string array with the names of the members.

getMemberNames(lss)

ans = 2x1 string
 "Brutus"
 "Lucy"

 setMemberNames

1-1285

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0 table of a labeled signal set.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2019a

1 Functions

1-1286

subset
Get new labeled signal set with subset of members

Syntax
lssnew = subset(lss,midxvect)

Description
lssnew = subset(lss,midxvect) returns a new labeled signal set containing the members
specified in midxvect.

Examples

Labeled Subset

Load a labeled signal set of whale songs.

load whales
lss

lss =
 labeledSignalSet with properties:

 Source: {2x1 cell}
 NumMembers: 2
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [2x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a new labeled signal set consisting of the second member of the original set.

lssnew = subset(lss,2)

lssnew =
 labeledSignalSet with properties:

 Source: {[76579x1 double]}
 NumMembers: 1
 TimeInformation: "sampleRate"
 SampleRate: 4000
 Labels: [1x3 table]
 Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

 subset

1-1287

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midxvect — Subset member row numbers
vector of positive integers

Subset member row numbers, specified as a vector of positive integers. Each element of midxvect
specifies a member row number as it appears in the “Labels” on page 1-0 table of the
labeledSignalSet object lss.
Example: [2 3 5 7 11 13 17] chooses a subset of signals indexed by prime numbers.

Output Arguments
lssnew — New labeled signal set
labeledSignalSet object

New labeled signal set, returned as a labeledSignalSet object.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition

Introduced in R2018b

1 Functions

1-1288

lar2rc
Convert log area ratio parameters to reflection coefficients

Syntax
k = lar2rc(g)

Description
k = lar2rc(g) returns a vector of reflection coefficients k from a vector of log area ratio
parameters g.

Examples

Calculate Reflection Coefficients

Given a vector, g, of log area ratio parameters, determine the corresponding vector of reflection
coefficients.

g = [0.6389 4.5989 0.0063 0.0163 -0.0163];
k = lar2rc(g)

k = 1×5

 0.3090 0.9801 0.0031 0.0081 -0.0081

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

See Also
ac2rc | is2rc | poly2rc | rc2lar

Introduced before R2006a

 lar2rc

1-1289

latc2tf
Convert lattice filter parameters to transfer function form

Syntax
[num,den] = latc2tf(k,v)
[num,den] = latc2tf(k,'iiroption')
num = latc2tf(k,'firoption')

Description
[num,den] = latc2tf(k,v) finds the transfer function numerator num and denominator den from
the IIR lattice coefficients k and ladder coefficients v.

[num,den] = latc2tf(k,'iiroption') produces an IIR filter transfer function according to the
value of 'iiroption':

• 'allpole': Produces an all-pole filter transfer function from the associated all-pole IIR lattice
filter coefficients k.

• 'allpass': Produces an allpass filter transfer function from the associated allpass IIR lattice
filter coefficients k.

num = latc2tf(k,'firoption') produces an FIR filter according to the value of 'firoption':

• 'min': Produces a minimum-phase FIR filter numerator from the associated minimum-phase FIR
lattice filter coefficients k.

• 'max': Produces a maximum-phase FIR filter numerator from the associated maximum-phase FIR
lattice filter coefficients k.

• 'FIR': Produces a general FIR filter numerator from the lattice filter coefficients k (this is
equivalent to not specifying 'iiroption' or 'firoption').

See Also
latcfilt | tf2latc

Introduced before R2006a

1 Functions

1-1290

latcfilt
Lattice and lattice-ladder filter implementation

Syntax

[f,g] = latcfilt(k,x)
[f,g] = latcfilt(k,v,x)
[f,g] = latcfilt(k,1,x)
[f,g,zf] = latcfilt(...,'ic',zi)
[f,g,zf] = latcfilt(...,dim)

Description
When filtering data, lattice coefficients can be used to represent

• FIR filters
• All-pole IIR filters
• Allpass IIR filters
• General IIR filters

[f,g] = latcfilt(k,x) filters x with the FIR lattice coefficients in the vector k. The forward
lattice filter result is f and g is the backward filter result. If k ≤ 1, f corresponds to the minimum-
phase output, and g corresponds to the maximum-phase output.

If k and x are vectors, the result is a (signal) vector. Matrix arguments are permitted under the
following rules:

• If x is a matrix and k is a vector, each column of x is processed through the lattice filter specified
by k.

• If x is a vector and k is a matrix, each column of k is used to filter x, and a signal matrix is
returned.

• If x and k are both matrices with the same number of columns, then the ith column of k is used to
filter the ith column of x. A signal matrix is returned.

[f,g] = latcfilt(k,v,x) filters x with the IIR lattice coefficients k and ladder coefficients v.
Both k and v must be vectors, while x can be a signal matrix.

[f,g] = latcfilt(k,1,x) filters x with the IIR lattice specified by k, where k and x can be
vectors or matrices. f is the all-pole lattice filter result and g is the allpass filter result.

[f,g,zf] = latcfilt(...,'ic',zi) accepts a length-k vector zi specifying the initial condition
of the lattice states. Output zf is a length-k vector specifying the final condition of the lattice states.

[f,g,zf] = latcfilt(...,dim) filters x along the dimension dim. To specify a dim value, the
FIR lattice coefficients k must be a vector and you must specify all previous input parameters in
order. Use the empty vector [] for any parameters you do not want to specify. zf returns the final
conditions in columns, regardless of the shape of x.

 latcfilt

1-1291

Examples

FIR Lattice Filter

Generate a signal with 512 samples of white Gaussian noise.

x = randn(512,1);

Filter the data with an FIR lattice filter. Specify the reflection coefficients so that the lattice filter is
equivalent to a 3rd-order moving average filter.

[f,g] = latcfilt([1/2 1],x);

Plot the maximum- and minimum-phase outputs of the lattice filter in separate plots

subplot(2,1,1)
plot(f)
title('Maximum-Phase Output')

subplot(2,1,2)
plot(g)
title('Minimum-Phase Output')

See Also
filter | latc2tf | tf2latc

1 Functions

1-1292

Introduced before R2006a

 latcfilt

1-1293

levinson
Levinson-Durbin recursion

Syntax
a = levinson(r,n)
[a,e,k] = levinson(___)

Description
a = levinson(r,n) returns the coefficients of an autoregressive linear process of order n that has
r as its autocorrelation sequence.

[a,e,k] = levinson(___) also returns the prediction error e, and the reflection coefficients, k.

Examples

Autoregressive Process Coefficients

Estimate the coefficients of an autoregressive process given by

x(n) = 0 . 1 x(n− 1) − 0 . 8 x(n− 2) − 0 . 27 x(n− 3) + w(n) .

a = [1 0.1 -0.8 -0.27];

Generate a realization of the process by filtering white noise of variance 0.4.

v = 0.4;
w = sqrt(v)*randn(15000,1);
x = filter(1,a,w);

Estimate the correlation function. Discard the correlation values at negative lags. Use the Levinson-
Durbin recursion to estimate the model coefficients. Verify that the prediction error corresponds to
the variance of the input.

[r,lg] = xcorr(x,'biased');
r(lg<0) = [];

[ar,e] = levinson(r,numel(a)-1)

ar = 1×4

 1.0000 0.0772 -0.7954 -0.2493

e = 0.3909

Estimate the reflection coefficients for a 16th-order model. Verify that the only reflection coefficients
that lie outside the 95% confidence bounds are the ones that correspond to the correct model order.
See “AR Order Selection with Partial Autocorrelation Sequence” for more details.

1 Functions

1-1294

[~,~,k] = levinson(r,16);
stem(k,'filled')

conf = sqrt(2)*erfinv(0.95)/sqrt(15000);
hold on
[X,Y] = ndgrid(xlim,conf*[-1 1]);
plot(X,Y,'--r')
hold off

Prediction Errors for Multiple Realizations

Generate the coefficients of an autoregressive process given by

x(n) = 0 . 1 x(n− 1) − 0 . 8 x(n− 2) − 0 . 27 x(n− 3) + w(n) .

a = [1 0.1 -0.8 -0.27];

Generate five realizations of the process by filtering white noise with different variances.

nr = 5;
v = rand(1,nr)

v = 1×5

 0.8147 0.9058 0.1270 0.9134 0.6324

 levinson

1-1295

w = sqrt(v).*randn(15000,nr);
x = filter(1,a,w);

Estimate the correlation function. Discard cross-correlation terms and correlation values at negative
lags. Use the Levinson-Durbin recursion to estimate the prediction errors for the correct model order
and verify that the prediction errors correspond to the variances of the input noise signals.

[r,lg] = xcorr(x,'biased');

[~,e] = levinson(r(lg>=0,1:nr+1:end),numel(a)-1)

e = 5×1

 0.7957
 0.9045
 0.1255
 0.9290
 0.6291

Input Arguments
r — Autocorrelation sequence
vector | matrix

Autocorrelation sequence, specified as a vector or matrix. If r is a matrix, the function finds the
coefficients for each column of r and returns them in the rows of a.
Example: [r,lg] = xcorr(randn(1000,1),'biased'); r(lg<0) = [] estimates the
autocorrelation sequence of a 1000-sample random signal for positive lags.
Data Types: single | double
Complex Number Support: Yes

n — Model order
length(r) – 1 (default) | positive integer scalar

Model order, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
a — Autoregressive linear process coefficients
row vector | matrix

Autoregressive linear process coefficients, returned as a row vector or matrix. The filter coefficients
are ordered in descending powers of z–1:

H(z) = 1
A(z) = 1

1 + a(2)z−1 +⋯+ a(n + 1)z−n .

If r is a matrix, then each row of a corresponds to a column of r.

e — Prediction error
scalar | column vector

1 Functions

1-1296

Prediction error, returned as a scalar or column vector. If r is a matrix, then each element of e
corresponds to a column of r.

k — Reflection coefficients
column vector | matrix

Reflection coefficients, returned as a column vector of length n. If r is a matrix, then each column of
k corresponds to a column of r.

Note k is computed internally while computing the a coefficients, so returning k simultaneously is
more efficient than converting a to k with tf2latc.

Algorithms
The Levinson-Durbin recursion is an algorithm for finding an all-pole IIR filter with a prescribed
deterministic autocorrelation sequence. It has applications in filter design, coding, and spectral
estimation. The filter that levinson produces is minimum phase.

levinson solves the symmetric Toeplitz system of linear equations

r(1) r(2)* ⋯ r(n)*
r(2) r(1) ⋯ r(n− 1)*
⋮ ⋮ ⋱ ⋮

r(n) ⋯ r(2) r(1)

a(2)
a(3)
⋮

a(n + 1)

=

−r(2)
−r(3)
⋮

−r(n + 1)

,

where r = [r(1) ... r(n + 1)] is the input autocorrelation vector, and r(i)* denotes the complex
conjugate of r(i). The input r is typically a vector of autocorrelation coefficients where lag 0 is the
first element, r(1).

Note If r is not a valid autocorrelation sequence, the levinson function might return NaNs even if
the solution exists.

The algorithm requires O(n2) flops and is thus much more efficient than the MATLAB backslash
command for large n. However, the levinson function uses \ for low orders to provide the fastest
possible execution.

References
[1] Ljung, Lennart. System Identification: Theory for the User. 2nd Ed. Upper Saddle River, NJ:

Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 levinson

1-1297

• Code generation for this function requires the DSP System Toolbox software.
• Input n, when specified, must be a scalar.

See Also
lpc | prony | rlevinson | schurrc | stmcb

Introduced before R2006a

1 Functions

1-1298

lowpass
Lowpass-filter signals

Syntax
y = lowpass(x,wpass)
y = lowpass(x,fpass,fs)
y = lowpass(xt,fpass)

y = lowpass(___ ,Name,Value)

[y,d] = lowpass(___)

lowpass(___)

Description
y = lowpass(x,wpass) filters the input signal x using a lowpass filter with normalized passband
frequency wpass in units of π rad/sample. lowpass uses a minimum-order filter with a stopband
attenuation of 60 dB and compensates for the delay introduced by the filter. If x is a matrix, the
function filters each column independently.

y = lowpass(x,fpass,fs) specifies that x has been sampled at a rate of fs hertz. fpass is the
passband frequency of the filter in hertz.

y = lowpass(xt,fpass) lowpass-filters the data in timetable xt using a filter with a passband
frequency of fpass hertz. The function independently filters all variables in the timetable and all
columns inside each variable.

y = lowpass(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the “Lowpass Filter
Steepness” on page 1-1307, and the type of impulse response of the filter.

[y,d] = lowpass(___) also returns the digitalFilter object d used to filter the input.

lowpass(___) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Lowpass Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains two tones, one at 50 Hz and the
other at 250 Hz, embedded in Gaussian white noise of variance 1/100. The high-frequency tone has
twice the amplitude of the low-frequency tone.

fs = 1e3;
t = 0:1/fs:1;

x = [1 2]*sin(2*pi*[50 250]'.*t) + randn(size(t))/10;

 lowpass

1-1299

Lowpass-filter the signal to remove the high-frequency tone. Specify a passband frequency of 150 Hz.
Display the original and filtered signals, and also their spectra.

lowpass(x,150,fs)

Lowpass Filtering of Musical Signal

Implement a basic digital music synthesizer and use it to play a traditional song. Specify a sample
rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t = 0:1/fs:0.3-1/fs;

l = [0 130.81 146.83 164.81 174.61 196.00 220 246.94];
m = [0 261.63 293.66 329.63 349.23 392.00 440 493.88];
h = [0 523.25 587.33 659.25 698.46 783.99 880 987.77];
note = @(f,g) [1 1 1]*sin(2*pi*[l(g) m(g) h(f)]'.*t);

mel = [3 2 1 2 3 3 3 0 2 2 2 0 3 5 5 0 3 2 1 2 3 3 3 3 2 2 3 2 1]+1;
acc = [3 0 5 0 3 0 3 3 2 0 2 2 3 0 5 5 3 0 5 0 3 3 3 0 2 2 3 0 1]+1;

song = [];
for kj = 1:length(mel)
 song = [song note(mel(kj),acc(kj)) zeros(1,0.01*fs)];
end

1 Functions

1-1300

song = song/(max(abs(song))+0.1);

% To hear, type sound(song,fs)

pspectrum(song,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

Lowpass-filter the signal to separate the melody from the accompaniment. Specify a passband
frequency of 450 Hz. Plot the original and filtered signals in the time and frequency domains.

long = lowpass(song,450,fs);

% To hear, type sound(long,fs)

lowpass(song,450,fs)

 lowpass

1-1301

Plot the spectrogram of the accompaniment.

figure
pspectrum(long,fs,'spectrogram','TimeResolution',0.31, ...
 'OverlapPercent',0,'MinThreshold',-60)

1 Functions

1-1302

Lowpass Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response lowpass filter with a passband
frequency of 200 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;
x = randn(20000,1);

[y1,d1] = lowpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.5);
[y2,d2] = lowpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.8);
[y3,d3] = lowpass(x,200,fs,'ImpulseResponse','iir','Steepness',0.95);

pspectrum([y1 y2 y3],fs)
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95')

 lowpass

1-1303

Compute and plot the frequency responses of the filters.

[h1,f] = freqz(d1,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([h1 h2 h3])))
legend('Steepness = 0.5','Steepness = 0.8','Steepness = 0.95')

1 Functions

1-1304

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

wpass — Normalized passband frequency
scalar in (0, 1)

Normalized passband frequency, specified as a scalar in the interval (0, 1).

fpass — Passband frequency
scalar in (0, fs/2)

Passband frequency, specified as a scalar in the interval (0, fs/2).

fs — Sample rate
positive real scalar

 lowpass

1-1305

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1),randn(5,2)) contains a single-channel
random signal and a two-channel random signal, sampled at 1 Hz for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ImpulseResponse','iir','StopbandAttenuation',30 filters the input using a
minimum-order IIR filter that attenuates frequencies higher than fpass by 30 dB.

ImpulseResponse — Type of impulse response
'auto' (default) | 'fir' | 'iir'

Type of impulse response of the filter, specified as the comma-separated pair consisting of
'ImpulseResponse' and 'fir', 'iir', or 'auto'.

• 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

• 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

• 'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

• Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

• If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

• If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.

• Filter the signal and compensate for the delay.

1 Functions

1-1306

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1)

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar in the interval [0.5, 1). As the steepness increases, the filter response approaches the ideal
lowpass response, but the resulting filter length and the computational cost of the filtering operation
also increase. See “Lowpass Filter Steepness” on page 1-1307 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar in dB.

Output Arguments
y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Lowpass filter
digitalFilter object

Lowpass filter used in the filtering operation, returned as a digitalFilter object.

• Use filter(d,x) to filter a signal x using d.
• Use FVTool to visualize the filter response.
• Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About
Lowpass Filter Steepness

The 'Steepness' argument controls the width of a filter's transition region. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

• The Nyquist frequency, fNyquist, is the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fNyquist is 1 (×π rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

• The stopband frequency of the filter, fstop, is the frequency beyond which the attenuation is equal
to or greater than the value specified using 'StopbandAttenuation'.

• The transition width of the filter, W, is fstop – fpass, where fpass is the specified passband
frequency.

• Most nonideal filters also attenuate the input signal across the passband. The maximum value of
this frequency-dependent attenuation is called the passband ripple. Every filter used by lowpass
has a passband ripple of 0.1 dB.

 lowpass

1-1307

When you specify a value, s, for 'Steepness', the function computes the transition width as
W = (1 – s) × (fNyquist – fpass).

• When 'Steepness' is equal to 0.5, the transition width is 50% of (fNyquist – fpass).
• As 'Steepness' approaches 1, the transition width becomes progressively narrower until it

reaches a minimum value of 1% of (fNyquist – fpass).
• The default value of 'Steepness' is 0.85, which corresponds to a transition width that is 15% of

(fNyquist – fpass).

See Also
Apps
Signal Analyzer

Functions
bandpass | bandstop | designfilt | filter | filtfilt | fir1 | highpass

Introduced in R2018a

1 Functions

1-1308

lp2bp
Transform lowpass analog filters to bandpass

Syntax
[bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Description
[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype given by polynomial
coefficients (specified by row vectors b and a) into a bandpass filter with center frequency Wo and
bandwidth Bw. The input system must be an analog filter prototype.

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the continuous-time state-space lowpass
filter prototype (specified by matrices A, B, C, and D) to a bandpass filter with center frequency Wo
and bandwidth Bw. The input system must be an analog filter prototype.

Examples

Lowpass to Bandpass Transformation

Design a 14th-order lowpass Butterworth analog filter prototype.

n = 14;
[z,p,k] = buttap(n);

Convert the prototype to transfer function form. Display its magnitude and frequency responses.

[b,a] = zp2tf(z,p,k);
freqs(b,a)

 lp2bp

1-1309

Transform the prototype to a bandpass filter with a passband from 30 Hz to 100 Hz. Specify the
center frequency and bandwidth in rad/s.

fl = 30;
fh = 100;

Wo = 2*pi*sqrt(fl*fh); % center frequency
Bw = 2*pi*(fh-fl); % bandwidth

[bt,at] = lp2bp(b,a,Wo,Bw);

Display the magnitude and frequency responses of the transformed filter.

freqs(bt,at)

1 Functions

1-1310

Input Arguments
b, a — Prototype numerator and denominator coefficients
row vectors

Prototype numerator and denominator coefficients, specified as row vectors. b and a specify the
coefficients of the numerator and denominator of the prototype in descending powers of s:

B(s)
A(s) = b(1)sn +⋯+ b(n)s + b(n + 1)

a(1)sm +⋯+ a(m)s + a(m + 1)

Data Types: single | double

A, B, C, D — Prototype state-space representation
matrices

Prototype state-space representation, specified as matrices. The state-space matrices relate the state
vector x, the input u, and the output y through

ẋ = Ax + Bu
y = Cx + Du

Data Types: single | double

 lp2bp

1-1311

Wo — Center frequency
scalar

Center frequency, specified as a scalar. For a filter with lower band edge w1 and upper band edge w2,
use Wo = sqrt(w1*w2). Express Wo in units of rad/s.
Data Types: single | double

Bw — Bandwidth
scalar

Bandwidth, specified as a scalar. For a filter with lower band edge w1 and upper band edge w2, use
Bw = w2–w1. Express Bw in units of rad/s.
Data Types: single | double

Output Arguments
bt, at — Transformed numerator and denominator coefficients
row vectors

Transformed numerator and denominator coefficients, returned as row vectors.

At, Bt, Ct, Dt — Transformed state-space representation
matrices

Transformed state-space representation, returned as matrices.

Algorithms
lp2bp transforms analog lowpass filter prototypes with a cutoff angular frequency of 1 rad/s into
bandpass filters with the desired bandwidth and center frequency. The transformation is one step in
the digital filter design process for the butter, cheby1, cheby2, and ellip functions.

lp2bp is a highly accurate state-space formulation of the classic analog filter frequency
transformation. Consider the state-space system

ẋ = Ax + Bu
y = Cx + Du

where u is the input, x is the state vector, and y is the output. The Laplace transform of the first
equation (assuming zero initial conditions) is

sX(s) = AX(s) + BU(s)

Now if a bandpass filter has center frequency ω0 and bandwidth Bw, the standard s-domain
transformation is

s = Q(p2 + 1)/p

where Q = ω0/Bw and p = s/ω0. Substituting this for s in the Laplace transformed state-space equation
and considering the operator p as d/dt results in

Qẍ + Qx = Ȧx + Bu̇

1 Functions

1-1312

or

Qẍ − Ȧx− Bu̇ = − Qx

Now define

Qω̇ = − Qx

which, when substituted, leads to

Qẋ = Ax + Qω + Bu

The last two equations give equations of state. Write them in standard form and multiply the
differential equations by ω0 to recover the time or frequency scaling represented by p and find state
matrices for the bandpass filter:

Q =
ω0
Bw

At = ω0
A
Q eye(ma, m); − eye(ma, m) zeros(ma, m)

Bt = ω0
B
Q ; zeros(ma, n)

Ct = C zeros(mc, ma)

Dt = D

where ma, m = size(A).

lp2bp can perform the transformation on two different linear system representations: transfer
function form and state-space form. If the input to lp2bp is in transfer function form, the function
transforms it into state-space form before applying this algorithm.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The input transfer function coefficients, num and den, must be real.

See Also
bilinear | impinvar | lp2bs | lp2hp | lp2lp

Introduced before R2006a

 lp2bp

1-1313

lp2bs
Transform lowpass analog filters to bandstop

Syntax
[bt,at] = lp2bs(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

Description
[bt,at] = lp2bs(b,a,Wo,Bw) transforms an analog lowpass filter prototype given by polynomial
coefficients (specified by row vectors b and a) into a bandstop filter with center frequency Wo and
bandwidth Bw. The input system must be an analog filter prototype.

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw) converts the continuous-time state-space lowpass
filter prototype (specified by matrices A, B, C, and D) to a bandstop filter with center frequency Wo
and bandwidth Bw. The input system must be an analog filter prototype.

Examples

Lowpass to Bandstop Transformation

Design a 10th-order lowpass Butterworth analog filter prototype.

n = 10;
[z,p,k] = buttap(n);

Convert the prototype to transfer function form. Display its magnitude and frequency responses.

[b,a] = zp2tf(z,p,k);
freqs(b,a)

1 Functions

1-1314

Transform the prototype to a bandstop filter with a stopband from 20 Hz to 60 Hz. Specify the center
frequency and bandwidth in rad/s.

fl = 20;
fh = 60;

Wo = 2*pi*sqrt(fl*fh); % center frequency
Bw = 2*pi*(fh-fl); % bandwidth

[bt,at] = lp2bs(b,a,Wo,Bw);

Display the magnitude and frequency responses of the transformed filter.

freqs(bt,at)

 lp2bs

1-1315

Input Arguments
b, a — Prototype numerator and denominator coefficients
row vectors

Prototype numerator and denominator coefficients, specified as row vectors. b and a specify the
coefficients of the numerator and denominator of the prototype in descending powers of s:

B(s)
A(s) = b(1)sn +⋯+ b(n)s + b(n + 1)

a(1)sm +⋯+ a(m)s + a(m + 1)

Data Types: single | double

A, B, C, D — Prototype state-space representation
matrices

Prototype state-space representation, specified as matrices. The state-space matrices relate the state
vector x, the input u, and the output y through

ẋ = Ax + Bu
y = Cx + Du

Data Types: single | double

1 Functions

1-1316

Wo — Center frequency
scalar

Center frequency, specified as a scalar. For a filter with lower band edge w1 and upper band edge w2,
use Wo = sqrt(w1*w2). Express Wo in units of rad/s.
Data Types: single | double

Bw — Bandwidth
scalar

Bandwidth, specified as a scalar. For a filter with lower band edge w1 and upper band edge w2, use
Bw = w2–w1. Express Bw in units of rad/s.
Data Types: single | double

Output Arguments
bt, at — Transformed numerator and denominator coefficients
row vectors

Transformed numerator and denominator coefficients, returned as row vectors.

At, Bt, Ct, Dt — Transformed state-space representation
matrices

Transformed state-space representation, returned as matrices.

Algorithms
lp2bs transforms analog lowpass filter prototypes with a cutoff angular frequency of 1 rad/s into
bandstop filters with the desired bandwidth and center frequency. The transformation is one step in
the digital filter design process for the butter, cheby1, cheby2, and ellip functions.

lp2bs is a highly accurate state-space formulation of the classic analog filter frequency
transformation. If a bandstop filter has center frequency ω0 and bandwidth Bw, the standard s-domain
transformation is

s = p
Q(p2 + 1)

where Q = ω0/Bw and p = s/ω0. The state-space version of this transformation is

Q =
ω0
Bw

At =
ω0

Q ⋅ A−1 ω0 ⋅ eye(ma); − ω0 ⋅ eye(ma) zeros(ma)

Bt = −
ω0

Q A\B ; zeros(ma, n)

Ct = C
A zeros(mc, ma)

 lp2bs

1-1317

Dt = D− C/A ⋅ B

lp2bs can perform the transformation on two different linear system representations: transfer
function form and state-space form. See lp2bp for a derivation of the bandpass version of this
transformation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The input transfer function coefficients, num and den, must be real.

See Also
bilinear | impinvar | lp2bp | lp2hp | lp2lp

Introduced before R2006a

1 Functions

1-1318

lp2hp
Transform lowpass analog filters to highpass

Syntax
[bt,at] = lp2hp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Description
[bt,at] = lp2hp(b,a,Wo) transforms an analog lowpass filter prototype given by polynomial
coefficients (specified by row vectors b and a) into a highpass analog filter with cutoff angular
frequency Wo. The input system must be an analog filter prototype.

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo) converts the continuous-time state-space lowpass filter
prototype (specified by matrices A, B, C, and D) to a highpass analog filter with cutoff angular
frequency Wo. The input system must be an analog filter prototype.

Examples

Lowpass to Highpass Transformation

Design a 5th-order highpass elliptic filter with a cutoff frequency of 100 Hz, 3 dB of passband ripple,
and 30 dB of stopband attenuation

Design the prototype. Convert the zero-pole-gain output to a transfer function.

f = 100;

[ze,pe,ke] = ellipap(5,3,30);
[be,ae] = zp2tf(ze,pe,ke);

Transform the prototype to a highpass filter. Specify the cutoff frequency in rad/s.

[bh,ah] = lp2hp(be,ae,2*pi*f);

Compute and plot the frequency response of the filter. Divide the normalized frequency by 2π so the
x-axis of the plot is in Hz.

[hh,wh] = freqs(bh,ah,4096);

semilogx(wh/2/pi,mag2db(abs(hh)))
axis([10 400 -40 5])
grid

 lp2hp

1-1319

Input Arguments
b, a — Prototype numerator and denominator coefficients
row vectors

Prototype numerator and denominator coefficients, specified as row vectors. b and a specify the
coefficients of the numerator and denominator of the prototype in descending powers of s:

B(s)
A(s) = b(1)sn +⋯+ b(n)s + b(n + 1)

a(1)sm +⋯+ a(m)s + a(m + 1)

Data Types: single | double

A, B, C, D — Prototype state-space representation
matrices

Prototype state-space representation, specified as matrices. The state-space matrices relate the state
vector x, the input u, and the output y through

ẋ = Ax + Bu
y = Cx + Du

Data Types: single | double

1 Functions

1-1320

Wo — Cutoff angular frequency
scalar

Cutoff angular frequency, specified as a scalar. Express the cutoff angular frequency in rad/s.
Data Types: single | double

Output Arguments
bt, at — Transformed numerator and denominator coefficients
row vectors

Transformed numerator and denominator coefficients, returned as row vectors.

At, Bt, Ct, Dt — Transformed state-space representation
matrices

Transformed state-space representation, returned as matrices.

Algorithms
lp2hp transforms analog lowpass filter prototypes with a cutoff angular frequency of 1 rad/s into
highpass filters with a desired cutoff angular frequency. The transformation is one step in the digital
filter design process for the butter, cheby1, cheby2, and ellip functions.

lp2hp is a highly accurate state-space formulation of the classic analog filter frequency
transformation. If a highpass filter is to have a cutoff angular frequency ω0, the standard s-domain
transformation is

s =
ω0
p .

The state-space version of this transformation is:

At = Wo*inv(A);
Bt = -Wo*(A\B);
Ct = C/A;
Dt = D - C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The input transfer function coefficients, num and den, must be real.

See Also
bilinear | impinvar | lp2bp | lp2bs | lp2lp

 lp2hp

1-1321

Introduced before R2006a

1 Functions

1-1322

lp2lp
Change cutoff frequency for lowpass analog filter

Syntax
[bt,at] = lp2lp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Description
[bt,at] = lp2lp(b,a,Wo) transforms an analog lowpass filter prototype given by polynomial
coefficients (specified by row vectors b and a) into a lowpass filter with cutoff angular frequency Wo.
The input system must be an analog filter prototype.

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo) converts the continuous-time state-space lowpass filter
prototype (specified by matrices A, B, C, and D) to a lowpass filter with cutoff angular frequency Wo.
The input system must be an analog filter prototype.

Examples

Lowpass to Lowpass Transformation

Design an 8th-order Chebyshev Type I analog lowpass filter prototype with 3 dB of ripple in the
passband.

[z,p,k] = cheb1ap(8,3);

Convert the prototype to transfer function form and display its magnitude and frequency responses.

[b,a] = zp2tf(z,p,k);
freqs(b,a)

 lp2lp

1-1323

Transform the prototype to a lowpass filter with a cutoff frequency of 30 Hz. Specify the cutoff
frequency in rad/s. Display the magnitude and frequency responses of the transformed filter.

Wo = 2*pi*30;

[bt,at] = lp2lp(b,a,Wo);
freqs(bt,at)

1 Functions

1-1324

Input Arguments
b, a — Prototype numerator and denominator coefficients
row vectors

Prototype numerator and denominator coefficients, specified as row vectors. b and a specify the
coefficients of the numerator and denominator of the prototype in descending powers of s:

B(s)
A(s) = b(1)sn +⋯+ b(n)s + b(n + 1)

a(1)sm +⋯+ a(m)s + a(m + 1)

Data Types: single | double

A, B, C, D — Prototype state-space representation
matrices

Prototype state-space representation, specified as matrices. The state-space matrices relate the state
vector x, the input u, and the output y through

ẋ = Ax + Bu
y = Cx + Du

Data Types: single | double

 lp2lp

1-1325

Wo — Cutoff angular frequency
scalar

Cutoff angular frequency, specified as a scalar. Express Wo in units of rad/s.
Data Types: single | double

Output Arguments
bt, at — Transformed numerator and denominator coefficients
row vectors

Transformed numerator and denominator coefficients, returned as row vectors.

At, Bt, Ct, Dt — Transformed state-space representation
matrices

Transformed state-space representation, returned as matrices.

Algorithms
lp2lp transforms an analog lowpass filter prototype with a cutoff angular frequency of 1 rad/s into a
lowpass filter with any specified cutoff angular frequency. The transformation is one step in the
digital filter design process for the butter, cheby1, cheby2, and ellip functions.

lp2lp is a highly accurate state-space formulation of the classic analog filter frequency
transformation. If a lowpass filter has cutoff angular frequency ω0, the standard s-domain
transformation is

s = p/ω0

The state-space version of this transformation is

At = ω0 ⋅ A

Bt = ω0 ⋅ B

Ct = C

Dt = D

The lp2lp function can perform the transformation on two different linear system representations:
transfer function form and state-space form. See lp2bp for a derivation of the bandpass version of
this transformation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The input transfer function coefficients, num and den, must be real.

1 Functions

1-1326

See Also
bilinear | impinvar | lp2bp | lp2bs | lp2hp

Introduced before R2006a

 lp2lp

1-1327

lpc
Linear prediction filter coefficients

Syntax
[a,g] = lpc(x,p)

Description
[a,g] = lpc(x,p) finds the coefficients of a pth-order linear predictor, an FIR filter that predicts
the current value of the real-valued time series x based on past samples. The function also returns g,
the variance of the prediction error. If x is a matrix, the function treats each column as an
independent channel.

Examples

Estimate Series Using Forward Predictor

Estimate a data series using a third-order forward predictor. Compare the estimate to the original
signal.

First, create the signal data as the output of an autoregressive (AR) process driven by normalized
white Gaussian noise. Use the last 4096 samples of the AR process output to avoid startup transients.

noise = randn(50000,1);
x = filter(1,[1 1/2 1/3 1/4],noise);
x = x(end-4096+1:end);

Compute the predictor coefficients and the estimated signal.

a = lpc(x,3);
est_x = filter([0 -a(2:end)],1,x);

Compare the predicted signal to the original signal by plotting the last 100 samples of each.

plot(1:100,x(end-100+1:end),1:100,est_x(end-100+1:end),'--')
grid
xlabel('Sample Number')
ylabel('Amplitude')
legend('Original signal','LPC estimate')

1 Functions

1-1328

Compute the prediction error and the autocorrelation sequence of the prediction error. Plot the
autocorrelation. The prediction error is approximately white Gaussian noise, as expected for a third-
order AR input process.

e = x-est_x;
[acs,lags] = xcorr(e,'coeff');

plot(lags,acs)
grid
xlabel('Lags')
ylabel('Normalized Autocorrelation')
ylim([-0.1 1.1])

 lpc

1-1329

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix. If x is a matrix, then the function treats each column as
an independent channel.

p — Prediction filter polynomial order
length(x)-1 (default) | positive integer

Prediction filter polynomial order, specified as a positive integer. p must be less than or equal to the
length of x.

Output Arguments
a — Linear predictor coefficients
row vector | matrix

Linear predictor coefficients, returned as a row vector or a matrix. The coefficients relate the past p
samples of x to the current value:

x (n) = − a(2)x(n− 1) − a(3)x(n− 2) −⋯− a(p + 1)x(n− p) .

1 Functions

1-1330

g — Prediction error variance
scalar | vector

Prediction error variance, returned as a scalar or vector.

More About
Prediction Error

The prediction error, e(n), can be viewed as the output of the prediction error filter A(z), where

• H(z) is the optimal linear predictor.
• x(n) is the input signal.
• x (n) is the predicted signal.

Algorithms
lpc determines the coefficients of a forward linear predictor by minimizing the prediction error in
the least squares sense. It has applications in filter design and speech coding.

lpc uses the autocorrelation method of autoregressive (AR) modeling to find the filter coefficients.
The generated filter might not model the process exactly, even if the data sequence is truly an AR
process of the correct order, because the autocorrelation method implicitly windows the data. In
other words, the method assumes that signal samples beyond the length of x are 0.

lpc computes the least-squares solution to Xa = b, where

X =

x(1) 0 ⋯ 0
x(2) x(1) ⋯ ⋮
⋮ x(2) ⋯ 0

x(m) ⋮ ⋮ x(1)
0 x(m) ⋯ x(2)
⋮ ⋮ ⋮ ⋮
0 ⋯ 0 x(m)

, a =

1
a(2)
⋮

a(p + 1)

, b =

1
0
⋮
0

,

and m is the length of x. Solving the least-squares problem using the normal equations XHXa = XHb
leads to the Yule-Walker equations

 lpc

1-1331

r(1) r(2)∗ ⋯ r(p)∗

r(2) r(1) ⋯ ⋮
⋮ ⋮ ⋱ r(2)∗

r(p) ⋯ r(2) r(1)

a(2)
a(3)
⋮

a(p + 1)

=

−r(2)
−r(3)
⋮

−r(p + 1)

,

where r = [r(1) r(2) ... r(p+1)] is an autocorrelation estimate for x computed using xcorr. The
Levinson-Durbin algorithm (see levinson) solves the Yule-Walker equations in O(p2) flops.

References
[1] Jackson, L. B. Digital Filters and Signal Processing. 2nd Edition. Boston: Kluwer Academic

Publishers, 1989, pp. 255–257.

See Also
aryule | levinson | prony | pyulear | stmcb

Introduced before R2006a

1 Functions

1-1332

lsf2poly
Convert line spectral frequencies to prediction filter coefficients

Syntax
a = lsf2poly(lsf)

Description
a = lsf2poly(lsf) returns a vector, a, containing the prediction filter coefficients from the vector,
lsf, of line spectral frequencies. If lsf is a matrix of size M × N with separate channels of line
spectral frequencies in each column, the returned a matrix has the resulting prediction filter
coefficients as its rows and is of size N × (M + 1).

Examples

Prediction Coefficients from Line Spectral Frequencies

Given a vector, lsf, of line spectral frequencies, determine the equivalent prediction filter
coefficients.

lsf = [0.7842 1.5605 1.8776 1.8984 2.3593];
a = lsf2poly(lsf)

a = 1×6

 1.0000 0.6148 0.9899 0.0001 0.0031 -0.0081

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

[2] Rabiner, Lawrence R., and Ronald W. Schafer. Digital Processing of Speech Signals. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ac2poly | poly2lsf | rc2poly

 lsf2poly

1-1333

Introduced before R2006a

1 Functions

1-1334

mag2db
Convert magnitude to decibels

Syntax
ydb = mag2db(y)

Description
ydb = mag2db(y) expresses in decibels (dB) the magnitude measurements specified in y. The
relationship between magnitude and decibels is ydb = 20 log10(y).

Examples

Magnitude Response of a Highpass Filter

Design a 3rd-order highpass Butterworth filter having a normalized 3-dB frequency of 0 . 5π rad/
sample. Compute its frequency response. Express the magnitude response in decibels and plot it.

[b,a] = butter(3,0.5,'high');
[h,w] = freqz(b,a);

dB = mag2db(abs(h));

plot(w/pi,dB)
xlabel('\omega / \pi')
ylabel('Magnitude (dB)')
ylim([-82 5])

 mag2db

1-1335

Repeat the computation using fvtool.

fvtool(b,a)

1 Functions

1-1336

Input Arguments
y — Input array
scalar | vector | matrix | N-D array

Input array, specified as a scalar, vector, matrix, or N-D array. When y is nonscalar, mag2db is an
element-wise operation.
Data Types: single | double

Output Arguments
ydb — Magnitude measurements in decibels
scalar | vector | matrix | N-D array

Magnitude measurements in decibels, returned as a scalar, vector, matrix, or N-D array of the same
size as y.

See Also
db | db2mag | db2pow | pow2db

Introduced in R2008a

 mag2db

1-1337

marcumq
Generalized Marcum Q function

Syntax
Q = marcumq(a,b)
Q = marcumq(a,b,m)

Description
Q = marcumq(a,b) computes the Marcum Q function of a and b, defined by

Q(a, b) = ∫
b

∞
xexp − (x2 + a2)

2 I0(ax) dx

where a and b are nonnegative real numbers. In this expression, I0 is the modified Bessel function of
the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

Q(a, b) = 1
am− 1∫

b

∞
xmexp − (x2 + a2)

2 Im− 1(ax) dx

where a and b are nonnegative real numbers, and m is a positive integer. In this expression, Im–1 is the
modified Bessel function of the first kind of order m–1.

If any of the inputs is a scalar, it is expanded to the size of the other inputs.

Algorithms
marcumq uses the algorithm developed in [3]. The paper describes two error criteria: a relative error
criterion and an absolute error criterion. marcumq utilizes the absolute error criterion.

References

[1] Cantrell, P. E., and A. K. Ojha, “Comparison of Generalized Q-Function Algorithms,” IEEE
Transactions on Information Theory, Vol. IT-33, July, 1987, pp. 591–596.

[2] Marcum, J. I., “A Statistical Theory of Target Detection by Pulsed Radar: Mathematical Appendix,”
RAND Corporation, Santa Monica, CA, Research Memorandum RM-753, July 1, 1948.
Reprinted in IRE Transactions on Information Theory, Vol. IT-6, April, 1960, pp. 59–267.

[3] Shnidman, D. A., “The Calculation of the Probability of Detection and the Generalized Marcum Q-
Function,” IEEE Transactions on Information Theory, Vol. IT-35, March, 1989, pp. 389–400.

1 Functions

1-1338

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
besseli

Introduced in R2008a

 marcumq

1-1339

maxflat
Generalized digital Butterworth filter design

Syntax
[b,a] = maxflat(n,m,Wn)
b = maxflat(n,'sym',Wn)
[b,a,b1,b2] = maxflat(n,m,Wn)
[b,a,b1,b2,sos,g] = maxflat(n,m,Wn)
[___] = maxflat(n,m,Wn,designflag)

Description
[b,a] = maxflat(n,m,Wn) returns the coefficients b and a of a lowpass Butterworth filter with
normalized cutoff frequency Wn.

b = maxflat(n,'sym',Wn) returns the coefficients b of a symmetric FIR Butterworth filter. n must
be even.

[b,a,b1,b2] = maxflat(n,m,Wn) returns two polynomials b1 and b2 whose product is equal to
the numerator polynomial b (that is, b = conv(b1,b2)).

[b,a,b1,b2,sos,g] = maxflat(n,m,Wn) returns the second-order sections representation of the
filter as the filter matrix sos and the gain g.

[___] = maxflat(n,m,Wn,designflag) specifies the option to display the filter design as a
table, plot, or both using designflag. You can use any of the output combinations from previous
syntaxes.

Examples

Generalized Butterworth Filter

Design a generalized Butterworth filter with normalized cutoff frequency 0 . 2π rad/s. Specify a
numerator order of 10 and a denominator order of 2. Visualize the frequency response of the filter.

n = 10;
m = 2;
Wn = 0.2;

[b,a] = maxflat(n,m,Wn);
fvtool(b,a)

1 Functions

1-1340

Monitor Filter Design with Display Option

Design a generalized Butterworth filter with normalized cutoff frequency 0.5π rad/s. Specify a
numerator order of 8 and a denominator order of 2. Display the design table and the plots of the filter
characteristics.

n = 8;
m = 2;
Wn = 0.5;
b = maxflat(n,m,Wn,'both');

 Table:

 L M N wo_min/pi wo_max/pi

 8.0000 0 2.0000 0 0.2707
 7.0000 1.0000 2.0000 0.2707 0.3710
 6.0000 2.0000 2.0000 0.3710 0.4581
 5.0000 3.0000 2.0000 0.4581 0.5419
 4.0000 4.0000 2.0000 0.5419 0.6290
 3.0000 5.0000 2.0000 0.6290 0.7293
 2.0000 6.0000 2.0000 0.7293 1.0000

 maxflat

1-1341

Input Arguments
n — Numerator coefficient order
real positive scalar

Numerator coefficient order, specified as a real positive scalar.
Data Types: single | double

m — Denominator coefficient order
real positive scalar

Denominator coefficient order, specified as a real positive scalar.
Data Types: single | double

Wn — Normalized cutoff frequency
scalar in the range [0, 1]

Normalized cutoff frequency at which the magnitude response of the filter is equal to 1/ 2, specified
as a scalar in the range [0, 1], where 1 corresponds to the Nyquist frequency.
Data Types: single | double

designflag — Filter design display
'trace' | 'plots' | 'both'

1 Functions

1-1342

Filter design display, specified as one of these values:

• 'trace' for a textual display of the design table used in the design
• 'plots' for plots of the filter magnitude, group delay, and zeros and poles
• 'both' for both the textual display and plots

Output Arguments
b — Numerator coefficients
vector

Numerator coefficients, returned as a vector.

a — Denominator coefficients
vector

Denominator coefficients, returned as a vector.

b1, b2 — Polynomials
vectors

Polynomials, returned as vectors. The product of b1 and b2 is equal to the numerator polynomial b.
b1 contains all of the zeros at z = -1, and b2 contains all of the other zeros.

sos — Second-order section coefficients
matrix

Second-order section coefficients, returned as a matrix.

g — Gain
real-valued scalar

Gain of the filter, returned as a real-valued scalar.

References
[1] Selesnick, Ivan W., and C. Sidney Burrus. “Generalized Digital Butterworth Filter Design.” IEEE

Transactions on Signal Processing 46, no. 6, (June 1998): 1688–94.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
butter | filter | freqz

 maxflat

1-1343

Introduced before R2006a

1 Functions

1-1344

meanfreq
Mean frequency

Syntax
freq = meanfreq(x)
freq = meanfreq(x,fs)

freq = meanfreq(pxx,f)
freq = meanfreq(sxx,f,rbw)

freq = meanfreq(___ ,freqrange)

[freq,power] = meanfreq(___)

meanfreq(___)

Description
freq = meanfreq(x) estimates the mean normalized frequency, freq, of the power spectrum of a
time-domain signal, x.

freq = meanfreq(x,fs) estimates the mean frequency in terms of the sample rate, fs.

freq = meanfreq(pxx,f) returns the mean frequency of a power spectral density (PSD) estimate,
pxx. The frequencies, f, correspond to the estimates in pxx.

freq = meanfreq(sxx,f,rbw) returns the mean frequency of a power spectrum estimate, sxx,
with resolution bandwidth rbw.

freq = meanfreq(___ ,freqrange) specifies the frequency interval over which to compute the
mean frequency. This syntax can include any combination of input arguments from previous syntaxes,
as long as the second input argument is either fs or f. If the second input is passed as empty,
normalized frequency will be assumed. The default value for freqrange is the entire bandwidth of
the input signal.

[freq,power] = meanfreq(___) also returns the band power, power, of the spectrum. If you
specify freqrange, then power contains the band power within freqrange.

meanfreq(___) with no output arguments plots the PSD or power spectrum and annotates the
mean frequency.

Examples

Mean Frequency of Chirps

Generate 1024 samples of a chirp sampled at 1024 kHz. The chirp has an initial frequency of 50 kHz
and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such that the signal-to-
noise ratio is 40 dB. Reset the random number generator for reproducible results.

 meanfreq

1-1345

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x+randn(size(x))*std(x)/db2mag(SNR);

Estimate the mean frequency of the chirp. Plot the power spectral density (PSD) and annotate the
mean frequency.

meanfreq(x,Fs)

ans = 7.5032e+04

Generate another chirp. Specify an initial frequency of 200 kHz, a final frequency of 300 kHz, and an
amplitude that is twice that of the first signal. Add white Gaussian noise.

x2 = 2*chirp(t,200e3,nSamp/Fs,300e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the chirps to produce a two-channel signal. Estimate the mean frequency of each
channel.

y = meanfreq([x x2],Fs)

1 Functions

1-1346

y = 1×2
105 ×

 0.7503 2.4999

Plot the PSDs of the two channels and annotate their mean frequencies.

meanfreq([x x2],Fs);

Add the two channels to form a new signal. Plot the PSD and annotate the mean frequency.

meanfreq(x+x2,Fs)

 meanfreq

1-1347

ans = 2.1496e+05

Mean Frequency of Sinusoids

Generate 1024 samples of a 100.123 kHz sinusoid sampled at 1024 kHz. Add white Gaussian noise
such that the signal-to-noise ratio is 40 dB. Reset the random number generator for reproducible
results.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = sin(2*pi*t*100.123e3);
x = x + randn(size(x))*std(x)/db2mag(SNR);

Use the periodogram function to compute the power spectral density (PSD) of the signal. Specify a
Kaiser window with the same length as the signal and a shape factor of 38. Estimate the mean
frequency of the signal and annotate it on a plot of the PSD.

[Pxx,f] = periodogram(x,kaiser(nSamp,38),[],Fs);

meanfreq(Pxx,f);

1 Functions

1-1348

Generate another sinusoid, this one with a frequency of 257.321 kHz and an amplitude that is twice
that of the first sinusoid. Add white noise.

x2 = 2*sin(2*pi*t*257.321e3);
x2 = x2 + randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the sinusoids to produce a two-channel signal. Estimate the PSD of each channel and
use the result to determine the mean frequency.

[Pyy,f] = periodogram([x x2],kaiser(nSamp,38),[],Fs);

y = meanfreq(Pyy,f)

y = 1×2
105 ×

 1.0013 2.5732

Annotate the mean frequencies of the two channels on a plot of the PSDs.

meanfreq(Pyy,f);

 meanfreq

1-1349

Add the two channels to form a new signal. Estimate the PSD and annotate the mean frequency.

[Pzz,f] = periodogram(x+x2,kaiser(nSamp,38),[],Fs);

meanfreq(Pzz,f);

1 Functions

1-1350

Mean Frequency of Bandlimited Signals

Generate a signal whose PSD resembles the frequency response of an 88th-order bandpass FIR filter
with normalized cutoff frequencies 0 . 25π rad/sample and 0 . 45π rad/sample.

d = fir1(88,[0.25 0.45]);

Compute the mean frequency of the signal between 0 . 3π rad/sample and 0 . 6π rad/sample. Plot the
PSD and annotate the mean frequency and measurement interval.

meanfreq(d,[],[0.3 0.6]*pi);

 meanfreq

1-1351

Output the mean frequency and the band power of the measurement interval. Specifying a sample
rate of 2π is equivalent to leaving the rate unset.

[mnf,power] = meanfreq(d,2*pi,[0.3 0.6]*pi);

fprintf('Mean = %.3f*pi, power = %.1f%% of total \n', ...
 mnf/pi,power/bandpower(d)*100)

Mean = 0.373*pi, power = 75.6% of total

Add a second channel with normalized cutoff frequencies 0 . 5π rad/sample and 0 . 8π rad/sample and
an amplitude that is one-tenth that of the first channel.

d = [d;fir1(88,[0.5 0.8])/10]';

Compute the mean frequency of the signal between 0 . 3π rad/sample and 0 . 9π rad/sample. Plot the
PSD and annotate the mean frequency of each channel and the measurement interval.

meanfreq(d,[],[0.3 0.9]*pi);

1 Functions

1-1352

Output the mean frequency of each channel. Divide by π.

mnf = meanfreq(d,[],[0.3 0.9]*pi)/pi

mnf = 1×2

 0.3730 0.6500

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then meanfreq computes the mean frequency of each column of x independently. x must be
finite-valued.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

fs — Sample rate
positive real scalar

 meanfreq

1-1353

Sample rate, specified as a positive real scalar. The sample rate is the number of samples per unit
time. If the time is measured in seconds, then the sample rate is in hertz.
Data Types: single | double

pxx — Power spectral density
vector | matrix

Power spectral density (PSD), specified as a vector or matrix. If pxx is a matrix, then meanfreq
computes the mean frequency of each column of pxx independently.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Frequencies
vector

Frequencies, specified as a vector.
Data Types: single | double

sxx — Power spectrum estimate
vector | matrix

Power spectrum estimate, specified as a vector or matrix. If sxx is a matrix, then meanfreq
computes the mean frequency of each column of sxx independently.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: single | double

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of two
values: the frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth
of the window used to compute the PSD.
Data Types: single | double

freqrange — Frequency range
two-element vector

Frequency range, specified as a two-element vector of real values. If you do not specify freqrange,
then meanfreq uses the entire bandwidth of the input signal.
Data Types: single | double

1 Functions

1-1354

Output Arguments
freq — Mean frequency
scalar | vector

Mean frequency, specified as a scalar or vector.

• If you specify a sample rate, then freq has the same units as fs.
• If you do not specify a sample rate, then freq has units of rad/sample.

power — Band power
scalar | vector

Band power, returned as a scalar or vector.

References
[1] Phinyomark, Angkoon, Sirinee Thongpanja, Huosheng Hu, Pornchai Phukpattaranont, and Chusak

Limsakul. "The Usefulness of Mean and Median Frequencies in Electromyography Analysis."
In Computational Intelligence in Electromyography Analysis – A Perspective on Current
Applications and Future Challenges, edited by Ganesh R. Naik. InTech, 2012. https://doi.org/
10.5772/50639.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

See Also
findpeaks | medfreq | periodogram | plomb | pwelch

Introduced in R2015a

 meanfreq

1-1355

https://doi.org/10.5772/50639
https://doi.org/10.5772/50639

medfilt1
1-D median filtering

Syntax
y = medfilt1(x)
y = medfilt1(x,n)

y = medfilt1(x,n,blksz,dim)
y = medfilt1(x,n,[],dim)

y = medfilt1(___ ,nanflag,padding)

Description
y = medfilt1(x) applies a third-order one-dimensional median filter to the input vector, x. The
function considers the signal to be 0 beyond the endpoints. The output, y, has the same length as x.

y = medfilt1(x,n) applies an nth-order one-dimensional median filter to x.

y = medfilt1(x,n,blksz,dim) or y = medfilt1(x,n,[],dim) specifies the dimension, dim,
along which the filter operates. blksz is required for backward compatibility and is ignored.

y = medfilt1(___ ,nanflag,padding) specifies how NaN values are treated over each segment,
using any input arguments from previous syntaxes. This syntax also specifies padding, the type of
filtering performed at the signal edges.

nanflag and padding can appear anywhere after x in the function call.

Examples

Noise Suppression by Median Filtering

Generate a sinusoidal signal sampled for 1 second at 100 Hz. Add a higher-frequency sinusoid to
simulate noise.

fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+0.25*sin(2*pi*t*40);

Use a 10th-order median filter to smooth the signal. Plot the result.

y = medfilt1(x,10);

plot(t,x,t,y)
legend('Original','Filtered')
legend('boxoff')

1 Functions

1-1356

Multichannel Signal with Spikes and Missing Samples

Generate a two-channel signal consisting of sinusoids of different frequencies. Place spikes in random
places. Use NaNs to add missing samples at random. Reset the random number generator for
reproducible results. Plot the signal.

rng('default')

n = 59;
x = sin(pi./[15 10]'*(1:n)+pi/3)';

spk = randi(2*n,9,1);
x(spk) = x(spk)*2;
x(randi(2*n,6,1)) = NaN;

plot(x)

 medfilt1

1-1357

Filter the signal using medfilt1 with the default settings. Plot the filtered signal. By default, the
filter assigns NaN to the median of any segment with missing samples.

y = medfilt1(x);
plot(y)

1 Functions

1-1358

Transpose the original signal. Filter it again, specifying that the function work along the rows.
Exclude the missing samples when computing the medians. If you leave the second argument empty,
then medfilt1 uses the default filter order of 3.

y = medfilt1(x',[],[],2,'omitnan');
plot(y')

 medfilt1

1-1359

The function cannot assign a value to the segment that contains only NaNs. Increase the segment
length to fix this issue. The change also removes the outlier more thoroughly.

y = medfilt1(x,4,'omitnan');
plot(y)

1 Functions

1-1360

The default zero padding results in the function's underestimating the signal values at the edges.
Lessen this effect by using decreasing windows to compute the medians at the ends.

y = medfilt1(x,4,'omitnan','truncate');
plot(y)

 medfilt1

1-1361

Input Arguments
x — Input signal
vector | matrix | N-D array

Input signal, specified as a real-valued vector, matrix, or N-D array.
Data Types: single | double

n — Filter order
3 (default) | positive integer scalar

Order of the one-dimensional median filter, specified as a positive integer scalar.

• When n is odd, y(k) is the median of x(k-(n-1)/2:k+(n-1)/2).
• When n is even, y(k) is the median of x(k-n/2:k+(n/2)-1). In this case, medfilt1 sorts the

numbers and takes the average of the two middle elements of the sorted list.

Example: If n = 11, then y(k) is the median of x(k-5:k+5).
Example: If n = 12, then y(k) is the median of x(k-6:k+5).
Data Types: double

dim — Dimension to filter along
positive integer scalar

1 Functions

1-1362

Dimension to filter along, specified as a positive integer scalar. By default, medfilt1 operates along
the first nonsingleton dimension of x. In particular, if x is a matrix, the function filters its columns so
that y(:,i) = medfilt1(x(:,i),n).
Data Types: double

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as 'includenan' or 'omitnan'.

• 'includenan' — Returns the filtered signal so that the median of any segment containing NaNs
is also NaN.

• 'omitnan' — Returns the filtered signal so that the median of any segment containing NaNs is
the median of the non-NaN values. If all elements of a segment are NaNs, the result is NaN.

padding — Endpoint filtering
'zeropad' (default) | 'truncate'

Endpoint filtering, specified as 'zeropad' or 'truncate'.

• 'zeropad' — Considers the signal to be zero beyond the endpoints.
• 'truncate' — Computes medians of smaller segments as it reaches the signal edges.

Output Arguments
y — Filtered signal
vector | matrix | N-D array

Filtered signal, returned as a real-valued vector, matrix, or N-D array. y is the same size as x
Data Types: double

Tips
If you have a license for Image Processing Toolbox™ software, you can use the medfilt2 function to
perform two-dimensional median filtering.

References
[1] Pratt, William K. Digital Image Processing. 4th Ed. Hoboken, NJ: John Wiley & Sons, 2007.

See Also
filter | hampel | median | movmedian | sgolayfilt

Introduced before R2006a

 medfilt1

1-1363

medfreq
Median frequency

Syntax
freq = medfreq(x)
freq = medfreq(x,fs)

freq = medfreq(pxx,f)
freq = medfreq(sxx,f,rbw)

freq = medfreq(___ ,freqrange)

[freq,power] = medfreq(___)

medfreq(___)

Description
freq = medfreq(x) estimates the median normalized frequency, freq, of the power spectrum of a
time-domain signal, x.

freq = medfreq(x,fs) estimates the median frequency in terms of the sample rate, fs.

freq = medfreq(pxx,f) returns the median frequency of a power spectral density (PSD) estimate,
pxx. The frequencies, f, correspond to the estimates in pxx.

freq = medfreq(sxx,f,rbw) returns the median frequency of a power spectrum estimate, sxx,
with resolution bandwidth rbw.

freq = medfreq(___ ,freqrange) specifies the frequency interval over which to compute the
median frequency. This syntax can include any combination of input arguments from previous
syntaxes, as long as the second input argument is either fs or f. If the second input is passed as
empty, normalized frequency will be assumed. The default value for freqrange is the entire
bandwidth of the input signal.

[freq,power] = medfreq(___) also returns the band power, power, of the spectrum. If you
specify freqrange, then power contains the band power within freqrange.

medfreq(___) with no output arguments plots the PSD or power spectrum and annotates the
median frequency.

Examples

Median Frequency of Chirps

Generate 1024 samples of a chirp sampled at 1024 kHz. Specify the chirp so that it has an initial
frequency of 50 kHz and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such
that the signal-to-noise ratio is 40 dB. Reset the random number generator for reproducible results.

1 Functions

1-1364

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x+randn(size(x))*std(x)/db2mag(SNR);

Estimate the median frequency of the chirp. Plot the power spectral density (PSD) and annotate the
median frequency.

medfreq(x,Fs)

ans = 7.4998e+04

Generate another chirp. Specify an initial frequency of 200 kHz, a final frequency of 300 kHz, and an
amplitude that is twice that of the first signal. Add white Gaussian noise.

x2 = 2*chirp(t,200e3,nSamp/Fs,300e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the chirps to produce a two-channel signal. Estimate the median frequency of each
channel.

y = medfreq([x x2],Fs)

 medfreq

1-1365

y = 1×2
105 ×

 0.7500 2.4999

Plot the PSDs of the two channels and annotate their median frequencies.

medfreq([x x2],Fs);

Add the two channels to form a new signal. Plot the PSD and annotate the median frequency.

medfreq(x+x2,Fs)

1 Functions

1-1366

ans = 2.3756e+05

Median Frequency of Sinusoids

Generate 1024 samples of a 100.123 kHz sinusoid sampled at 1024 kHz. Add white Gaussian noise
such that the signal-to-noise ratio is 40 dB. Reset the random number generator for reproducible
results.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = sin(2*pi*t*100.123e3);
x = x + randn(size(x))*std(x)/db2mag(SNR);

Use the periodogram function to compute the power spectral density (PSD) of the signal. Specify a
Kaiser window with the same length as the signal and a shape factor of 38. Estimate the median
frequency of the signal and annotate it on a plot of the PSD.

[Pxx,f] = periodogram(x,kaiser(nSamp,38),[],Fs);

medfreq(Pxx,f);

 medfreq

1-1367

Generate another sinusoid, this one with a frequency of 257.321 kHz and an amplitude that is twice
that of the first sinusoid. Add white noise.

x2 = 2*sin(2*pi*t*257.321e3);
x2 = x2 + randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the sinusoids to produce a two-channel signal. Estimate the PSD of each channel and
use the result to determine the median frequency.

[Pyy,f] = periodogram([x x2],kaiser(nSamp,38),[],Fs);

y = medfreq(Pyy,f)

y = 1×2
105 ×

 1.0012 2.5731

Annotate the median frequencies of the two channels on a plot of the PSDs.

medfreq(Pyy,f);

1 Functions

1-1368

Add the two channels to form a new signal. Estimate the PSD and annotate the median frequency.

[Pzz,f] = periodogram(x+x2,kaiser(nSamp,38),[],Fs);

medfreq(Pzz,f);

 medfreq

1-1369

Median Frequency of Bandlimited Signals

Generate a signal whose PSD resembles the frequency response of an 88th-order bandpass FIR filter
with normalized cutoff frequencies 0 . 25π rad/sample and 0 . 45π rad/sample.

d = fir1(88,[0.25 0.45]);

Compute the median frequency of the signal between 0 . 3π rad/sample and 0 . 6π rad/sample. Plot the
PSD and annotate the median frequency and measurement interval.

medfreq(d,[],[0.3 0.6]*pi);

1 Functions

1-1370

Output the median frequency and the band power of the measurement interval. Specifying a sample
rate of 2π is equivalent to leaving the rate unset.

[mdf,power] = medfreq(d,2*pi,[0.3 0.6]*pi);

fprintf('Mean = %.3f*pi, power = %.1f%% of total \n', ...
 mdf/pi,power/bandpower(d)*100)

Mean = 0.371*pi, power = 77.4% of total

Add a second channel with normalized cutoff frequencies 0 . 5π rad/sample and 0 . 8π rad/sample and
an amplitude that is one-tenth that of the first channel.

d = [d;fir1(88,[0.5 0.8])/10]';

Compute the median frequency of the signal between 0 . 3π rad/sample and 0 . 9π rad/sample. Plot the
PSD and annotate the median frequency of each channel and the measurement interval.

medfreq(d,[],[0.3 0.9]*pi);

 medfreq

1-1371

Output the median frequency of each channel. Divide by π.

mdf = medfreq(d,[],[0.3 0.9]*pi)/pi

mdf = 1×2

 0.3706 0.6500

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then medfreq computes the median frequency of each column of x independently. x must be
finite-valued.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

fs — Sample rate
positive real scalar

1 Functions

1-1372

Sample rate, specified as a positive real scalar. The sample rate is the number of samples per unit
time. If the time is measured in seconds, then the sample rate is in hertz.
Data Types: single | double

pxx — Power spectral density
vector | matrix

Power spectral density (PSD), specified as a vector or matrix. If pxx is a matrix, then medfreq
computes the median frequency of each column of pxx independently.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Frequencies
vector

Frequencies, specified as a vector.
Data Types: single | double

sxx — Power spectrum estimate
vector | matrix

Power spectrum estimate, specified as a vector or matrix. If sxx is a matrix, then medfreq computes
the median frequency of each column of sxx independently.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: single | double

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of two
values: the frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth
of the window used to compute the PSD.
Data Types: single | double

freqrange — Frequency range
two-element vector

Frequency range, specified as a two-element vector of real values. If you do not specify freqrange,
then medfreq uses the entire bandwidth of the input signal.
Data Types: single | double

 medfreq

1-1373

Output Arguments
freq — Median frequency
scalar | vector

Median frequency, specified as a scalar or vector.

• If you specify a sample rate, then freq has the same units as fs.
• If you do not specify a sample rate, then freq has units of rad/sample.

power — Band power
scalar | vector

Band power, returned as a scalar or vector.

References
[1] Phinyomark, Angkoon, Sirinee Thongpanja, Huosheng Hu, Pornchai Phukpattaranont, and Chusak

Limsakul. "The Usefulness of Mean and Median Frequencies in Electromyography Analysis."
In Computational Intelligence in Electromyography Analysis – A Perspective on Current
Applications and Future Challenges, edited by Ganesh R. Naik. InTech, 2012. https://doi.org/
10.5772/50639.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

See Also
findpeaks | meanfreq | periodogram | plomb | pwelch

Introduced in R2015a

1 Functions

1-1374

https://doi.org/10.5772/50639
https://doi.org/10.5772/50639

midcross
Mid-reference level crossing for bilevel waveform

Syntax
C = midcross(X)
C = midcross(X,FS)
C = midcross(X,T)
[C,MIDLEV] = midcross(...)
C = midcross(X,Name,Value)
midcross(...)

Description
C = midcross(X) returns a vector, C, of time instants where each transition of the input signal, X,
crosses the 50% reference level. The sample instants correspond to the indices of the input vector.
Because midcross uses interpolation to determine the crossing instant, C may contain values that do
not correspond to sampling instants. To determine the transitions, midcross estimates the state
levels of X by a histogram method. midcross identifies all intervals which cross the upper-state
boundary of the low state and the lower-state boundary of the high state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-1382.

C = midcross(X,FS) specifies the sample rate, FS, in hertz as a positive scalar. The first sample
instant corresponds to t=0. Because midcross uses interpolation to determine the crossing instant,
C may contain values that do not correspond to sampling instants.

C = midcross(X,T) specifies the sample instants, T, as a vector with the same number of elements
as X. Because midcross uses interpolation to determine the crossing instant, C may contain values
that do not correspond to sampling instants.

[C,MIDLEV] = midcross(...) returns the waveform value corresponding to the mid-reference
level.

C = midcross(X,Name,Value) returns the time instants corresponding to mid-reference level
crossings with additional options specified by one or more Name,Value pair arguments.

midcross(...) plots the signal and marks the location of the mid-crossings (mid-reference level
instants) and the associated reference levels. midcross also plots the state levels with upper and
lower state boundaries.

Input Arguments
X

Bilevel waveform. X is a real-valued row or column vector.

FS

Sample rate in hertz.

 midcross

1-1375

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform, X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

MidPercentReferenceLevel

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

StateLevels

Low and high state levels. StateLevels is a 1-by-2 real-valued vector. The first element is the low
state level. The second element is the high state level. If you do not specify low- and high-state levels,
midcross estimates the state levels from the input waveform using the histogram method.

Tolerance

Tolerance levels (lower- and upper-state boundaries) expressed as a percentage. See “State-Level
Tolerances” on page 1-1382.

Default: 2

Output Arguments
C

Time instants of the mid-reference level crossings.

MIDLEV

Mid-reference level.

Examples

Mid-Reference Level Instant of Bilevel Waveform

Assuming a sampling interval of 1, compute the mid-reference level instant of a bilevel waveform.
Plot the result.

load('transitionex.mat','x')

midcross(x)

1 Functions

1-1376

ans = 21.5000

The instant at which the waveform crosses the 50% reference level is 21.5. This is not a sampling
instant present in the input vector. midcross uses interpolation to identify the mid-reference level
crossing.

Mid-Reference Level Instant with Sample Rate

Compute the mid-reference level instant for a sampled bilevel waveform. Use the time information to
determine the sample rate, which is 4 MHz.

load('transitionex.mat','x','t')
Fs = 1/(t(2)-t(1))

Fs = 4000000

Use the sample rate to express the mid-reference level instant in seconds. Plot the waveform and
annotate the result.

midcross(x,Fs)

 midcross

1-1377

ans = 5.1250e-06

Mid-Reference Level Instant Using Sample Instants

Compute the mid-reference level instant using a vector of sample times equal in length to the bilevel
waveform. The sample rate is 4 MHz.

load('transitionex.mat','x','t')

C = midcross(x,t)

C = 5.1250e-06

Annotate the result on a plot of the waveform.

midcross(x,t);

1 Functions

1-1378

Mid-Reference Level Value of Bilevel Waveform

Compute the level corresponding to the mid-reference level instant.

load('transitionex.mat','x','t')

[~,midlev] = midcross(x,t)

midlev = 1.1388

Annotate the result on a plot of the waveform.

midcross(x,t);

 midcross

1-1379

Sixty Percent Reference Level Instant and Waveform Value

Obtain the 60% reference level instant and value for a bilevel waveform sampled at 4 MHz.

load('transitionex.mat','x','t')

[mc,Lev60] = midcross(x,t,'MidPercentReferenceLevel',60)

mc = 5.1473e-06

Lev60 = 1.3682

Annotate the result on a plot of the waveform.

midcross(x,t,'MidPercentReferenceLevel',60);

1 Functions

1-1380

More About
Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S1, and high–state level, S2, is

S1 + 1
2(S2− S1)

Mid Reference Level Instant

Let y50% denote the mid–reference level.

Let t50%-
 and t50%+

 denote the two consecutive sampling instants corresponding to the waveform
values nearest in value to y50%.

Let y50%-
 and y50%+

 denote the waveform values at t50%-
 and t50%+

.

The mid-reference level instant is

t50% = t50% + (
t50%+− t50%−
y50%+− y50%−

)(y50%+− y50%−)

 midcross

1-1381

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003. p. 20.

See Also
falltime | pulsewidth | risetime | settlingtime | statelevels

1 Functions

1-1382

Introduced in R2012a

 midcross

1-1383

modalfit
Modal parameters from frequency-response functions

Syntax
fn = modalfit(frf,f,fs,mnum)

fn = modalfit(frf,f,fs,mnum,Name,Value)

[fn,dr,ms] = modalfit(___)
[fn,dr,ms,ofrf] = modalfit(___)

[___] = modalfit(sys,f,mnum,Name,Value)

Description
fn = modalfit(frf,f,fs,mnum) estimates the natural frequencies of mnum modes of a system
with measured frequency-response functions frf defined at frequencies f and for a sample rate fs.
Use modalfrf to generate a matrix of frequency-response functions from measured data. frf is
assumed to be in dynamic flexibility (receptance) format.

fn = modalfit(frf,f,fs,mnum,Name,Value) specifies additional options using name-value
arguments.

[fn,dr,ms] = modalfit(___) also returns the damping ratios and mode-shape vectors
corresponding to each natural frequency in fn, using any combination of inputs from previous
syntaxes.

[fn,dr,ms,ofrf] = modalfit(___) also returns a reconstructed frequency-response function
array based on the estimated modal parameters.

[___] = modalfit(sys,f,mnum,Name,Value) estimates the modal parameters of the identified
model sys. Use estimation commands like ssest or tfest to create sys starting from a measured
frequency-response function or from time-domain input and output signals. This syntax allows use of
the 'DriveIndex', 'FreqRange', and 'PhysFreq' name-value arguments. It typically requires
less data than syntaxes that use nonparametric methods. You must have a System Identification
Toolbox™ license to use this syntax.

Examples

Frequency-Response Function of SISO System

Estimate the frequency-response function for a simple single-input/single-output system and compare
it to the definition.

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to a wall by a
spring with elastic constant k = 1. A sensor samples the displacement of the mass at Fs = 1 Hz. A
damper impedes the motion of the mass by exerting on it a force proportional to speed, with damping
constant b = 0 . 01.

1 Functions

1-1384

Generate 3000 time samples. Define the sampling interval Δt = 1/Fs.

Fs = 1;
dt = 1/Fs;
N = 3000;
t = dt*(0:N-1);
b = 0.01;

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r v T is the state vector, r and v are respectively the displacement and velocity of the
mass, u is the driving force, and y = r is the measured output. The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C = 1 0 , D = 0,

I is the 2 × 2 identity, and the continuous-time state-space matrices are

Ac =
0 1
−1 −b

, Bc =
0
1

.

Ac = [0 1;-1 -b];
A = expm(Ac*dt);

Bc = [0;1];
B = Ac\(A-eye(2))*Bc;

C = [1 0];
D = 0;

The mass is driven by random input for the first 2000 seconds and then left to return to rest. Use the
state-space model to compute the time evolution of the system starting from an all-zero initial state.
Plot the displacement of the mass as a function of time.

rng default
u = randn(1,N)/2;
u(2001:end) = 0;

y = 0;
x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

plot(t,y)

 modalfit

1-1385

Estimate the modal frequency-response function of the system. Use a Hann window half as long as
the measured signals. Specify that the output is the displacement of the mass.

wind = hann(N/2);

[frf,f] = modalfrf(u',y',Fs,wind,'Sensor','dis');

The frequency-response function of a discrete-time system can be expressed as the Z-transform of the
time-domain transfer function of the system, evaluated at the unit circle. Compare the modalfrf
estimate with the definition.

[b,a] = ss2tf(A,B,C,D);

nfs = 2048;
fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);
ztf = polyval(b,z)./polyval(a,z);

plot(f,20*log10(abs(frf)))
hold on
plot(fz*Fs,20*log10(abs(ztf)))
hold off
grid
ylim([-60 40])

1 Functions

1-1386

Estimate the natural frequency and the damping ratio for the vibration mode.

[fn,dr] = modalfit(frf,f,Fs,1,'FitMethod','PP')

fn = 0.1593

dr = 0.0043

Compare the natural frequency to 1/2π, which is the theoretical value for the undamped system.

theo = 1/(2*pi)

theo = 0.1592

Modal Parameters Using Least-Squares Rational Function Method

Compute the modal parameters of a Space Station module starting from its frequency-response
function (FRF) array.

Load a structure containing the three-input/three-output FRF array. The system is sampled at 320 Hz.

load modaldata SpaceStationFRF

frf = SpaceStationFRF.FRF;

 modalfit

1-1387

f = SpaceStationFRF.f;
fs = SpaceStationFRF.Fs;

Extract the modal parameters of the lowest 24 modes using the least-squares rational function
method.

[fn,dr,ms,ofrf] = modalfit(frf,f,fs,24,'FitMethod','lsrf');

Compare the reconstructed FRF array to the measured one.

for ij = 1:3
 for ji = 1:3
 subplot(3,3,3*(ij-1)+ji)
 loglog(f,abs(frf(:,ji,ij)))
 hold on
 loglog(f,abs(ofrf(:,ji,ij)))
 hold off
 axis tight
 title(sprintf('In%d -> Out%d',ij,ji))
 if ij==3
 xlabel('Frequency (Hz)')
 end
 end
end

1 Functions

1-1388

Modal Parameters of Two-Body Oscillator

Estimate the frequency-response function and modal parameters of a simple multi-input/multi-output
system.

An ideal one-dimensional oscillating system consists of two masses, m1 and m2, confined between two
walls. The units are such that m1 = 1 and m2 = μ. Each mass is attached to the nearest wall by a
spring with an elastic constant k. An identical spring connects the two masses. Three dampers
impede the motion of the masses by exerting on them forces proportional to speed, with damping
constant b. Sensors sample r1 and r2, the displacements of the masses, at Fs = 50 Hz.

Generate 30,000 time samples, equivalent to 600 seconds. Define the sampling interval Δt = 1/Fs.

Fs = 50;
dt = 1/Fs;
N = 30000;
t = dt*(0:N-1);

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r1 v1 r2 v2
T is the state vector, ri and vi are respectively the location and the velocity of

the ith mass, u = u1 u2
T is the vector of input driving forces, and y = r1 r2

T is the output vector.
The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C =

1 0 0 0
0 0 1 0

, D =
0 0
0 0

,

I is the 4 × 4 identity, and the continuous-time state-space matrices are

Ac =

0 1 0 0
−2k −2b k b

0 0 0 1
k/μ b/μ −2k/μ −2b/μ

, Bc =

0 0
1 0
0 0
0 1/μ

.

Set k = 400, b = 0 . 1, and μ = 1/10.

k = 400;
b = 0.1;
m = 1/10;

Ac = [0 1 0 0;-2*k -2*b k b;0 0 0 1;k/m b/m -2*k/m -2*b/m];

 modalfit

1-1389

A = expm(Ac*dt);
Bc = [0 0;1 0;0 0;0 1/m];
B = Ac\(A-eye(4))*Bc;
C = [1 0 0 0;0 0 1 0];
D = zeros(2);

The masses are driven by random input throughout the measurement. Use the state-space model to
compute the time evolution of the system starting from an all-zero initial state.

rng default
u = randn(2,N);

y = [0;0];
x = [0;0;0;0];
for kk = 1:N
 y(:,kk) = C*x + D*u(:,kk);
 x = A*x + B*u(:,kk);
end

Use the input and output data to estimate the transfer function of the system as a function of
frequency. Use a 15000-sample Hann window with 9000 samples of overlap between adjoining
segments. Specify that the measured outputs are displacements.

wind = hann(15000);
nove = 9000;
[FRF,f] = modalfrf(u',y',Fs,wind,nove,'Sensor','dis');

Compute the theoretical transfer function as the Z-transform of the time-domain transfer function,
evaluated at the unit circle.

nfs = 2048;
fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);

[b1,a1] = ss2tf(A,B,C,D,1);
[b2,a2] = ss2tf(A,B,C,D,2);

frf(1,:,1) = polyval(b1(1,:),z)./polyval(a1,z);
frf(1,:,2) = polyval(b1(2,:),z)./polyval(a1,z);
frf(2,:,1) = polyval(b2(1,:),z)./polyval(a2,z);
frf(2,:,2) = polyval(b2(2,:),z)./polyval(a2,z);

Plot the estimates and overlay the theoretical predictions.

for jk = 1:2
 for kj = 1:2
 subplot(2,2,2*(jk-1)+kj)
 plot(f,20*log10(abs(FRF(:,jk,kj))))
 hold on
 plot(fz*Fs,20*log10(abs(frf(jk,:,kj))))
 hold off
 axis([0 Fs/2 -100 0])
 title(sprintf('Input %d, Output %d',jk,kj))
 end
end

1 Functions

1-1390

Plot the estimates by using the syntax of modalfrf with no output arguments.

figure
modalfrf(u',y',Fs,wind,nove,'Sensor','dis')

 modalfit

1-1391

Estimate the natural frequencies, damping ratios, and mode shapes of the system. Use the peak-
picking method for the calculation.

[fn,dr,ms] = modalfit(FRF,f,Fs,2,'FitMethod','pp');
fn

fn =
fn(:,:,1) =

 3.8466 3.8466
 3.8495 3.8495

fn(:,:,2) =

 3.8492 3.8490
 3.8552 14.4684

Compare the natural frequencies to the theoretical predictions for the undamped system.

undamped = sqrt(eig([2*k -k;-k/m 2*k/m]))/2/pi

undamped = 2×1

 3.8470
 14.4259

1 Functions

1-1392

Modal Parameters of MIMO System

Compute the natural frequencies, the damping ratios, and the mode shapes for a two-input/three-
output system excited by several bursts of random noise. Each burst lasts for 1 second, and there are
2 seconds between the end of each burst and the start of the next. The data are sampled at 4 kHz.

Load the data file. Plot the input signals and the output signals.

load modaldata

subplot(2,1,1)
plot(Xburst)
title('Input Signals')
subplot(2,1,2)
plot(Yburst)
title('Output Signals')

Compute the frequency-response functions. Specify a rectangular window with length equal to the
burst period and no overlap between adjoining segments.

burstLen = 12000;
[frf,f] = modalfrf(Xburst,Yburst,fs,burstLen);

Visualize a stabilization diagram and return the stable natural frequencies. Specify a maximum model
order of 30 modes.

 modalfit

1-1393

figure
modalsd(frf,f,fs,'MaxModes',30);

Zoom in on the plot. The averaged response function has maxima at 373 Hz, 852 Hz, and 1371 Hz,
which correspond to the physical frequencies of the system. Save the maxima to a variable.

phfr = [373 852 1371];

Compute the modal parameters using the least-squares complex exponential (LSCE) algorithm.
Specify a model order of 6 modes and specify physical frequencies for the 3 modes determined from
the stabilization diagram. The function generates one set of natural frequencies and damping ratios
for each input reference.

[fn,dr,ms,ofrf] = modalfit(frf,f,fs,6,'PhysFreq',phfr);

Plot the reconstructed frequency-response functions and compare them to the original ones.

for k = 1:2
 for m = 1:3
 subplot(2,3,m+3*(k-1))
 plot(f/1000,10*log10(abs(frf(:,m,k))))
 hold on
 plot(f/1000,10*log10(abs(ofrf(:,m,k))))
 hold off
 text(1,-50,[['Output ';' Input '] num2str([m k]')])
 ylim([-100 -40])
 end
end

1 Functions

1-1394

subplot(2,3,2)
title('Frequency-Response Functions')

Input Arguments
frf — Frequency-response functions
vector | matrix | 3-D array

Frequency-response functions, specified as a vector, matrix, or 3-D array. frf has size p-by-m-by-n,
where p is the number of frequency bins, m is the number of response signals, and n is the number of
excitation signals used to estimate the transfer function. frf is assumed to be in dynamic flexibility
(receptance) format.

Use modalfrf to generate a matrix of frequency-response functions from measured data.

Example: Undamped Harmonic Oscillator

The motion of a simple undamped harmonic oscillator of unit mass and elastic constant sampled at a
rate fs = 1/Δt is described by the transfer function

H(z) =
NSensor(z)

1 − 2z−1cosΔt + z−2 ,

where the numerator depends on the magnitude being measured:

 modalfit

1-1395

• Displacement: Ndis(z) = z−1 + z−2 (1 − cosΔt)

• Velocity: Nvel(z) = z−1− z−2 sinΔt

• Acceleration: Nacc(z) = 1 − z−1 − z−1− z−2 cosΔt

Compute the frequency-response function for the three possible system response sensor types. Use a
sample rate of 2 Hz and 30,000 samples of white noise as input.

fs = 2;
dt = 1/fs;
N = 30000;

u = randn(N,1);

ydis = filter((1-cos(dt))*[0 1 1],[1 -2*cos(dt) 1],u);
[frfd,fd] = modalfrf(u,ydis,fs,hann(N/2),Sensor="dis");

yvel = filter(sin(dt)*[0 1 -1],[1 -2*cos(dt) 1],u);
[frfv,fv] = modalfrf(u,yvel,fs,hann(N/2),Sensor="vel");

yacc = filter([1 -(1+cos(dt)) cos(dt)],[1 -2*cos(dt) 1],u);
[frfa,fa] = modalfrf(u,yacc,fs,hann(N/2),Sensor="acc");

loglog(fd,abs(frfd),fv,abs(frfv),fa,abs(frfa))
grid
legend(["dis" "vel" "acc"],Location="best")

1 Functions

1-1396

In all cases, the generated frequency-response function is in a format corresponding to displacement.
Velocity and acceleration measurements are first and second time derivatives, respectively, of
displacement measurements. The frequency-response functions are equivalent in the range around
the natural frequency of the system. Away from the natural frequency, the frequency-response
functions differ.
Data Types: single | double
Complex Number Support: Yes

f — Frequencies
vector

Frequencies, specified as a vector. The number of elements of f must equal the number of rows of
frf.
Data Types: single | double

fs — Sample rate of measurement data
positive scalar

Sample rate of measurement data, specified as a positive scalar expressed in hertz.
Data Types: single | double

mnum — Number of modes
positive integer

Number of modes, specified as a positive integer.
Data Types: single | double

sys — Identified system
model with identified parameters

Identified system, specified as a model with identified parameters. Use estimation commands like
ssest, n4sid, or tfest to create sys starting from a measured frequency-response function or
from time-domain input and output signals. See “Modal Analysis of Identified Models” for an example.
You must have a System Identification Toolbox license to use this input argument.
Example: idss([0.5418 0.8373;-0.8373 0.5334],[0.4852;0.8373],[1 0],0,[0;0],
[0;0],1) generates an identified state-space model corresponding to a unit mass attached to a wall
by a spring of unit elastic constant and a damper with constant 0.01. The displacement of the mass is
sampled at 1 Hz.
Example: idtf([0 0.4582 0.4566],[1 -1.0752 0.99],1) generates an identified transfer-
function model corresponding to a unit mass attached to a wall by a spring of unit elastic constant
and a damper with constant 0.01. The displacement of the mass is sampled at 1 Hz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FitMethod','pp','FreqRange',[0 500] uses the peak-picking method to perform
the fit and restricts the frequency range to between 0 and 500 Hz.

 modalfit

1-1397

Feedthrough — Presence of feedthrough in estimated transfer function
false (default) | true

Presence of feedthrough in estimated transfer function, specified as a logical value. This argument is
available only if 'FitMethod' is specified as 'lsrf'.
Data Types: logical

FitMethod — Fitting algorithm
'lsce' (default) | 'lsrf' | 'pp'

Fitting algorithm, specified as 'lsce', 'lsrf', or 'pp'.

• 'lsce' — “Least-Squares Complex Exponential Method” on page 1-1399. If you specify 'lsce',
then fn is a vector with mnum elements, independent of the size of frf.

• 'lsrf' — Least-squares rational function estimation method. If you specify 'lsrf', then fn is a
vector with mnum elements, independent of the size of frf. The method is described in [3]. See
“Continuous-Time Transfer Function Estimation Using Continuous-Time Frequency-Domain Data”
(System Identification Toolbox) for more information. This algorithm typically requires less data
than nonparametric approaches and is the only one that works for nonuniform f.

• 'pp' — “Peak-Picking Method” on page 1-1401. For an frf computed from n excitation signals
and m response signals, fn is an mnum-by-m-by-n array with one estimate of fn and one estimate
of dr per frf.

FreqRange — Frequency range
two-element vector of increasing positive values

Frequency range, specified as a two-element vector of increasing positive values contained within the
range specified in f.
Data Types: single | double

PhysFreq — Natural frequencies for physical modes
vector

Natural frequencies for physical modes to include in the analysis, specified as a vector of frequency
values within the range spanned by f. The function includes in the analysis those modes with natural
frequencies closest to the values specified in the vector. If the vector contains m frequency values,
then fn and dr have m rows each, and ms has m columns. If you do not specify this argument, then
the function uses the entire frequency range in f.
Data Types: single | double

DriveIndex — Indices of the driving-point frequency-response function
[1 1] (default) | two-element vector of positive integers

Indices of the driving-point frequency-response function, specified as a two-element vector of positive
integers. The first element of the vector must be less than or equal to the number of system
responses. The second element of the vector must be less than or equal to the number of system
excitations. Mode shapes are normalized to unity modal based on the driving point.
Example: 'DriveIndex',[2 3] specifies that the driving-point frequency-response function is
frf(:,2,3).
Data Types: single | double

1 Functions

1-1398

Output Arguments
fn — Natural frequencies
matrix | 3-D array

Natural frequencies, returned as a matrix or 3-D array. The size of fn depends on the choice of fitting
algorithm specified with 'FitMethod':

• If you specify 'lsce' or 'lsrf', then fn is a vector with mnum elements, independent of the size
of frf. If the system has more than mnum oscillatory modes, then the 'lsrf' method returns the
first mnum least-damped modes sorted in order of increasing natural frequency.

• If you specify 'pp', then fn is an array of size mnum-by-m-by-n with one estimate of fn and one
estimate of dr per frf.

dr — Damping ratios
matrix | 3-D array

Damping ratios for the natural frequencies in fn, returned as a matrix or 3-D array of the same size
as fn.

ms — Mode-shape vectors
matrix

Mode-shape vectors, returned as a matrix. ms has mnum columns, each containing a mode-shape
vector of length q, where q is the larger of the number of excitation channels and the number of
response channels.

ofrf — Reconstructed frequency-response functions
vector | matrix | 3-D array

Reconstructed frequency-response functions, returned as a vector, matrix, or 3-D array with the same
size as frf.

Algorithms
Least-Squares Complex Exponential Method

The least-squares complex exponential method computes the impulse response corresponding to each
frequency-response function and fits to the response a set of complex damped sinusoids using Prony’s
method.

A sampled damped sinusoid can be cast in the form

si(n) = Aie
−bin/ fscos(2πf in/ fs + ϕi)

= 1
2 Aie

jϕiexp −(bi/ fs− j2πf i/ fs)n + 1
2 Aie

− jϕiexp −(bi/ fs + j2πf i/ fs)n

≡ ai + xi +
n + ai− xi−

n ,

where:

• fs is the sample rate.
• fi is the sinusoid frequency.

 modalfit

1-1399

• bi is the damping coefficient.
• Ai and ϕi are the amplitude and phase of the sinusoid.

The ai are called amplitudes and the xi are called poles. Prony’s method expresses a sampled function
h(n) as a superposition of N/2 modes (and thus N amplitudes and poles):

h(0) = a1x1
0 + a2x2

0⋯+ aNxN
0

h(1) = a1x1
1 + a2x2

1 +⋯+ aNxN
1

⋮
h(N − 1) = a1x1

N − 1 + a2x2
N − 1 +⋯+ aNxN

N − 1 .

The poles are the roots of a polynomial with coefficients c0, c1, …, cN–1:

xi
N + cN − 1xi

N − 1 +⋯+ c1xi
1 + c0xi

0 = 0.

The coefficients are found using an autoregressive model of L = 2N samples of h:

h(0) h(1) ⋯ h(N − 1)
h(1) h(2) ⋯ h(N)
⋮ ⋮ ⋱ ⋮

h(L− N − 1) h(L− N) ⋯ h(L− 2)

c0
c1

⋮
cN − 1

= −

h(N)
h(N + 1)
⋮

h(L− 1)

.

To find the poles, the algorithm uses the roots function. Once the poles are known, it is possible to
determine the frequencies and damping factors by identifying the imaginary and real parts of the
pole logarithms. The final step is solving for the amplitudes and reconstructing the impulse response
using

h(0)
⋮

h(N − 1)
=

x1
0 ⋯ xN

0

⋮ ⋱ ⋮
x1

N − 1 ⋯ xN
N − 1

a1

⋮
aN

.

The following naive MATLAB implementation summarizes the procedure:

N = 4;
L = 2*N;
h = rand(L,1);
c = hankel(h(1:N),h(L-N:L-1))\-h(N+1:L);
x = roots([1;c(N:-1:1)]).';
p = log(x);
hrec = x.^((0:L-1)')*(x.^((0:L-1)')\h(1:L));
sum(h-hrec)

ans =

 3.2613e-15 - 1.9297e-16i

The system can also be constructed to contain samples from multiple frequency-response functions
and solved using least squares.

1 Functions

1-1400

Peak-Picking Method

The peak-picking method assumes that each significant peak in the frequency-response function
corresponds to exactly one natural mode. Close to a peak, the system is assumed to behave like a
one-degree-of-freedom damped harmonic oscillator:

H(f) = −1
(2π)2

1/m
f 2− j2ζrfrf − fr

2 fr
2H(f) + j2ζrfrf H(f) − 1

(2π)2m
= f 2H(f),

where H is the frequency-response function, fr is the undamped resonance frequency, ζr = b/(4mk)1/2

is the relative damping, b is the damping constant, k is the elastic constant, and m is the mass.

Given a peak located at fp, the procedure takes the peak and a fixed number of points to either side,
replaces the mass term with a dummy variable, d, and computes the modal parameters by solving the
system of equations

H(fp− k) j2fp− kH(fp− k) −1
⋮ ⋮ ⋮

H(fp) j2fpH(fp) −1
⋮ ⋮ ⋮

H(fp + k) j2fp + kH(fp + k) −1

fr
2

ζrfr
d

=

fp− k
2 H(fp− k)

⋮
fp

2H(fp)
⋮

fp + k
2 H(fp + k)

.

References
[1] Allemang, Randall J., and David L. Brown. “Experimental Modal Analysis and Dynamic Component

Synthesis, Vol. III: Modal Parameter Estimation.” Technical Report AFWAL-TR-87-3069. Air
Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, December
1987.

[2] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.
Chichester, UK: John Wiley & Sons, 2011.

[3] Ozdemir, Ahmet Arda, and Suat Gumussoy. "Transfer Function Estimation in System Identification
Toolbox via Vector Fitting." Proceedings of the 20th World Congress of the International
Federation of Automatic Control, Toulouse, France, July 2017.

See Also
modalfrf | modalsd | n4sid | tfest | tfestimate

Topics
“Modal Analysis of Identified Models”
“System Identification Overview” (System Identification Toolbox)
“System Identification Workflow” (System Identification Toolbox)
“Supported Continuous- and Discrete-Time Models” (System Identification Toolbox)

Introduced in R2017a

 modalfit

1-1401

modalfrf
Frequency-response functions for modal analysis

Syntax
frf = modalfrf(x,y,fs,window)
frf = modalfrf(x,y,fs,window,noverlap)

frf = modalfrf(___ ,Name,Value)

[frf,f,coh] = modalfrf(___)

[frf,f] = modalfrf(sys)
frf = modalfrf(sys,f)

modalfrf(___)

Description
frf = modalfrf(x,y,fs,window) estimates a matrix of frequency response functions, frf, from
the excitation signals, x, and the response signals, y, all sampled at a rate fs. The output, frf, is an
H1 estimate computed using Welch’s method with window to window the signals. x and y must have
the same number of rows. If x or y is a matrix, each column represents a signal.

The system response, y, is assumed to contain acceleration measurements. To compute a frequency-
response function starting from displacement or velocity measurements, use the 'Sensor'
argument. modalfrf always outputs the frequency-response function in dynamic flexibility
(receptance) format irrespective of the sensor type.

frf = modalfrf(x,y,fs,window,noverlap) specifies noverlap samples of overlap between
adjoining segments.

frf = modalfrf(___ ,Name,Value) specifies options using name-value arguments, using any
combination of inputs from previous syntaxes. Options include the estimator, the measurement
configuration, and the type of sensor measuring the system response.

[frf,f,coh] = modalfrf(___) also returns the frequency vector corresponding to each
frequency-response function, as well as the multiple coherence matrix.

[frf,f] = modalfrf(sys) computes the frequency-response function of the identified model sys.
Use estimation commands like ssest, n4sid, or tfest to create sys from time-domain input and
output signals. This syntax allows use only of the 'Sensor' name-value argument. You must have a
System Identification Toolbox license to use this syntax.

frf = modalfrf(sys,f) specifies the frequencies at which to compute frf. This syntax allows use
only of the 'Sensor' name-value argument. You must have a System Identification Toolbox license to
use this syntax.

modalfrf(___) with no output arguments plots the frequency response functions in the current
figure. The plots are limited to the first four excitations and four responses.

1 Functions

1-1402

Examples

Frequency-Response Function of Hammer Excitation

Visualize the frequency-response function of a single-input/single-output hammer excitation.

Load a data file that contains:

• Xhammer — An input excitation signal consisting of five hammer blows delivered periodically.
• Yhammer — The response of a system to the input. Yhammer is measured as a displacement.

The signals are sampled at 4 kHz. Plot the excitation and output signals.

load modaldata

subplot(2,1,1)
plot(thammer,Xhammer(:))
ylabel('Force (N)')
subplot(2,1,2)
plot(thammer,Yhammer(:))
ylabel('Displacement (m)')
xlabel('Time (s)')

Compute and display the frequency-response function. Window the signals using a rectangular
window. Specify that the window covers the period between hammer blows.

 modalfrf

1-1403

clf
winlen = size(Xhammer,1);
modalfrf(Xhammer(:),Yhammer(:),fs,winlen,'Sensor','dis')

MIMO Frequency-Response Functions

Compute the frequency-response functions for a two-input/two-output system excited by random
noise.

Load a data file that contains Xrand, the input excitation signal, and Yrand, the system response.
Compute the frequency-response functions using a 5000-sample Hann window and 50% overlap
between adjoining data segments. Specify that the output measurements are displacements.

load modaldata
winlen = 5000;

frf = modalfrf(Xrand,Yrand,fs,hann(winlen),0.5*winlen,'Sensor','dis');

Use the plotting functionality of modalfrf to visualize the responses.

modalfrf(Xrand,Yrand,fs,hann(winlen),0.5*winlen,'Sensor','dis')

1 Functions

1-1404

Frequency-Response Function of SISO System

Estimate the frequency-response function for a simple single-input/single-output system and compare
it to the definition.

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to a wall by a
spring with elastic constant k = 1. A sensor samples the displacement of the mass at Fs = 1 Hz. A
damper impedes the motion of the mass by exerting on it a force proportional to speed, with damping
constant b = 0 . 01.

Generate 3000 time samples. Define the sampling interval Δt = 1/Fs.

Fs = 1;
dt = 1/Fs;
N = 3000;

 modalfrf

1-1405

t = dt*(0:N-1);
b = 0.01;

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r v T is the state vector, r and v are respectively the displacement and velocity of the
mass, u is the driving force, and y = r is the measured output. The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C = 1 0 , D = 0,

I is the 2 × 2 identity, and the continuous-time state-space matrices are

Ac =
0 1
−1 −b

, Bc =
0
1

.

Ac = [0 1;-1 -b];
A = expm(Ac*dt);

Bc = [0;1];
B = Ac\(A-eye(2))*Bc;

C = [1 0];
D = 0;

The mass is driven by random input for the first 2000 seconds and then left to return to rest. Use the
state-space model to compute the time evolution of the system starting from an all-zero initial state.
Plot the displacement of the mass as a function of time.

rng default
u = randn(1,N)/2;
u(2001:end) = 0;

y = 0;
x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

plot(t,y)

1 Functions

1-1406

Estimate the modal frequency-response function of the system. Use a Hann window half as long as
the measured signals. Specify that the output is the displacement of the mass.

wind = hann(N/2);

[frf,f] = modalfrf(u',y',Fs,wind,'Sensor','dis');

The frequency-response function of a discrete-time system can be expressed as the Z-transform of the
time-domain transfer function of the system, evaluated at the unit circle. Compare the modalfrf
estimate with the definition.

[b,a] = ss2tf(A,B,C,D);

nfs = 2048;
fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);
ztf = polyval(b,z)./polyval(a,z);

plot(f,20*log10(abs(frf)))
hold on
plot(fz*Fs,20*log10(abs(ztf)))
hold off
grid
ylim([-60 40])

 modalfrf

1-1407

Estimate the natural frequency and the damping ratio for the vibration mode.

[fn,dr] = modalfit(frf,f,Fs,1,'FitMethod','PP')

fn = 0.1593

dr = 0.0043

Compare the natural frequency to 1/2π, which is the theoretical value for the undamped system.

theo = 1/(2*pi)

theo = 0.1592

Modal Parameters of Two-Body Oscillator

Estimate the frequency-response function and modal parameters of a simple multi-input/multi-output
system.

An ideal one-dimensional oscillating system consists of two masses, m1 and m2, confined between two
walls. The units are such that m1 = 1 and m2 = μ. Each mass is attached to the nearest wall by a
spring with an elastic constant k. An identical spring connects the two masses. Three dampers
impede the motion of the masses by exerting on them forces proportional to speed, with damping
constant b. Sensors sample r1 and r2, the displacements of the masses, at Fs = 50 Hz.

1 Functions

1-1408

Generate 30,000 time samples, equivalent to 600 seconds. Define the sampling interval Δt = 1/Fs.

Fs = 50;
dt = 1/Fs;
N = 30000;
t = dt*(0:N-1);

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r1 v1 r2 v2
T is the state vector, ri and vi are respectively the location and the velocity of

the ith mass, u = u1 u2
T is the vector of input driving forces, and y = r1 r2

T is the output vector.
The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C =

1 0 0 0
0 0 1 0

, D =
0 0
0 0

,

I is the 4 × 4 identity, and the continuous-time state-space matrices are

Ac =

0 1 0 0
−2k −2b k b

0 0 0 1
k/μ b/μ −2k/μ −2b/μ

, Bc =

0 0
1 0
0 0
0 1/μ

.

Set k = 400, b = 0 . 1, and μ = 1/10.

k = 400;
b = 0.1;
m = 1/10;

Ac = [0 1 0 0;-2*k -2*b k b;0 0 0 1;k/m b/m -2*k/m -2*b/m];
A = expm(Ac*dt);
Bc = [0 0;1 0;0 0;0 1/m];
B = Ac\(A-eye(4))*Bc;
C = [1 0 0 0;0 0 1 0];
D = zeros(2);

The masses are driven by random input throughout the measurement. Use the state-space model to
compute the time evolution of the system starting from an all-zero initial state.

rng default
u = randn(2,N);

 modalfrf

1-1409

y = [0;0];
x = [0;0;0;0];
for kk = 1:N
 y(:,kk) = C*x + D*u(:,kk);
 x = A*x + B*u(:,kk);
end

Use the input and output data to estimate the transfer function of the system as a function of
frequency. Use a 15000-sample Hann window with 9000 samples of overlap between adjoining
segments. Specify that the measured outputs are displacements.

wind = hann(15000);
nove = 9000;
[FRF,f] = modalfrf(u',y',Fs,wind,nove,'Sensor','dis');

Compute the theoretical transfer function as the Z-transform of the time-domain transfer function,
evaluated at the unit circle.

nfs = 2048;
fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);

[b1,a1] = ss2tf(A,B,C,D,1);
[b2,a2] = ss2tf(A,B,C,D,2);

frf(1,:,1) = polyval(b1(1,:),z)./polyval(a1,z);
frf(1,:,2) = polyval(b1(2,:),z)./polyval(a1,z);
frf(2,:,1) = polyval(b2(1,:),z)./polyval(a2,z);
frf(2,:,2) = polyval(b2(2,:),z)./polyval(a2,z);

Plot the estimates and overlay the theoretical predictions.

for jk = 1:2
 for kj = 1:2
 subplot(2,2,2*(jk-1)+kj)
 plot(f,20*log10(abs(FRF(:,jk,kj))))
 hold on
 plot(fz*Fs,20*log10(abs(frf(jk,:,kj))))
 hold off
 axis([0 Fs/2 -100 0])
 title(sprintf('Input %d, Output %d',jk,kj))
 end
end

1 Functions

1-1410

Plot the estimates by using the syntax of modalfrf with no output arguments.

figure
modalfrf(u',y',Fs,wind,nove,'Sensor','dis')

 modalfrf

1-1411

Estimate the natural frequencies, damping ratios, and mode shapes of the system. Use the peak-
picking method for the calculation.

[fn,dr,ms] = modalfit(FRF,f,Fs,2,'FitMethod','pp');
fn

fn =
fn(:,:,1) =

 3.8466 3.8466
 3.8495 3.8495

fn(:,:,2) =

 3.8492 3.8490
 3.8552 14.4684

Compare the natural frequencies to the theoretical predictions for the undamped system.

undamped = sqrt(eig([2*k -k;-k/m 2*k/m]))/2/pi

undamped = 2×1

 3.8470
 14.4259

1 Functions

1-1412

Frequency-Response Function Using Subspace Method

Compute the frequency-response function of a two-input/six-output data set corresponding to a steel
frame.

Load a structure containing the input excitations and the output accelerometer measurements. The
system is sampled at 1024 Hz for about 3.9 seconds.

load modaldata SteelFrame
X = SteelFrame.Input;
Y = SteelFrame.Output;
fs = SteelFrame.Fs;

Use the subspace method to compute the frequency-response functions. Divide the input and output
signals into nonoverlapping, 1000-sample segments. Window each segment using a rectangular
window. Specify a model order of 36.

[frf,f] = modalfrf(X,Y,fs,1000,'Estimator','subspace','Order',36);

Visualize the stabilization diagram for the system. Identify up to 15 physical modes.

modalsd(frf,f,fs,'MaxModes',15)

 modalfrf

1-1413

Input Arguments
x — Excitation signals
vector | matrix

Excitation signals, specified as a vector or matrix.
Data Types: single | double

y — Response signals
vector | matrix

Response signals, specified as a vector or matrix.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in hertz.
Data Types: single | double

window — Window
integer | vector

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments:

• If window is an integer, then modalfrf divides x and y into segments of length window and
windows each segment with a rectangular window of that length.

• If window is a vector, then modalfrf divides x and y into segments of the same length as the
vector and windows each segment using window.

• If 'Estimator' is specified as 'subspace', then modalfrf ignores the shape of window and
uses its length to determine the number of frequency points in the returned frequency-response
function.

If the length of x and y cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then the signals are truncated accordingly.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: single | double

noverlap — Number of overlapped samples
0 (default) | positive integer

Number of overlapped samples, specified as a positive integer.

• If window is a scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

Data Types: double | single

1 Functions

1-1414

sys — Identified system
model with identified parameters

Identified system, specified as a model with identified parameters. Use estimation commands like
ssest, n4sid, or tfest to create sys from time-domain input and output signals. See “Modal
Analysis of Identified Models” for an example. Syntaxes that use sys typically require less data than
syntaxes that use nonparametric methods. You must have a System Identification Toolbox license to
use this input argument.
Example: idss([0.5418 0.8373;-0.8373 0.5334],[0.4852;0.8373],[1 0],0,[0;0],
[0;0],1) generates an identified state-space model corresponding to a unit mass attached to a wall
by a spring of unit elastic constant and a damper with constant 0.01. The displacement of the mass is
sampled at 1 Hz.
Example: idtf([0 0.4582 0.4566],[1 -1.0752 0.99],1) generates an identified transfer-
function model corresponding to a unit mass attached to a wall by a spring of unit elastic constant
and a damper with constant 0.01. The displacement of the mass is sampled at 1 Hz.

f — Frequencies
vector

Frequencies, specified as a vector expressed in Hz.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Sensor','vel','Est','H1' specifies that the input signal consists of velocity
measurements and that the estimator of choice is H1.

Estimator — Estimator
'H1' (default) | 'H2' | 'Hv' | 'subspace'

Estimator, specified as 'H1', 'H2', 'Hv', or 'subspace'. See “Transfer Function” on page 1-2619
for more information about the H1 and H2 estimators.

• Use 'H1' when the noise is uncorrelated with the excitation signals.
• Use 'H2' when the noise is uncorrelated with the response signals. In this case, the number of

excitation signals must equal the number of response signals.
• Use 'Hv' to minimize the discrepancy between modeled and estimated response data by

minimizing the trace of the error matrix. Hv is the geometric mean of H1 and H2: Hv = (H1H2)1/2

The measurement must be single-input/single-output (SISO).
• Use 'subspace' to compute the frequency-response functions using a state-space model. In this

case, the noverlap argument is ignored. This method typically requires less data than
nonparametric approaches. See n4sid for more information.

Feedthrough — Presence of feedthrough in state-space model
false (default) | true

Presence of feedthrough in state-space model, specified as a logical value. This argument is available
only if 'Estimator' is specified as 'subspace'.

 modalfrf

1-1415

Data Types: logical

Measurement — Measurement configuration
'fixed' (default) | 'rovinginput' | 'rovingoutput'

Measurement configuration for equal numbers of excitation and response channels, specified as
'fixed', 'rovinginput', or 'rovingoutput'.

• Use 'fixed' when there are excitation sources and sensors at fixed locations of the system. Each
excitation contributes to every response.

• Use 'rovinginput' when the measurements result from a roving excitation (or roving hammer)
test. A single sensor is kept at a fixed location of the system. A single excitation source is placed at
multiple locations and produces one sensor response per location. The function output
frf(:,:,i) = modalfrf(x(:,i),y(:,i)).

• Use 'rovingoutput' when the measurements result from a roving sensor test. A single
excitation source is kept at a fixed location of the system. A single sensor is placed at multiple
locations and responds to one excitation per location. The function output frf(:,i) =
modalfrf(x(:,i),y(:,i)).

Order — State-space model order
1:10 (default) | integer | row vector of integers

State-space model order, specified as an integer or row vector of integers. If you specify a vector of
integers, then the function selects an optimal order value from the specified range. This argument is
available only if 'Estimator' is specified as 'subspace'.
Data Types: single | double

Sensor — Sensor type
'acc' (default) | 'dis' | 'vel'

Sensor type, specified as 'acc', 'vel', or 'dis'.

• 'acc' — Specifies that the response signal of the system is proportional to acceleration.
• 'vel' — Specifies that the response signal of the system is proportional to velocity.
• 'dis' — Specifies that the response signal of the system is proportional to displacement.

modalfrf always outputs the frequency-response function in dynamic flexibility (receptance) format
irrespective of the sensor type.

Example: Undamped Harmonic Oscillator

The motion of a simple undamped harmonic oscillator of unit mass and elastic constant sampled at a
rate fs = 1/Δt is described by the transfer function

H(z) =
NSensor(z)

1 − 2z−1cosΔt + z−2 ,

where the numerator depends on the magnitude being measured:

• Displacement: Ndis(z) = z−1 + z−2 (1 − cosΔt)

• Velocity: Nvel(z) = z−1− z−2 sinΔt

1 Functions

1-1416

• Acceleration: Nacc(z) = 1 − z−1 − z−1− z−2 cosΔt

Compute the frequency-response function for the three possible system response sensor types. Use a
sample rate of 2 Hz and 30,000 samples of white noise as input.

fs = 2;
dt = 1/fs;
N = 30000;

u = randn(N,1);

ydis = filter((1-cos(dt))*[0 1 1],[1 -2*cos(dt) 1],u);
[frfd,fd] = modalfrf(u,ydis,fs,hann(N/2),Sensor="dis");

yvel = filter(sin(dt)*[0 1 -1],[1 -2*cos(dt) 1],u);
[frfv,fv] = modalfrf(u,yvel,fs,hann(N/2),Sensor="vel");

yacc = filter([1 -(1+cos(dt)) cos(dt)],[1 -2*cos(dt) 1],u);
[frfa,fa] = modalfrf(u,yacc,fs,hann(N/2),Sensor="acc");

loglog(fd,abs(frfd),fv,abs(frfv),fa,abs(frfa))
grid
legend(["dis" "vel" "acc"],Location="best")

In all cases, the generated frequency-response function is in a format corresponding to displacement.
Velocity and acceleration measurements are first and second time derivatives, respectively, of
displacement measurements. The frequency-response functions are equivalent in the range around

 modalfrf

1-1417

the natural frequency of the system. Away from the natural frequency, the frequency-response
functions differ.

Output Arguments
frf — Frequency-response functions
vector | matrix | 3-D array

Frequency-response functions, returned as a vector, matrix, or 3-D array. frf has size p-by-m-by-n,
where p is the number of frequency bins, m is the number of responses, and n is the number of
excitation signals.

modalfrf always outputs the frequency-response function in dynamic flexibility (receptance) format
irrespective of the sensor type.

f — Frequencies
vector

Frequencies, returned as a vector.

coh — Multiple coherence matrix
matrix

Multiple coherence matrix, returned as a matrix. coh has one column for each response signal.

References
[1] "Dynamic Stiffness, Compliance, Mobility, and more..." Siemens, last modified 2019, https://

community.sw.siemens.com/s/article/dynamic-stiffness-compliance-mobility-and-more.

[2] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.
Chichester, UK: John Wiley & Sons, 2011.

[3] Irvine, Tom. "An Introduction to Frequency Response Functions," Vibrationdata, 2000, https://
vibrationdata.com/tutorials2/frf.pdf.

[4] Vold, Håvard, John Crowley, and G. Thomas Rocklin. "New Ways of Estimating Frequency
Response Functions." Sound and Vibration. Vol. 18, November 1984, pp. 34–38.

See Also
modalfit | modalsd | n4sid | tfestimate

Topics
“Modal Analysis of Identified Models”
“System Identification Overview” (System Identification Toolbox)
“System Identification Workflow” (System Identification Toolbox)
“Supported Continuous- and Discrete-Time Models” (System Identification Toolbox)

Introduced in R2017a

1 Functions

1-1418

https://community.sw.siemens.com/s/article/dynamic-stiffness-compliance-mobility-and-more
https://community.sw.siemens.com/s/article/dynamic-stiffness-compliance-mobility-and-more
https://vibrationdata.com/tutorials2/frf.pdf
https://vibrationdata.com/tutorials2/frf.pdf

modalsd
Generate stabilization diagram for modal analysis

Syntax
modalsd(frf,f,fs)
modalsd(frf,f,fs,Name,Value)

fn = modalsd(___)

Description
modalsd(frf,f,fs) generates a stabilization diagram in the current figure. modalsd estimates the
natural frequencies and damping ratios from 1 to 50 modes and generates the diagram using the
least-squares complex exponential (LSCE) algorithm. fs is the sample rate. The frequency, f, is a
vector with a number of elements equal to the number of rows of the frequency-response function,
frf. You can use this diagram to differentiate between computational and physical modes.

modalsd(frf,f,fs,Name,Value) specifies options using name-value pair arguments.

fn = modalsd(___) returns a cell array of natural frequencies, fn, identified as being stable
between consecutive model orders. The ith element contains a length-i vector of natural frequencies
of stable poles. Poles that are not stable are returned as NaNs. This syntax accepts any combination of
inputs from previous syntaxes.

Examples

MIMO Stabilization Diagram

Compute the frequency-response functions for a two-input/two-output system excited by random
noise.

Load the data file. Compute the frequency-response functions using a 5000-sample Hann window and
50% overlap between adjoining data segments. Specify that the output measurements are
displacements.

load modaldata
winlen = 5000;

[frf,f] = modalfrf(Xrand,Yrand,fs,hann(winlen),0.5*winlen,'Sensor','dis');

Generate a stabilization diagram to identify up to 20 physical modes.

modalsd(frf,f,fs,'MaxModes',20)

 modalsd

1-1419

Repeat the computation, but now tighten the criteria for stability. Classify a given pole as stable in
frequency if its natural frequency changes by less than 0.01% as the model order increases. Classify a
given pole as stable in damping if the damping ratio estimate changes by less than 0.2% as the model
order increases.

modalsd(frf,f,fs,'MaxModes',20,'SCriteria',[1e-4 0.002])

1 Functions

1-1420

Restrict the frequency range to between 0 and 500 Hz. Relax the stability criteria to 0.5% for
frequency and 10% for damping.

modalsd(frf,f,fs,'MaxModes',20,'SCriteria',[5e-3 0.1],'FreqRange',[0 500])

 modalsd

1-1421

Repeat the computation using the least-squares rational function algorithm. Restrict the frequency
range from 100 Hz to 350 Hz and identify up to 10 physical modes.

modalsd(frf,f,fs,'MaxModes',10,'FreqRange',[100 350],'FitMethod','lsrf')

1 Functions

1-1422

Input Arguments
frf — Frequency-response functions
vector | matrix | 3-D array

Frequency-response functions, specified as a vector, matrix, or 3-D array. frf has size p-by-m-by-n,
where p is the number of frequency bins, m is the number of response signals, and n is the number of
excitation signals used to estimate the transfer function.
Example: tfestimate(randn(1,1000),sin(2*pi*(1:1000)/4)+randn(1,1000)/10)
approximates the frequency response of an oscillator.
Data Types: single | double
Complex Number Support: Yes

f — Frequencies
vector

Frequencies, specified as a vector. The number of elements of f must equal the number of rows of
frf.
Data Types: single | double

fs — Sample rate of measurement data
positive scalar

 modalsd

1-1423

Sample rate of measurement data, specified as a positive scalar expressed in hertz.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MaxModes',20,'FreqRange',[0 500] computes up to 20 physical modes and restricts
the frequency range to between 0 and 500 Hz.

FitMethod — Fitting algorithm
'lsce' (default) | 'lsrf'

Fitting algorithm, specified as the comma-separated pair consisting of 'FitMethod' and 'lsce' or
'lsrf'.

• 'lsce' — Least-squares complex exponential method.
• 'lsrf' — Least-squares rational function estimation method. The method is described in [2]. See

“Continuous-Time Transfer Function Estimation Using Continuous-Time Frequency-Domain Data”
(System Identification Toolbox) for more information. This algorithm typically requires less data
than nonparametric approaches.

FreqRange — Frequency range
two-element vector of positive values

Frequency range, specified as the comma-separated pair consisting of 'FreqRange' and a two-
element vector of increasing, positive values contained within the range specified in f.
Data Types: single | double

MaxModes — Maximum number of modes
50 (default) | positive integer

Maximum number of modes, specified as the comma-separated pair consisting of 'MaxModes' and a
positive integer.
Data Types: single | double

SCriteria — Criteria to define consecutive stable natural frequencies and damping ratios
[0.01 0.05] (default) | two-element vector of positive values

Criteria to define stable natural frequencies and damping ratios between consecutive model degrees
of freedom, specified as the comma-separated pair consisting of 'SCriteria' and a two-element
vector of positive values. 'SCriteria' contains the maximum fractional differences between poles
to be classified as stable. The first element of the vector applies to natural frequencies. The second
element applies to damping ratios.
Data Types: single | double

Output Arguments
fn — Natural frequencies identified as stable
matrix

1 Functions

1-1424

Natural frequencies identified as stable, returned as a matrix. The first i elements of the ith row
contain natural frequencies. Poles that are nonphysical or not stable in frequency are returned as
NaNs.

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

[2] Ozdemir, Ahmet Arda, and Suat Gumussoy. "Transfer Function Estimation in System Identification
Toolbox via Vector Fitting." Proceedings of the 20th World Congress of the International
Federation of Automatic Control, Toulouse, France, July 2017.

[3] Vold, Håvard, John Crowley, and G. Thomas Rocklin. “New Ways of Estimating Frequency
Response Functions.” Sound and Vibration. Vol. 18, November 1984, pp. 34–38.

See Also
modalfit | modalfrf | tfest

Introduced in R2017a

 modalsd

1-1425

modulate
Modulation for communications simulation

Syntax
y = modulate(x,fc,fs)
[y,t] = modulate(x,fc,fs)
[___] = modulate(x,fc,fs,method)
[___] = modulate(x,fc,fs,method,opt)

Description
y = modulate(x,fc,fs) modulates the real message signal x with a carrier frequency fc and
sample rate fs. If x is a matrix, the modulated signal is computed independently for each column and
stored in the corresponding column of y.

[y,t] = modulate(x,fc,fs) also returns the internal time vector t.

[___] = modulate(x,fc,fs,method) modulates the real message signal using the modulation
technique specified by method. You can use these inputs with either of the previous output syntaxes.

[___] = modulate(x,fc,fs,method,opt) uses the additional options specified in opt for some
modulation methods.

Examples

Single-Sideband Amplitude Modulation

Generate a 10 Hz sinusoidal signal sampled at a rate of 200 Hz for 1 second. Embed the sinusoid in
white Gaussian noise of variance 0.01.

fs = 200;
t = 0:1/fs:1;
x = sin(2*pi*10*t) + randn(size(t))/10;

Single-sideband amplitude modulate the signal with a carrier frequency of 50 Hz. Compute and
display the new Welch's power spectral density estimates.

y = modulate(x,50,fs,'amssb');

pwelch([x;y]',hamming(100),80,1024,fs,'centered')

1 Functions

1-1426

Quadrature Amplitude Modulation of Two Sinusoidal Signals

Generate two sinusoidal signals frequencies of 10 Hz and 20 Hz, sampled at a rate of 200 Hz for 1
second. Embed the sinusoids in white Gaussian noise of variance 0.01.

fs = 200;
t = 0:1/fs:1;
i = sin(2*pi*10*t) + randn(size(t))/10;
q = sin(2*pi*20*t) + randn(size(t))/10;

Create a quadrature amplitude modulated signal from signals i and q using a carrier frequency of 70
Hz. Compute the Welch power spectral density estimates of the original and modulated sequences.
Use a 100-sample Hamming window with 80 samples of overlap. Specify an FFT length of 1024.

y = modulate(i,70,fs,'qam',q);

pwelch([i;q;y]',hamming(100),80,1024,fs,'centered')
legend('In-phase signal','Quadrature signal','Modulated signal')

 modulate

1-1427

Input Arguments
x — Message signal
real vector | real matrix

Message signal, specified as a real vector or matrix.
Example: sin(2*pi*25*[0:(1/200):1])

fc — Carrier frequency
real positive scalar

Carrier frequency used to modulate the message signal, specified as a real positive scalar.

fs — Sample rate
real positive scalar

Sample rate, specified as a real positive scalar.

method — Method of modulation used
'am' (default) | 'amdsb-tc' | 'amssb' | 'fm' | 'pm' | 'pwm' | 'ppm' | 'qam'

Method of modulation used, specified as one of:

• amdsb-sc or am — Amplitude modulation, double sideband, suppressed carrier. Multiplies x by a
sinusoid of frequency fc.

1 Functions

1-1428

y = x.*cos(2*pi*fc*t)

• amdsb-tc — Amplitude modulation, double sideband, transmitted carrier. Subtracts scalar opt
from x and multiplies the result by a sinusoid of frequency fc.

y = (x-opt).*cos(2*pi*fc*t)

If you do not specify the opt parameter, modulate uses a default of min(min(x)) so that the
message signal (x-opt) is entirely nonnegative and has a minimum value of 0.

• amssb — Amplitude modulation, single sideband. Multiplies x by a sinusoid of frequency fc and
adds the result to the Hilbert transform of x multiplied by a phase-shifted sinusoid of frequency
fc.
y = x.*cos(2*pi*fc*t)+imag(hilbert(x)).*sin(2*pi*fc*t)

This effectively removes the upper sideband.
• fm — Frequency modulation. Creates a sinusoid with instantaneous frequency that varies with the

message signal x.

y = cos(2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation of the integral of x. modulate uses opt as the constant of
frequency modulation. If you do not specify the opt parameter, modulate uses a default of
opt = (fc/fs)*2*pi/(max(max(x))) so the maximum frequency excursion from fc is fc Hz.

• pm — Phase modulation. Creates a sinusoid of frequency fc whose phase varies with the message
signal x.

y = cos(2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If you do not specify the opt parameter,
modulate uses a default of opt = pi/(max(max(x))) so the maximum phase excursion is π
radians.

• pwm — Pulse-width modulation. Creates a pulse-width modulated signal from the pulse widths in x.
The elements of x must be between 0 and 1, specifying the width of each pulse in fractions of a
period. The pulses start at the beginning of each period, that is, they are left justified.
modulate(x,fc,fs,'pwm','centered') yields pulses centered at the beginning of each
period. The length of y is length(x)*fs/fc.

• ppm — Pulse-position modulation. Creates a pulse-position modulated signal from the pulse
positions in x. The elements of x must be between 0 and 1, specifying the left edge of each pulse
in fractions of a period. opt is a scalar between 0 and 1 that specifies the length of each pulse in
fractions of a period. The default for opt is 0.1. The length of y is length(x)*fs/fc.

• qam— Quadrature amplitude modulation. Creates a quadrature amplitude modulated signal from
signals x and opt.

y = x.*cos(2*pi*fc*t) + opt.*sin(2*pi*fc*t)

The input argument opt must be the same size as x.

opt — Optional input for some methods
real vector

Optional input, specified for some methods. Refer to method for more details on how to use opt.

 modulate

1-1429

Output Arguments
y — Modulated signal
real vector | real matrix

Modulated message signal, returned as a real vector or matrix. Except for the methods pwm and ppm,
y is the same size as x.

t — Internal time array
real vector

Internal time array used by modulate in its computations, specified as a real vector.

See Also
demod | vco

Introduced before R2006a

1 Functions

1-1430

mscohere
Magnitude-squared coherence

Syntax
cxy = mscohere(x,y)

cxy = mscohere(x,y,window)
cxy = mscohere(x,y,window,noverlap)
cxy = mscohere(x,y,window,noverlap,nfft)

cxy = mscohere(___ ,'mimo')

[cxy,w] = mscohere(___)
[cxy,f] = mscohere(___ ,fs)

[cxy,w] = mscohere(x,y,window,noverlap,w)
[cxy,f] = mscohere(x,y,window,noverlap,f,fs)

[___] = mscohere(x,y, ___ ,freqrange)

mscohere(___)

Description
cxy = mscohere(x,y) finds the magnitude-squared coherence estimate, cxy, of the input signals,
x and y.

• If x and y are both vectors, they must have the same length.
• If one of the signals is a matrix and the other is a vector, then the length of the vector must equal

the number of rows in the matrix. The function expands the vector and returns a matrix of column-
by-column magnitude-squared coherence estimates.

• If x and y are matrices with the same number of rows but different numbers of columns, then
mscohere returns a multiple coherence matrix. The mth column of cxy contains an estimate of
the degree of correlation between all the input signals and the mth output signal. See “Magnitude-
Squared Coherence” on page 1-1447 for more information.

• If x and y are matrices of equal size, then mscohere operates column-wise: cxy(:,n) =
mscohere(x(:,n),y(:,n)). To obtain a multiple coherence matrix, append 'mimo' to the
argument list.

cxy = mscohere(x,y,window) uses window to divide x and y into segments and perform
windowing. You must use at least two segments. Otherwise, the magnitude-squared coherence is 1 for
all frequencies. In the MIMO case, the number of segments must be greater than the number of input
channels.

cxy = mscohere(x,y,window,noverlap) uses noverlap samples of overlap between adjoining
segments.

cxy = mscohere(x,y,window,noverlap,nfft) uses nfft sampling points to calculate the
discrete Fourier transform.

 mscohere

1-1431

cxy = mscohere(___ ,'mimo') computes a multiple coherence matrix for matrix inputs. This
syntax can include any combination of input arguments from previous syntaxes.

[cxy,w] = mscohere(___) returns a vector of normalized frequencies, w, at which the
magnitude-squared coherence is estimated.

[cxy,f] = mscohere(___ ,fs) returns a vector of frequencies, f, expressed in terms of the
sample rate, fs, at which the magnitude-squared coherence is estimated. fs must be the sixth
numeric input to mscohere. To input a sample rate and still use the default values of the preceding
optional arguments, specify these arguments as empty, [].

[cxy,w] = mscohere(x,y,window,noverlap,w) returns the magnitude-squared coherence
estimate at the normalized frequencies specified in w.

[cxy,f] = mscohere(x,y,window,noverlap,f,fs) returns the magnitude-squared coherence
estimate at the frequencies specified in f.

[___] = mscohere(x,y, ___ ,freqrange) returns the magnitude-squared coherence estimate
over the frequency range specified by freqrange. Valid options for freqrange are 'onesided',
'twosided', and 'centered'.

mscohere(___) with no output arguments plots the magnitude-squared coherence estimate in the
current figure window.

Examples

Coherence Estimate of Two Sequences

Compute and plot the coherence estimate between two colored noise sequences.

Generate a signal consisting of white Gaussian noise.

r = randn(16384,1);

To create the first sequence, bandpass filter the signal. Design a 16th-order filter that passes
normalized frequencies between 0.2π and 0.4π rad/sample. Specify a stopband attenuation of 60 dB.
Filter the original signal.

dx = designfilt('bandpassiir','FilterOrder',16, ...
 'StopbandFrequency1',0.2,'StopbandFrequency2',0.4, ...
 'StopbandAttenuation',60);
x = filter(dx,r);

To create the second sequence, design a 16th-order filter that stops normalized frequencies between
0.6π and 0.8π rad/sample. Specify a passband ripple of 0.1 dB. Filter the original signal.

dy = designfilt('bandstopiir','FilterOrder',16, ...
 'PassbandFrequency1',0.6,'PassbandFrequency2',0.8, ...
 'PassbandRipple',0.1);
y = filter(dy,r);

Estimate the magnitude-squared coherence of x and y. Use a 512-sample Hamming window. Specify
500 samples of overlap between adjoining segments and 2048 DFT points.

[cxy,fc] = mscohere(x,y,hamming(512),500,2048);

1 Functions

1-1432

Plot the coherence function and overlay the frequency responses of the filters.

[qx,f] = freqz(dx);
qy = freqz(dy);

plot(fc/pi,cxy)
hold on
plot(f/pi,abs(qx),f/pi,abs(qy))
hold off

Multiple Coherence and Ordinary Coherence

Generate a random two-channel signal, x. Generate another signal, y, by lowpass filtering the two
channels and adding them together. Specify a 30th-order FIR filter with a cutoff frequency of 0.3π
and designed using a rectangular window.

h = fir1(30,0.3,rectwin(31));
x = randn(16384,2);
y = sum(filter(h,1,x),2);

Compute the multiple-coherence estimate of x and y. Window the signals with a 1024-sample Hann
window. Specify 512 samples of overlap between adjoining segments and 1024 DFT points. Plot the
estimate.

 mscohere

1-1433

noverlap = 512;
nfft = 1024;

mscohere(x,y,hann(nfft),noverlap,nfft,'mimo')

Compare the coherence estimate to the frequency response of the filter. The drops in coherence
correspond to the zeros of the frequency response.

[H,f] = freqz(h);

hold on
yyaxis right
plot(f/pi,20*log10(abs(H)))
hold off

1 Functions

1-1434

Compute and plot the ordinary magnitude-squared coherence estimate of x and y. The estimate does
not reach 1 for any of the channels.

figure
mscohere(x,y,hann(nfft),noverlap,nfft)

 mscohere

1-1435

Coherence of MIMO System

Generate two multichannel signals, each sampled at 1 kHz for 2 seconds. The first signal, the input,
consists of three sinusoids with frequencies of 120 Hz, 360 Hz, and 480 Hz. The second signal, the
output, is composed of two sinusoids with frequencies of 120 Hz and 360 Hz. One of the sinusoids
lags the first signal by π/2. The other sinusoid has a lag of π/4. Both signals are embedded in white
Gaussian noise.

fs = 1000;
f = 120;
t = (0:1/fs:2-1/fs)';

inpt = sin(2*pi*f*[1 3 4].*t);
inpt = inpt+randn(size(inpt));
oupt = sin(2*pi*f*[1 3].*t-[pi/2 pi/4]);
oupt = oupt+randn(size(oupt));

Estimate the degree of correlation between all the input signals and each of the output channels. Use
a Hamming window of length 100 to window the data. mscohere returns one coherence function for
each output channel. The coherence functions reach maxima at the frequencies shared by the input
and the output.

[Cxy,f] = mscohere(inpt,oupt,hamming(100),[],[],fs,'mimo');

1 Functions

1-1436

for k = 1:size(oupt,2)
 subplot(size(oupt,2),1,k)
 plot(f,Cxy(:,k))
 title(['Output ' int2str(k) ', All Inputs'])
end

Switch the input and output signals and compute the multiple coherence function. Use the same
Hamming window. There is no correlation between input and output at 480 Hz. Thus there are no
peaks in the third correlation function.

[Cxy,f] = mscohere(oupt,inpt,hamming(100),[],[],fs,'mimo');

for k = 1:size(inpt,2)
 subplot(size(inpt,2),1,k)
 plot(f,Cxy(:,k))
 title(['Input ' int2str(k) ', All Outputs'])
end

 mscohere

1-1437

Repeat the computation, using the plotting functionality of mscohere.

clf
mscohere(oupt,inpt,hamming(100),[],[],fs,'mimo')

1 Functions

1-1438

Compute the ordinary coherence function of the second signal and the first two channels of the first
signal. The off-peak values differ from the multiple coherence function.

[Cxy,f] = mscohere(oupt,inpt(:,[1 2]),hamming(100),[],[],fs);
plot(f,Cxy)

 mscohere

1-1439

Find the phase differences by computing the angle of the cross-spectrum at the points of maximum
coherence.

Pxy = cpsd(oupt,inpt(:,[1 2]),hamming(100),[],[],fs);
[~,mxx] = max(Cxy);
for k = 1:2
 fprintf('Phase lag %d = %5.2f*pi\n',k,angle(Pxy(mxx(k),k))/pi)
end

Phase lag 1 = -0.51*pi
Phase lag 2 = -0.22*pi

Modify Magnitude-Squared Coherence Plot

Generate two sinusoidal signals sampled for 1 second each at 1 kHz. Each sinusoid has a frequency of
250 Hz. One of the signals lags the other in phase by π/3 radians. Embed both signals in white
Gaussian noise of unit variance.

fs = 1000;
f = 250;
t = 0:1/fs:1-1/fs;
um = sin(2*pi*f*t)+rand(size(t));
un = sin(2*pi*f*t-pi/3)+rand(size(t));

Use mscohere to compute and plot the magnitude-squared coherence of the signals.

1 Functions

1-1440

mscohere(um,un,[],[],[],fs)

Modify the title of the plot, the label of the x-axis, and the limits of the y-axis.

title('Magnitude-Squared Coherence')
xlabel('f (Hz)')
ylim([0 1.1])

 mscohere

1-1441

Use gca to obtain a handle to the current axes. Change the locations of the tick marks. Remove the
label of the y-axis.

ax = gca;
ax.XTick = 0:250:500;
ax.YTick = 0:0.25:1;
ax.YLabel.String = [];

1 Functions

1-1442

Call the Children property of the handle to change the color and width of the plotted line.

ln = ax.Children;
ln.Color = [0.8 0 0];
ln.LineWidth = 1.5;

 mscohere

1-1443

Alternatively, use set and get to modify the line properties.

set(get(gca,'Children'),'Color',[0 0.4 0],'LineStyle','--','LineWidth',1)

1 Functions

1-1444

Input Arguments
x, y — Input signals
vectors | matrices

Input signals, specified as vectors or matrices.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments:

• If window is an integer, then mscohere divides x and y into segments of length window and
windows each segment with a Hamming window of that length.

• If window is a vector, then mscohere divides x and y into segments of the same length as the
vector and windows each segment using window.

If the length of x and y cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then the signals are truncated accordingly.

 mscohere

1-1445

If you specify window as empty, then mscohere uses a Hamming window such that x and y are
divided into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

• If window is scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then mscohere uses a number that produces 50% overlap
between segments. If the segment length is unspecified, the function sets noverlap to ⌊N/4.5⌋,
where N is the length of the input and output signals.
Data Types: double | single

nfft — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer. If you specify nfft as empty, then mscohere
sets this argument to max(256,2p), where p = ⌈log2 N⌉ for input signals of length N.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

1 Functions

1-1446

freqrange — Frequency range for magnitude-squared coherence estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the magnitude-squared coherence estimate, specified as 'onesided',
'twosided', or 'centered'. The default is 'onesided' for real-valued signals and 'twosided'
for complex-valued signals.

• 'onesided' — Returns the one-sided estimate of the magnitude-squared coherence estimate
between two real-valued input signals, x and y. If nfft is even, cxy has nfft/2 + 1 rows and is
computed over the interval [0,π] rad/sample. If nfft is odd, cxy has (nfft + 1)/2 rows and the
interval is [0,π) rad/sample. If you specify fs, the corresponding intervals are [0,fs/2] cycles/unit
time for even nfft and [0,fs/2) cycles/unit time for odd nfft.

• 'twosided' — Returns the two-sided estimate of the magnitude-squared coherence estimate
between two real-valued or complex-valued input signals, x and y. In this case, cxy has nfft rows
and is computed over the interval [0,2π) rad/sample. If you specify fs, the interval is [0,fs) cycles/
unit time.

• 'centered' — Returns the centered two-sided estimate of the magnitude-squared coherence
estimate between two real-valued or complex-valued input signals, x and y. In this case, cxy has
nfft rows and is computed over the interval (–π,π] rad/sample for even nfft and (–π,π) rad/
sample for odd nfft. If you specify fs, the corresponding intervals are (–fs/2, fs/2] cycles/unit
time for even nfft and (–fs/2, fs/2) cycles/unit time for odd nfft.

Output Arguments
cxy — Magnitude-squared coherence estimate
vector | matrix | three-dimensional array

Magnitude-squared coherence estimate, returned as a vector, matrix, or three-dimensional array.

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector.

f — Frequencies
vector

Frequencies, returned as a real-valued column vector.

More About
Magnitude-Squared Coherence

The magnitude-squared coherence estimate is a function of frequency with values between 0 and 1.
These values indicate how well x corresponds to y at each frequency. The magnitude-squared
coherence is a function of the power spectral densities, Pxx(f) and Pyy(f), and the cross power spectral
density, Pxy(f), of x and y:

Cxy(f) =
Pxy(f) 2

Pxx(f)Pyy(f) .

For multi-input/multi-output systems, the multiple-coherence function becomes

 mscohere

1-1447

CXyi(f) =
PXyi

† (f)PXX
−1(f)PXyi(f)

Pyiyi(f)

= Px1yi* (f) ⋯ Pxmyi* (f)

Px1x1(f) Px1x2(f) ⋯ Px1xm(f)

Px2x1(f) Px2x2(f) ⋯ Px2xm(f)

⋮ ⋮ ⋱ ⋮
Pxmx1(f) Pxmx2(f) ⋯ Pxmxm(f)

−1
Px1yi(f)

⋮
Pxmyi(f)

1
Pyiyi(f)

for the ith output signal, where:

• X corresponds to the array of m inputs.
• PXyi

 is the m-dimensional vector of cross power spectral densities between the inputs and yi.
• PXX is the m-by-m matrix of power spectral densities and cross power spectral densities of the

inputs.
• Pyiyi

 is the power spectral density of the output.
• The dagger (†) stands for the complex conjugate transpose.

Algorithms
mscohere estimates the magnitude-squared coherence function [2] using Welch’s overlapped
averaged periodogram method [3], [5].

References
[1] Gómez González, A., J. Rodríguez, X. Sagartzazu, A. Schumacher, and I. Isasa. “Multiple

Coherence Method in Time Domain for the Analysis of the Transmission Paths of Noise and
Vibrations with Non-Stationary Signals.” Proceedings of the 2010 International Conference of
Noise and Vibration Engineering, ISMA2010-USD2010. pp. 3927–3941.

[2] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[3] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[4] Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice
Hall, 2005.

[5] Welch, Peter D. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on
Audio and Electroacoustics. Vol. AU-15, 1967, pp. 70–73.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

1 Functions

1-1448

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cpsd | periodogram | pwelch | tfestimate

Topics
“Cross Spectrum and Magnitude-Squared Coherence”
“Compare the Frequency Content of Two Signals”

Introduced before R2006a

 mscohere

1-1449

nuttallwin
Nuttall-defined minimum 4-term Blackman-Harris window

Syntax
w = nuttallwin(N)
w = nuttallwin(N,SFLAG)

Description
w = nuttallwin(N) returns a Nuttall defined N-point, 4-term symmetric Blackman-Harris window
in the column vector w. The window is minimum in the sense that its maximum sidelobes are
minimized. The coefficients for this window differ from the Blackman-Harris window coefficients
computed with blackmanharris and produce slightly lower sidelobes.

w = nuttallwin(N,SFLAG) uses SFLAG window sampling. SFLAG can be 'symmetric' or
'periodic'. The default is 'symmetric'. You can find the equations defining the symmetric and
periodic windows in “Algorithms” on page 1-1451.

Examples

Nuttall and Blackman-Harris Windows

Compare 64-point Nuttall and Blackman-Harris windows. Plot them using wvtool.

L = 64;
w = blackmanharris(L);
y = nuttallwin(L);
wvtool(w,y)

1 Functions

1-1450

Compute the maximum difference between the two windows.

max(abs(y-w))

ans = 0.0099

Algorithms
The equation for the symmetric Nuttall defined four-term Blackman-Harris window is

w(n) = a0− a1cos 2π n
N − 1 + a2cos 4π n

N − 1 − a3cos 6π n
N − 1

where n= 0,1,2, ... N-1.

The equation for the periodic Nuttall defined four-term Blackman-Harris window is

w(n) = a0− a1cos 2π n
N + a2cos 4π n

N − a3cos 6π n
N

where n= 0,1,2, ... N-1. The periodic window is N-periodic.

The coefficients for this window are

a0 = 0.3635819

 nuttallwin

1-1451

a1 = 0.4891775

a2 = 0.1365995

a3 = 0.0106411

References

[1] Nuttall, Albert H. “Some Windows with Very Good Sidelobe Behavior.” IEEE Transactions on
Acoustics, Speech, and Signal Processing. Vol. ASSP-29, February 1981, pp. 84–91.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
barthannwin | bartlett | blackmanharris | bohmanwin | parzenwin | rectwin | triang |
WVTool

Introduced before R2006a

1 Functions

1-1452

obw
Occupied bandwidth

Syntax
bw = obw(x)
bw = obw(x,fs)

bw = obw(pxx,f)
bw = obw(sxx,f,rbw)

bw = obw(___ ,freqrange,p)

[bw,flo,fhi,power] = obw(___)

obw(___)

Description
bw = obw(x) returns the 99% occupied bandwidth, bw, of the input signal, x.

bw = obw(x,fs) returns the occupied bandwidth in terms of the sample rate, fs.

bw = obw(pxx,f) returns the 99% occupied bandwidth of the power spectral density (PSD)
estimate, pxx. The frequencies, f, correspond to the estimates in pxx.

bw = obw(sxx,f,rbw) computes the occupied bandwidth of the power spectrum estimate, sxx.
The frequencies, f, correspond to the estimates in sxx. rbw is the resolution bandwidth used to
integrate each power estimate.

bw = obw(___ ,freqrange,p) specifies the frequency interval over which to compute the
occupied bandwidth. This syntax can include any combination of input arguments from previous
syntaxes, as long as the second input argument is either fs or f. If the second input is passed as
empty, normalized frequency will be assumed. This syntax also specifies p, the percentage of the total
signal power contained in the occupied band.

[bw,flo,fhi,power] = obw(___) also returns the lower and upper bounds of the occupied
bandwidth and the occupied band power.

obw(___) with no output arguments plots the PSD or power spectrum in the current figure window
and annotates the bandwidth.

Examples

Occupied Bandwidth of Chirps

Generate 1024 samples of a chirp sampled at 1024 kHz. The chirp has an initial frequency of 50 kHz
and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such that the signal-to-
noise ratio is 40 dB. Reset the random number generator for reproducible results.

 obw

1-1453

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x+randn(size(x))*std(x)/db2mag(SNR);

Estimate the occupied bandwidth of the signal and annotate it on a plot of the power spectral density
(PSD).

obw(x,Fs)

ans = 5.5377e+04

Generate another chirp. Specify an initial frequency of 200 kHz, a final frequency of 300 kHz, and an
amplitude that is twice that of the first signal. Add white Gaussian noise.

x2 = 2*chirp(t,200e3,nSamp/Fs,300e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the chirps to produce a two-channel signal. Estimate the occupied bandwidth of each
channel.

y = obw([x x2],Fs)

1 Functions

1-1454

y = 1×2
105 ×

 0.5538 1.0546

Annotate the occupied bandwidths of the two channels on a plot of the PSDs.

obw([x x2],Fs);

Add the two channels to form a new signal. Plot the PSD and annotate the occupied bandwidth.

obw(x+x2,Fs);

 obw

1-1455

Occupied Bandwidth of Sinusoids

Generate 1024 samples of a 100.123 kHz sinusoid sampled at 1024 kHz. Add white Gaussian noise
such that the signal-to-noise ratio is 40 dB. Reset the random number generator for reproducible
results.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = sin(2*pi*t*100.123e3);
x = x + randn(size(x))*std(x)/db2mag(SNR);

Use the periodogram function to compute the power spectral density (PSD) of the signal. Specify a
Kaiser window with the same length as the signal and a shape factor of 38. Estimate the occupied
bandwidth of the signal and annotate it on a plot of the PSD.

[Pxx,f] = periodogram(x,kaiser(nSamp,38),[],Fs);

obw(Pxx,f);

1 Functions

1-1456

Generate another sinusoid, this one with a frequency of 257.321 kHz and an amplitude that is twice
that of the first sinusoid. Add white Gaussian noise.

x2 = 2*sin(2*pi*t*257.321e3);
x2 = x2 + randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the sinusoids to produce a two-channel signal. Estimate the PSD of each channel and
use the result to determine the occupied bandwidth.

[Pyy,f] = periodogram([x x2],kaiser(nSamp,38),[],Fs);

y = obw(Pyy,f)

y = 1×2
103 ×

 7.2001 7.3777

Annotate the occupied bandwidths of the two channels on a plot of the PSDs.

obw(Pyy,f);

 obw

1-1457

Add the two channels to form a new signal. Estimate the PSD and annotate the occupied bandwidth.

[Pzz,f] = periodogram(x+x2,kaiser(nSamp,38),[],Fs);

obw(Pzz,f);

1 Functions

1-1458

Occupied Bandwidth of Bandlimited Signals

Generate a signal whose PSD resembles the frequency response of an 88th-order bandpass FIR filter
with normalized cutoff frequencies 0 . 25π rad/sample and 0 . 45π rad/sample.

d = fir1(88,[0.25 0.45]);

Compute the 99% occupied bandwidth of the signal between 0 . 2π rad/sample and 0 . 6π rad/sample.
Plot the PSD and annotate the occupied bandwidth and measurement interval.

obw(d,[],[0.2 0.6]*pi);

 obw

1-1459

Output the occupied bandwidth, its lower and upper bounds, and the occupied band power.
Specifying a sample rate of 2π is equivalent to leaving the rate unset.

[bw,flo,fhi,power] = obw(d,2*pi,[0.2 0.6]*pi);

fprintf('bw = %.3f*pi, flo = %.3f*pi, fhi = %.3f*pi \n',[bw flo fhi]/pi)

bw = 0.217*pi, flo = 0.240*pi, fhi = 0.458*pi

fprintf('power = %.1f%% of total',power/bandpower(d)*100)

power = 99.0% of total

Add a second channel with normalized cutoff frequencies 0 . 5π rad/sample and 0 . 8π rad/sample and
an amplitude that is one-tenth that of the first channel.

d = [d;fir1(88,[0.5 0.8])/10]';

Compute the 50% occupied bandwidth of the signal between 0 . 3π rad/sample and 0 . 9π rad/sample.
Plot the PSD and annotate the occupied bandwidth and measurement interval.

obw(d,[],[0.3 0.9]*pi,50);

1 Functions

1-1460

Output the occupied bandwidth of each channel. Divide by π.

bw = obw(d,[],[0.3 0.9]*pi,50)/pi

bw = 1×2

 0.0705 0.1412

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then obw computes the occupied bandwidth independently for each column. x must be finite-
valued.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

fs — Sample rate
positive real scalar

 obw

1-1461

Sample rate, specified as a positive real scalar. The sample rate is the number of samples per unit
time. If the time is measured in seconds, then the sample rate is in hertz.
Data Types: single | double

pxx — Power spectral density
vector | matrix

Power spectral density (PSD), specified as a vector or matrix with real nonnegative elements. If pxx
is a one-sided estimate, then it must correspond to a real signal. If pxx is a matrix, then obw
computes the occupied bandwidth of each column of pxx independently.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Frequencies
vector

Frequencies, specified as a vector.
Data Types: single | double

sxx — Power spectrum estimate
vector | matrix

Power spectrum estimate, specified as a vector or matrix with real nonnegative elements. If sxx is a
matrix, then obw computes the occupied bandwidth of each column of sxx independently.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: single | double

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of two
values: the frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth
of the window used to compute the PSD.
Data Types: single | double

freqrange — Frequency range
two-element vector

Frequency range, specified as a two-element vector of real values. If you do not specify freqrange,
then obw uses the entire bandwidth of the input signal.

1 Functions

1-1462

Data Types: single | double

p — Power percentage
99 (default) | positive scalar

Power percentage, specified as a positive scalar between 0 and 100. obw computes the difference in
frequency between the points where the integrated power crosses the ½(100 – p) and ½(100 + p)
percentages of the total power in the spectrum.
Data Types: single | double

Output Arguments
bw — Occupied bandwidth
scalar | vector

Occupied bandwidth, returned as a scalar or vector.

• If you specify a sample rate, then bw has the same units as fs.
• If you do not specify a sample rate, then bw has units of rad/sample.

flo, fhi — Bandwidth frequency bounds
scalars | vectors

Bandwidth frequency bounds, returned as scalars or vectors.

power — Power stored in bandwidth
scalar | vector

Power stored in bandwidth, returned as a scalar or vector.

Algorithms
To determine the occupied bandwidth, obw computes a periodogram power spectral density estimate
using a rectangular window and integrates the estimate using the midpoint rule. The occupied
bandwidth is the difference in frequency between the points where the integrated power crosses
0.5% and 99.5% of the total power in the spectrum.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bandpower | periodogram | powerbw | plomb | pwelch

Introduced in R2015a

 obw

1-1463

orderspectrum
Average spectrum versus order for vibration signal

Syntax
spec = orderspectrum(x,fs,rpm)
[spec,order] = orderspectrum(x,fs,rpm)

[spec,order] = orderspectrum(map,order)
[spec,order] = orderspectrum(map,order,'Amplitude',amp)

orderspectrum(___)

Description
spec = orderspectrum(x,fs,rpm) computes an average order-magnitude spectrum vector,
spec, for an input signal, x, sampled at a rate of fs Hz. To compute the spectrum, orderspectrum
windows a constant-phase, resampled version of x with a flat top window.

[spec,order] = orderspectrum(x,fs,rpm) also returns a vector of the orders corresponding
to each average spectrum value.

[spec,order] = orderspectrum(map,order) computes an average order-magnitude spectrum
vector starting from an order-RPM map and a vector of orders. Use rpmordermap to compute map
and order. map must be linearly scaled. The returned amplitudes are the same as in map. The
returned spectrum is scaled linearly.

[spec,order] = orderspectrum(map,order,'Amplitude',amp) specifies the type of
amplitude to consider when computing an average order-magnitude spectrum starting from an order-
RPM map.

orderspectrum(___) with no output arguments plots the RMS amplitude of the order spectrum,
scaled linearly, on the current figure.

Examples

Average Order Spectrum of Chirp with Four Orders

Create a simulated signal sampled at 600 Hz for 5 seconds. The system that is being tested increases
its rotational speed from 10 to 40 revolutions per second during the observation period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;
f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

1 Functions

1-1464

The signal consists of four harmonically related chirps with orders 1, 0.5, 4, and 6. The order-4 chirp
has twice the amplitude of the others. To generate the chirps, use the trapezoidal rule to express the
phase as the integral of the rotational speed.

o1 = 1;
o2 = 0.5;
o3 = 4;
o4 = 6;

ph = 2*pi*cumtrapz(rpm/60)/fs;

x = [1 1 2 1]*cos([o1 o2 o3 o4]'*ph);

Visualize the order-RPM map of the signal.

rpmordermap(x,fs,rpm)

 orderspectrum

1-1465

Visualize the average order spectrum of the signal. The peaks of the spectrum correspond to the
ridges seen in the order-RPM map.

orderspectrum(x,fs,rpm)

Average Order Spectrum of Helicopter Vibration Data

Analyze simulated data from an accelerometer placed in the cockpit of a helicopter.

Load the helicopter data. The vibrational measurements, vib, are sampled at a rate of 500 Hz for 10
seconds. The data has a linear trend. Remove the trend to prevent it from degrading the quality of the
order estimation.

load('helidata.mat')

vib = detrend(vib);

Plot the nonlinear RPM profile. The rotor runs up until it reaches a maximum rotational speed of
about 27,600 revolutions per minute and then coasts down.

plot(t,rpm)
xlabel('Time (s)')
ylabel('RPM')

1 Functions

1-1466

Compute the average order spectrum of the signal. Use the default order resolution.

orderspectrum(vib,fs,rpm)

 orderspectrum

1-1467

Use rpmordermap to repeat the computation with a finer order resolution. The lower orders are
resolved more clearly.

[map,order] = rpmordermap(vib,fs,rpm,0.005);

orderspectrum(map,order)

1 Functions

1-1468

Compute the power level for each estimated order. Display the result in decibels.

[map,order] = rpmordermap(vib,fs,rpm,0.005,'Amplitude','power');

spec = orderspectrum(map,order);

plot(order,pow2db(spec))
xlabel('Order Number')
ylabel('Order Power Amplitude (dB)')
grid on

 orderspectrum

1-1469

Input Arguments
x — Input signal
vector

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.

rpm — Rotational speeds
vector of positive values

Rotational speeds, specified as a vector of positive values expressed in revolutions per minute. rpm
must have the same length as x.

• If you have a tachometer pulse signal, use tachorpm to extract rpm directly.
• If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

1 Functions

1-1470

Example: 100:10:3000 specifies that a system rotates initially at 100 revolutions per minute and
runs up to 3000 revolutions per minute in increments of 10.

map — Order-RPM map
matrix

Order-RPM map, specified as a matrix. Use rpmordermap to compute order-RPM maps.

order — Orders in order-RPM map syntax
vector

Orders in order-RPM map syntax, specified as a vector. The length of order must equal the number
of rows in map.

amp — Order-RPM map amplitudes
'rms' (default) | 'peak' | 'power'

Order-RPM map amplitudes, specified as one of 'rms', 'peak', or 'power'.

• 'rms' — Assumes that the order-RPM map uses the root-mean-square amplitude for each
estimated order.

• 'peak' — Assumes that the order-RPM map uses the peak amplitude for each estimated order.
• 'power' — Assumes that the order-RPM map uses the power level for each estimated order.

Output Arguments
spec — Average order-magnitude spectrum
vector

Average order-magnitude spectrum, returned as a vector of root-mean-square (RMS) amplitudes in
linear scale. If you use map and order as input arguments, and set 'Amplitude' to 'power' when
using rpmordermap to compute map, then orderspectrum returns spec in power units.

order — Output orders
real vector

Output orders, returned as a real vector.

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

[2] Vold, Håvard, and Jan Leuridan. “High Resolution Order Tracking at Extreme Slew Rates Using
Kalman Tracking Filters.” Shock and Vibration. Vol. 2, 1995, pp. 507–515.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 orderspectrum

1-1471

See Also
ordertrack | orderwaveform | rpmfreqmap | rpmordermap | tachorpm

Topics
“Order Analysis of a Vibration Signal”

Introduced in R2016b

1 Functions

1-1472

ordertrack
Track and extract order magnitudes from vibration signal

Syntax
mag = ordertrack(x,fs,rpm,orderlist)
[mag,rpm,time] = ordertrack(x,fs,rpm,orderlist)

[___] = ordertrack(x,fs,rpm,orderlist,rpmrefidx)

[___] = ordertrack(map,order,rpm,time,orderlist)

[___] = ordertrack(___ ,Name,Value)

ordertrack(___)

Description
mag = ordertrack(x,fs,rpm,orderlist) returns a matrix, mag, that contains time-dependent
root-mean-square (RMS) amplitude estimates of a specified set of orders, orderlist, present in
input signal x. x is measured at a set rpm of rotational speeds expressed in revolutions per minute.
fs is the measurement sample rate in Hz.

[mag,rpm,time] = ordertrack(x,fs,rpm,orderlist) also returns vectors of RPM and time
values corresponding to the columns of mag.

[___] = ordertrack(x,fs,rpm,orderlist,rpmrefidx) extracts order magnitudes using the
first-order Vold-Kalman filter and returns any of the output arguments from previous syntaxes.

[___] = ordertrack(map,order,rpm,time,orderlist) computes a matrix of magnitude
estimates starting from an order-RPM map, map, a vector of orders, order, and a vector of time
instants, time. Use rpmordermap to compute map, order, and time. The returned amplitudes and
scaling are the same as in map.

[___] = ordertrack(___ ,Name,Value) specifies further options using Name,Value pairs.
Some of the options apply only to the Vold-Kalman tracking procedure.

ordertrack(___) with no output arguments plots in the current figure the time-dependent orders
and RPM values.

Examples

Order Magnitudes of Chirp with Four Orders

Create a simulated signal sampled at 600 Hz for 5 seconds. The system that is being tested increases
its rotational speed from 10 to 40 revolutions per second (or, equivalently, from 600 to 2400
revolutions per minute) during the observation period.

Generate the tachometer readings.

 ordertrack

1-1473

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;
f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The signal consists of four harmonically related chirps with orders 1, 0.5, 4, and 6. The amplitudes of
the chirps are 1, 1/2, √2, and 2, respectively. To generate the chirps, use the trapezoidal rule to
express the phase as the integral of the rotational speed.

o1 = 1;
o2 = 0.5;
o3 = 4;
o4 = 6;

a1 = 1;
a2 = 0.5;
a3 = sqrt(2);
a4 = 2;

ph = 2*pi*cumtrapz(rpm/60)/fs;

x = [a1 a2 a3 a4]*cos([o1 o2 o3 o4]'*ph);

Extract and visualize the magnitudes of the orders.

ordertrack(x,fs,rpm,[o1 o2 o3 o4])

1 Functions

1-1474

Track Crossing Orders

Create a simulated vibration signal consisting of two crossing orders corresponding to two different
motors. The signal is sampled at 300 Hz for 3 seconds. The first motor increases its rotational speed
from 10 to 100 revolutions per second (or, equivalently, from 600 to 6000 revolutions per minute)
during the measurement. The second motor increases its rotational speed from 50 to 70 revolutions
per second (or 3000 to 4200 revolutions per minute) during the same period.

fs = 300;
nsamp = 3*fs;

rpm1 = linspace(10,100,nsamp)'*60;
rpm2 = linspace(50,70,nsamp)'*60;

The measured signal is of order 1.2 and amplitude 2√2 with respect to the first motor. With respect to
the second motor, the signal is of order 0.8 and amplitude 4√2.

x = [2 4]*sqrt(2).*cos(2*pi*cumtrapz([1.2*rpm1 0.8*rpm2]/60)/fs);

Make the first motor excite a resonance at the middle of the frequency range.

rs = [1+1./(1+linspace(-10,10,nsamp).^4)'/2 ones(nsamp,1)];

x = sum(rs.*x,2);

 ordertrack

1-1475

Visualize the orders using rpmfreqmap.

rpmfreqmap(x,fs,rpm1)

Compute the order magnitudes for both motors as a function of RPM. Use the Vold-Kalman algorithm
to decouple the crossing orders.

ordertrack(x,fs,[rpm1 rpm2],[1.2 0.8],[1 2],'Decouple',true)

1 Functions

1-1476

Track Orders of Helicopter Vibration Data

Analyze simulated data from an accelerometer placed in the cockpit of a helicopter.

Load the helicopter data. The vibrational measurements, vib, are sampled at a rate of 500 Hz for 10
seconds. Inspection of the data reveals that it has a linear trend. Remove the trend to prevent it from
degrading the quality of the order estimation.

load('helidata.mat')

vib = detrend(vib);

Compute the order-RPM map. Specify an order resolution of 0.005.

[map,order,rpm,time,res] = rpmordermap(vib,fs,rpm,0.005);

Compute and plot the average order spectrum of the signal. Find the three highest peaks of the
spectrum.

[spectrum,specorder] = orderspectrum(map,order);

[~,pkords] = findpeaks(spectrum,specorder,'SortStr','descend','Npeaks',3);

findpeaks(spectrum,specorder,'SortStr','descend','Npeaks',3)

 ordertrack

1-1477

Track the amplitudes of the three highest peaks.

ordertrack(map,order,rpm,time,pkords)

1 Functions

1-1478

Input Arguments
x — Input signal
vector

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: double | single

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.
Data Types: double | single

rpm — Rotational speeds
vector of positive values | matrix of positive values

Rotational speeds, specified as a vector or matrix of positive values expressed in revolutions per
minute. If rpm is a vector, it must have the same length as x. If rpm is a matrix, and rpmrefidx is
specified, then rpm must have at least two columns, and each column must have as many elements as
x.

 ordertrack

1-1479

• If you have a tachometer pulse signal, use tachorpm to extract rpm directly.
• If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

Example: 100:10:3000 specifies that a system rotates initially at 100 revolutions per minute and
runs up to 3000 revolutions per minute in increments of 10.
Data Types: double | single

orderlist — List of orders
vector

List of orders, specified as a vector. orderlist must not have values larger than fs/(2 × max(rpm/
60)).
Data Types: double | single

rpmrefidx — RPM column indices
vector

RPM column indices, specified as a vector of the same size as orderlist. The presence of this
argument specifies that the Vold-Kalman algorithm is to be used.
Data Types: double | single

map — Order-RPM map
matrix

Order-RPM map, specified as a matrix. Use rpmordermap to compute order-RPM maps.
Data Types: double | single

order — Orders in order-RPM map syntax
vector

Orders in order-RPM map syntax, specified as a vector. The length of order must equal the number
of rows in map.
Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Decouple',true,'Amplitude','peak' extracts the specified orders simultaneously
and returns the peak amplitude of each order.

Amplitude — Amplitude type
'rms' (default) | 'peak' | 'power'

Amplitude type, specified as the comma-separated pair consisting of 'Amplitude' and one of
'rms', 'peak', or 'power'.

• 'rms' — Returns the root-mean-square amplitude for each estimated order.
• 'peak' — Returns the peak amplitude for each estimated order.

1 Functions

1-1480

• 'power' — Returns the power level for each estimated order.

Scale — Magnitude scaling
'linear' (default) | 'dB'

Magnitude scaling, specified as the comma-separated pair consisting of 'Scale' and either
'linear' or 'dB'.

• 'linear' — Returns magnitude values scaled in linear units.
• 'dB' — Returns magnitude values scaled logarithmically and expressed in decibels.

Bandwidth — Approximate half-power bandwidth
fs/100 (default) | real scalar | real vector

Approximate half-power bandwidth, specified as the comma-separated pair consisting of
'Bandwidth' and either a real scalar or a real vector with the same number of elements as
orderlist. Smaller values of 'Bandwidth' produce smooth, narrowband output. However, this
output might not accurately reflect rapid changes in order amplitude. This argument applies only to
the Vold-Kalman algorithm.
Data Types: double | single

Decouple — Mode decoupling option
false (default) | true

Mode decoupling option, specified as the comma-separated pair consisting of 'Decouple' and a
logical value. If this option is set to true, then ordertrack extracts order magnitudes
simultaneously, enabling it to separate closely spaced or crossing orders. This argument applies only
to the Vold-Kalman algorithm.
Data Types: logical

SegmentLength — Length of overlapping segments
integer

Length of overlapping segments, specified as the comma-separated pair consisting of
'SegmentLength' and an integer. If you specify a segment length, then ordertrack divides the
input signal into segments. It then computes the order magnitudes for each segment and combines
the results to produce the output. If the segments are too short, the function might not properly
capture localized events such as crossing orders. This argument applies only to the Vold-Kalman
algorithm.
Data Types: double | single

Output Arguments
mag — Order-magnitude matrix
matrix

Order-magnitude matrix, returned as a matrix.

rpm — Rotational speeds
vector of positive values

Rotational speeds, returned as a vector of positive values expressed in revolutions per minute.

 ordertrack

1-1481

time — Time instants
vector

Time instants, returned as a vector.

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

[2] Feldbauer, Christian, and Robert Höldrich. "Realization of a Vold-Kalman Tracking Filter — A
Least Squares Problem." Proceedings of the COST G-6 Conference on Digital Audio Effects
(DAFX-00). Verona, Italy, December 7–9, 2000.

[3] Vold, Håvard, and Jan Leuridan. "High Resolution Order Tracking at Extreme Slew Rates Using
Kalman Tracking Filters." Shock and Vibration. Vol. 2, 1995, pp. 507–515.

[4] Tůma, Jiří. “Algorithms for the Vold-Kalman Multiorder Tracking Filter.” Proceedings of the 14th
International Carpathian Control Conference (ICCC), 2013, pp. 388–94. https://doi.org/
10.1109/CarpathianCC.2013.6560575.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If the second input argument represents the sample rate, it must be specified as a scalar at
compile time.

• If the function uses the Vold-Kalman algorithm, then the generated code results may show small
numerical differences with respect to MATLAB results.

See Also
orderspectrum | orderwaveform | rpmfreqmap | rpmordermap | tachorpm

Topics
“Order Analysis of a Vibration Signal”

Introduced in R2016b

1 Functions

1-1482

https://doi.org/10.1109/CarpathianCC.2013.6560575
https://doi.org/10.1109/CarpathianCC.2013.6560575

orderwaveform
Extract time-domain order waveforms from vibration signal

Syntax
xrec = orderwaveform(x,fs,rpm,orderlist)
xrec = orderwaveform(x,fs,rpm,orderlist,rpmrefidx)
xrec = orderwaveform(x,fs,rpm,orderlist,rpmrefidx,Name,Value)

Description
xrec = orderwaveform(x,fs,rpm,orderlist) returns the time-domain waveforms
corresponding to a specified set of orders present in an input signal, x. x is measured at a set rpm of
rotational speeds expressed in revolutions per minute. fs is the measurement sample rate in Hz. The
vector orderlist specifies the desired orders, whose waveforms are returned in the corresponding
columns of xrec. The function uses the Vold-Kalman filter for the computation.

xrec = orderwaveform(x,fs,rpm,orderlist,rpmrefidx) returns time-domain waveforms
with multiple reference RPM signals, which are stored in the columns of rpm. rpmrefidx is a vector
that relates each order in orderlist to an RPM signal.

xrec = orderwaveform(x,fs,rpm,orderlist,rpmrefidx,Name,Value) specifies further
options for the Vold-Kalman procedure using Name,Value pairs.

Examples

Order Waveforms of Chirp with Four Orders

Create a simulated signal sampled at 600 Hz for 5 seconds. The system that is being tested increases
its rotational speed from 10 to 40 revolutions per second (or, equivalently, from 600 to 2400
revolutions per minute) during the observation period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;
f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The signal consists of four harmonically related chirps with orders 1, 1/2, √2, and 2. The amplitudes
of the chirps are 1, 1/2, √2, and 2, respectively. To generate the chirps, use the trapezoidal rule to
express the phase as the integral of the rotational speed.

ord = [1 0.5 sqrt(2) 2];
amp = [1 0.5 sqrt(2) 2];

ph = 2*pi*cumtrapz(rpm/60)/fs;

 orderwaveform

1-1483

x(1,:) = amp(1)*cos(ord(1)*ph);
x(2,:) = amp(2)*cos(ord(2)*ph);
x(3,:) = amp(3)*cos(ord(3)*ph);
x(4,:) = amp(4)*cos(ord(4)*ph);

xsum = sum(x);

Reconstruct the time-domain waveforms that compose the signal.

xrec = orderwaveform(xsum,fs,rpm,ord);

Visualize the results. Zoom in on a time interval occurring after the transients have decayed.

for kj = 1:4
 subplot(2,2,kj)
 plot(t,x(kj,:),t,xrec(:,kj))
 title(['Order = ' num2str(ord(kj))])
 xlim([2 3])
end

Extract Waveforms of Crossing Orders

Create a simulated vibration signal consisting of two crossing orders corresponding to two different
motors. The signal is sampled at 300 Hz for 3 seconds. The first motor increases its rotational speed

1 Functions

1-1484

from 10 to 100 revolutions per second (or, equivalently, from 600 to 6000 rpm) during the
measurement. The second motor increases its rotational speed from 50 to 70 revolutions per second
(or 3000 to 4200 rpm) during the same period.

fs = 300;
nsamp = 3*fs;

rpm1 = linspace(10,100,nsamp)'*60;
rpm2 = linspace(50,70,nsamp)'*60;

The measured signal is of order 1.2 and amplitude 2√2 with respect to the first motor. With respect to
the second motor, the signal is of order 0.8 and amplitude 4√2.

x = [2 4]*sqrt(2).*cos(2*pi*cumtrapz([1.2*rpm1 0.8*rpm2]/60)/fs);

Make the first motor excite a resonance at the middle of the frequency range.

y = [1+1./(1+linspace(-10,10,nsamp).^4)'/2 ones(nsamp,1)].*x;

x = sum(y,2);

Visualize the orders using rpmfreqmap.

rpmfreqmap(x,fs,rpm1)

 orderwaveform

1-1485

Reconstruct the time-domain waveforms that compose the signal. Use the Vold-Kalman algorithm to
decouple the crossing orders.

xrec = orderwaveform(x,fs,[rpm1 rpm2],[1.2 0.8],[1 2],'Decouple',true);

Plot the original and reconstructed waveforms.

for kj = 1:2
 figure(kj)
 subplot(2,1,1)
 plot((0:nsamp-1)/fs,y(:,kj))
 legend('Original')
 title(['Motor ' int2str(kj)])
 subplot(2,1,2)
 plot((0:nsamp-1)/fs,xrec(:,kj))

1 Functions

1-1486

 legend('Reconstructed')
end

Input Arguments
x — Input signal
vector

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.

rpm — Rotational speeds
vector of positive values

Rotational speeds, specified as a vector of positive values expressed in revolutions per minute. rpm
must have the same length as x.

• If you have a tachometer pulse signal, use tachorpm to extract rpm directly.

 orderwaveform

1-1487

• If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

Example: 100:10:3000 specifies that a system rotates initially at 100 revolutions per minute and
runs up to 3000 revolutions per minute in increments of 10.

orderlist — List of orders
vector

List of orders, specified as a vector. orderlist must not have values larger than fs/(2 × max(rpm/
60)).
Data Types: double | single

rpmrefidx — RPM column indices
vector

RPM column indices, specified as a vector of the same size as orderlist.
Data Types: double | single

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Decouple',true,'FilterOrder',2 extracts the specified order waveforms
simultaneously and uses a second-order Vold-Kalman filter.

FilterOrder — Vold-Kalman filter order
1 (default) | 2

Vold-Kalman filter order, specified as the comma-separated pair consisting of 'FilterOrder' and
either 1 or 2.
Data Types: double | single

Bandwidth — Approximate half-power bandwidth
fs/100 (default) | real scalar | real vector

Approximate half-power bandwidth, specified as the comma-separated pair consisting of
'Bandwidth' and either a real scalar or a real vector with the same number of elements as
orderlist. Smaller values of 'Bandwidth' produce smooth, narrowband output. However, this
output might not accurately reflect rapid changes in order amplitude.
Data Types: double | single

Decouple — Mode decoupling option
false (default) | true

Mode decoupling option, specified as the comma-separated pair consisting of 'Decouple' and a
logical value. If this option is set to true, then orderwaveform extracts order waveforms
simultaneously, enabling it to separate closely spaced or crossing orders.
Data Types: logical

SegmentLength — Length of overlapping segments
integer

1 Functions

1-1488

Length of overlapping segments, specified as the comma-separated pair consisting of
'SegmentLength' and an integer. If you specify a segment length, then orderwaveform divides the
input signal into segments. It then computes the reconstructed waveforms for each segment and
combines the results to produce the output. If the segments are too short, the function might not
properly capture localized events such as crossing orders.
Data Types: double | single

Output Arguments
xrec — Reconstructed time-domain order waveforms
matrix

Reconstructed time-domain order waveforms, returned as a matrix with one waveform in each
column.

References
[1] Feldbauer, Christian, and Robert Höldrich. “Realization of a Vold-Kalman Tracking Filter — A

Least Squares Problem.” Proceedings of the COST G-6 Conference on Digital Audio Effects
(DAFX-00). Verona, Italy, December 7–9, 2000.

[2] Vold, Håvard, and Jan Leuridan. “High Resolution Order Tracking at Extreme Slew Rates Using
Kalman Tracking Filters.” Shock and Vibration. Vol. 2, 1995, pp. 507–515.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code results may show small numerical differences with respect to MATLAB results.

See Also
orderspectrum | ordertrack | rpmfreqmap | rpmordermap | tachorpm

Topics
“Order Analysis of a Vibration Signal”

Introduced in R2016b

 orderwaveform

1-1489

overshoot
Overshoot metrics of bilevel waveform transitions

Syntax
os = overshoot(x)
os = overshoot(x,fs)
os = overshoot(x,t)
[os,oslev,osinst] = overshoot(___)
[___] = overshoot(___ ,Name,Value)
overshoot(___)

Description
os = overshoot(x) returns overshoots expressed as a percentage of the difference between the
low- and high-state levels in the input bilevel waveform. The values in os correspond to the greatest
absolute deviations that are greater than the final state levels of each transition.

os = overshoot(x,fs) specifies the sample rate fs in hertz.

os = overshoot(x,t) specifies the sample instants t.

[os,oslev,osinst] = overshoot(___) returns the levels oslev and sample instants osinst
of the overshoots for each transition. You can specify an input combination from any of the previous
syntaxes.

[___] = overshoot(___ ,Name,Value) specifies additional options using one or more
Name,Value arguments. You can use any of the output combinations from previous syntaxes.

overshoot(___) plots the bilevel waveform and marks the location of the overshoot of each
transition. The function also plots the lower and upper reference-level instants and associated
reference levels and the state levels and associated lower- and upper-state boundaries.

Examples

Overshoot Percentage in Posttransition Aberration Region

Determine the maximum percent overshoot relative to the high-state level in a 2.3 V clock waveform.

Load the 2.3 V clock data. Determine the maximum percent overshoot of the transition. Determine
also the level and sample instant of the overshoot. In this example, the maximum overshoot in the
posttransition region occurs near index 22.

load('transitionex.mat','x')

[oo,lv,nst] = overshoot(x)

oo = 6.1798

lv = 2.4276

1 Functions

1-1490

nst = 22

Plot the waveform. Annotate the overshoot and the corresponding sample instant.

overshoot(x);

ax = gca;
ax.XTick = sort([ax.XTick nst]);

Overshoot Percentage, Levels, and Time Instant in Posttransition Aberration Region

Determine the maximum percent overshoot relative to the high-state level, the level of the overshoot,
and the sample instant in a 2.3 V clock waveform.

Load the 2.3 V clock data with sampling instants. The clock data are sampled at 4 MHz.

load('transitionex.mat','x','t')

Determine the maximum percent overshoot, the level of the overshoot in volts, and the time instant
where the maximum overshoot occurs. Plot the result.

[os,oslev,osinst] = overshoot(x,t)

os = 6.1798

oslev = 2.4276

 overshoot

1-1491

osinst = 5.2500e-06

overshoot(x,t);

Overshoot Percentage, Levels, and Time Instant in Pretransition Aberration Region

Determine the maximum percent overshoot relative to the low-state level, the level of the overshoot,
and the sample instant in a 2.3 V clock waveform. Specify the 'Region' as 'Preshoot' to output
pretransition metrics.

Load the 2.3 V clock data with sampling instants. The clock data are sampled at 4 MHz.

load('transitionex.mat','x','t')

Determine the maximum percent overshoot, the level of the overshoot in volts, and the sampling
instant where the maximum overshoot occurs. Plot the result.

[os,oslev,osinst] = overshoot(x,t,'Region','Preshoot')

os = 4.8050

oslev = 0.1020

osinst = 4.7500e-06

1 Functions

1-1492

overshoot(x,t,'Region','Preshoot');

Input Arguments
x — Bilevel waveform
real-valued vector

Bilevel waveform, specified as a real-valued vector. The sample instants in x correspond to the vector
indices. The first sample instant in x corresponds to t = 0.

fs — Sample rate
real positive scalar

Sample rate in hertz, specified as a real positive scalar. The sample rate determines the sample
instants corresponding to the elements in x.

t — Sample instants
vector

Sample instants, specified as a vector. The length of t must equal the length of the input bilevel
waveform x.

 overshoot

1-1493

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Region','Preshoot' specifies the pretransition aberration region.

PercentReferenceLevels — Reference levels
[10 90] (default) | 1-by-2 real-valued vector

Reference levels as a percentage of the waveform amplitude, specified as a 1-by-2 real-valued vector.
The function defines the lower-state level to be 0 percent and the upper-state level to be 100 percent.
The first element corresponds to the lower percent reference level, and the second element
corresponds to the upper percent reference level.

Region — Aberration region
'Postshoot' (default) | 'Preshoot'

Aberration region over which to compute the overshoot, specified as 'Preshoot' or 'Postshoot'.
If you specify 'Preshoot', the function defines the end of the pretransition aberration region as the
last instant when the signal exits the first state. If you specify 'Postshoot', the function defines the
start of the posttransition aberration region as the instant when the signal enters the second state. By
default, the function computes overshoots for posttransition aberration regions.

SeekFactor — Aberration region duration
3 (default) | real-valued scalar

Aberration region duration, specified as a real-valued scalar. The function computes the overshoot
over the specified duration for each transition as a multiple of the corresponding transition duration.
If the edge of the waveform is reached or a complete intervening transition is detected before the
aberration region duration elapses, the duration is truncated to the edge of the waveform or the start
of the intervening transition.

StateLevels — Low- and high-state levels
1-by-2 real-valued vector

Low- and high-state levels, specified as a 1-by-2 real-valued vector. The first element corresponds to
the low-state level and the second element corresponds to the high-state level of the input waveform.

Tolerance — Tolerance level
2 (default) | real-valued scalar

Tolerance level, specified as a real-valued scalar. The function expresses tolerance as a percentage of
the difference between the upper and lower state levels. The initial and final levels of each transition
must be within the respective state levels.

Output Arguments
os — Overshoots
vector

Overshoots expressed as a percentage of the state levels, returned as a vector. The length of OS
corresponds to the number of transitions detected in the input signal. For more information, see
“Overshoot” on page 1-1495.

1 Functions

1-1494

oslev — Overshoot level
column vector

Overshoot level, returned as a column vector.

osinst — Sample instants
column vector

Sample instants of pretransition or posttransition overshoots, returned as a column vector. If you
specify fs or t, the overshoot instants are in seconds. If you do not specifyfs or t, the overshoot
instants are the indices of the input vector.

More About
State-Level Estimation

To determine the transitions, the overshoot function estimates the state levels of the input bilevel
waveform x by using a histogram method with these steps.

1 Determine the minimum and maximum amplitudes of the data.
2 For the specified number of histogram bins, determine the bin width, which is the ratio of the

amplitude range to the number of bins.
3 Sort the data values into the histogram bins.
4 Identify the lowest and highest indexed histogram bins with nonzero counts.
5 Divide the histogram into two subhistograms.
6 Compute the state levels by determining the mode or mean of the upper and lower histograms.

The function identifies all intervals which cross the upper-state boundary of the low state and the
lower-state boundary of the high state. The low-state and high-state boundaries are expressed as the
state level plus or minus a multiple of the difference between the state levels.

Overshoot

The function computes the overshoot percentages based on the greatest deviation from the final state
level in each transition.

For a positive-going (positive-polarity) pulse, the overshoot is given by

100
(O− S2)
(S2− S1)

where O is the maximum deviation greater than the high-state level, S2 is the high state, and S1 is the
low state.

For a negative-going (negative-polarity) pulse, the overshoot is given by

100
(O− S1)
(S2− S1)

This figure shows the calculation of overshoot for a positive-going transition.

 overshoot

1-1495

The red dashed lines indicate the estimated state levels. The double-sided black arrow depicts the
difference between the high- and low-state levels. The solid black line indicates the difference
between the overshoot value and the high-state level.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

1 Functions

1-1496

References
[1] IEEE Standard 181. IEEE Standard on Transitions, Pulses, and Related Waveforms (2003): 15–17.

See Also
settlingtime | statelevels

Introduced in R2012a

 overshoot

1-1497

parzenwin
Parzen (de la Vallée Poussin) window

Syntax
w = parzenwin(L)

Description
w = parzenwin(L) returns the L-point Parzen (de la Vallée Poussin) window in a column vector, w.
Parzen windows are piecewise-cubic approximations of Gaussian windows. Parzen window sidelobes
fall off as 1/ω4. See “Algorithms” on page 1-1499 for the equation that defines the Parzen window.

Examples

Parzen and Gaussian Windows

Compare 64-point Parzen and Gaussian windows. Display the result using wvtool.

gw = gausswin(64);
pw = parzenwin(64);
wvtool(gw,pw)

1 Functions

1-1498

Algorithms

The following equation defines the N–point Parzen window over the interval − (N − 1)
2 ≤ n ≤ (N − 1)

2 :

w(n) =
1 − 6 n

N/2
2

+ 6 n
N/2

3
0 ≤ n ≤ (N − 1)/4

2 1 − n
N/2

3
(N − 1)/4 < n ≤ (N − 1)/2

References

[1] harris, fredric j. "On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform." Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 parzenwin

1-1499

See Also
Apps
Window Designer

Functions
barthannwin | bartlett | blackmanharris | bohmanwin | nuttallwin | rectwin | triang |
WVTool

Introduced before R2006a

1 Functions

1-1500

pburg
Autoregressive power spectral density estimate — Burg’s method

Syntax
pxx = pburg(x,order)
pxx = pburg(x,order,nfft)

[pxx,w] = pburg(___)
[pxx,f] = pburg(___ ,fs)

[pxx,w] = pburg(x,order,w)
[pxx,f] = pburg(x,order,f,fs)

[___] = pburg(x,order, ___ ,freqrange)

[___ ,pxxc] = pburg(___ ,'ConfidenceLevel',probability)

pburg(___)

Description
pxx = pburg(x,order) returns the power spectral density (PSD) estimate, pxx, of a discrete-time
signal, x, found using Burg’s method. When x is a vector, it is treated as a single channel. When x is a
matrix, the PSD is computed independently for each column and stored in the corresponding column
of pxx. pxx is the distribution of power per unit frequency. The frequency is expressed in units of rad/
sample. order is the order of the autoregressive (AR) model used to produce the PSD estimate.

pxx = pburg(x,order,nfft) uses nfft points in the discrete Fourier transform (DFT). For real x,
pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For complex–valued x,
pxx always has length nfft. If you omit nfft, or specify it as empty, then pburg uses a default DFT
length of 256.

[pxx,w] = pburg(___) returns the vector of normalized angular frequencies, w, at which the PSD
is estimated. w has units of rad/sample. For real-valued signals, w spans the interval [0,π] when nfft
is even and [0,π) when nfft is odd. For complex-valued signals, w always spans the interval [0,2π).

[pxx,f] = pburg(___ ,fs) returns a frequency vector, f, in cycles per unit time. The sampling
frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz). For real-valued signals, f spans the interval [0,fs/2] when nfft is even and
[0,fs/2) when nfft is odd. For complex-valued signals, f spans the interval [0,fs).

[pxx,w] = pburg(x,order,w) returns the two-sided AR PSD estimates at the normalized
frequencies specified in the vector, w. The vector w must contain at least two elements, because
otherwise the function interprets it as nfft.

[pxx,f] = pburg(x,order,f,fs) returns the two-sided AR PSD estimates at the frequencies
specified in the vector, f. The vector f must contain at least two elements, because otherwise the
function interprets it as nfft. The frequencies in f are in cycles per unit time. The sampling
frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz).

 pburg

1-1501

[___] = pburg(x,order, ___ ,freqrange) returns the AR PSD estimate over the frequency
range specified by freqrange. Valid options for freqrange are: 'onesided', 'twosided', or
'centered'.

[___ ,pxxc] = pburg(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

pburg(___) with no output arguments plots the AR PSD estimate in dB per unit frequency in the
current figure window.

Examples

Burg PSD Estimate of an AR(4) Process

Create a realization of an AR(4) wide-sense stationary random process. Estimate the PSD using
Burg's method. Compare the PSD estimate based on a single realization to the true PSD of the
random process.

Create an AR(4) system function. Obtain the frequency response and plot the PSD of the system.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

1 Functions

1-1502

Create a realization of the AR(4) random process. Set the random number generator to the default
settings for reproducible results. The realization is 1000 samples in length. Assume a sampling
frequency of 1 Hz. Use pburg to estimate the PSD for a 4th-order process. Compare the PSD
estimate with the true PSD.

rng default

x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F] = pburg(y,4,1024,1);

hold on
plot(F,10*log10(Pxx))
legend('True Power Spectral Density','pburg PSD Estimate')

Reflection Coefficients for Model Order Determination

Create a realization of an AR(4) process. Use arburg to determine the reflection coefficients. Use the
reflection coefficients to determine an appropriate AR model order for the process. Obtain an
estimate of the process PSD.

Create a realization of an AR(4) process 1000 samples in length. Use arburg with the order set to 12
to return the reflection coefficients. Plot the reflection coefficients to determine an appropriate model
order.

 pburg

1-1503

A = [1 -2.7607 3.8106 -2.6535 0.9238];

rng default

x = filter(1,A,randn(1000,1));

[a,e,k] = arburg(x,12);

stem(k,'filled')
title('Reflection Coefficients')
xlabel('Model Order')

The reflection coefficients decay to zero after order 4. This indicates an AR(4) model is most
appropriate.

Obtain a PSD estimate of the random process using Burg's method. Use 1000 points in the DFT. Plot
the PSD estimate.

pburg(x,4,length(x))

1 Functions

1-1504

Burg PSD Estimate of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0, 1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos(2*pi*f*t)'+randn(length(t),3);

Estimate the PSD of the signal using Burg's method with a 12th-order autoregressive model. Use the
default DFT length. Plot the estimate.

morder = 12;

pburg(x,morder,[],Fs)

 pburg

1-1505

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

order — Order of autoregressive model
positive integer

Order of the autoregressive model, specified as a positive integer.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For a complex-

1 Functions

1-1506

valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as empty, the
default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

 pburg

1-1507

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1508

If the nfft argument is variable-size at compile time, then it must not become a scalar or an empty
array at runtime.

See Also
pcov | pmcov | pyulear

Introduced before R2006a

 pburg

1-1509

pcov
Autoregressive power spectral density estimate — covariance method

Syntax
pxx = pcov(x,order)
pxx = pcov(x,order,nfft)

[pxx,w] = pcov(___)
[pxx,f] = pcov(___ ,fs)

[pxx,w] = pcov(x,order,w)
[pxx,f] = pcov(x,order,f,fs)

[___] = pcov(x,order, ___ ,freqrange)

[___ ,pxxc] = pcov(___ ,'ConfidenceLevel',probability)

pcov(___)

Description
pxx = pcov(x,order) returns the power spectral density (PSD) estimate, pxx, of a discrete-time
signal, x, found using the covariance method. When x is a vector, it is treated as a single channel.
When x is a matrix, the PSD is computed independently for each column and stored in the
corresponding column of pxx. pxx is the distribution of power per unit frequency. The frequency is
expressed in units of rad/sample. order is the order of the autoregressive (AR) model used to
produce the PSD estimate.

pxx = pcov(x,order,nfft) uses nfft points in the discrete Fourier transform (DFT). For real x,
pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For complex–valued x,
pxx always has length nfft. If you omit nfft, or specify it as empty, then pcov uses a default DFT
length of 256.

[pxx,w] = pcov(___) returns the vector of normalized angular frequencies, w, at which the PSD
is estimated. w has units of radians/sample. For real-valued signals, w spans the interval [0, π] when
nfft is even and [0,π) when nfft is odd. For complex–valued signals, w always spans the interval
[0,2π].

[pxx,f] = pcov(___ ,fs) returns a frequency vector, f, in cycles per unit time. The sampling
frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz). For real-valued signals, f spans the interval [0,fs/2] when nfft is even and
[0,fs/2) when nfft is odd. For complex-valued signals, f spans the interval [0,fs).

[pxx,w] = pcov(x,order,w) returns the two-sided AR PSD estimates at the normalized
frequencies specified in the vector, w. The vector w must contain at least two elements, because
otherwise the function interprets it as nfft.

[pxx,f] = pcov(x,order,f,fs) returns the two-sided AR PSD estimates at the frequencies
specified in the vector, f. The vector f must contain at least two elements, because otherwise the

1 Functions

1-1510

function interprets it as nfft. The frequencies in f are in cycles per unit time. The sampling
frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz).

[___] = pcov(x,order, ___ ,freqrange) returns the AR PSD estimate over the frequency
range specified by freqrange. Valid options for freqrange are: 'onesided', 'twosided', or
'centered'.

[___ ,pxxc] = pcov(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

pcov(___) with no output arguments plots the AR PSD estimate in dB per unit frequency in the
current figure window.

Examples

Covariance-Method PSD Estimate of an AR(4) Process

Create a realization of an AR(4) wide-sense stationary random process. Estimate the PSD using the
covariance method. Compare the PSD estimate based on a single realization to the true PSD of the
random process.

Create an AR(4) system function. Obtain the frequency response and plot the PSD of the system.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

 pcov

1-1511

Create a realization of the AR(4) random process. Set the random number generator to the default
settings for reproducible results. The realization is 1000 samples in length. Assume a sampling
frequency of 1 Hz. Use pcov to estimate the PSD for a 4th-order process. Compare the PSD estimate
with the true PSD.

rng default

x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F] = pcov(y,4,1024,1);

hold on
plot(F,10*log10(Pxx))
legend('True Power Spectral Density','pcov PSD Estimate')

1 Functions

1-1512

Covariance-Method PSD Estimate of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0, 1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos(2*pi*f*t)'+randn(length(t),3);

Estimate the PSD of the signal using the covariance method with a 12th-order autoregressive model.
Use the default DFT length. Plot the estimate.

morder = 12;

pcov(x,morder,[],Fs)

 pcov

1-1513

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

order — Order of autoregressive model
positive integer

Order of the autoregressive model, specified as a positive integer.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For a complex-

1 Functions

1-1514

valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as empty, the
default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

 pcov

1-1515

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1516

If the nfft argument is variable-size at compile time, then it must not become a scalar or an empty
array at runtime.

See Also
pburg | pmcov | pyulear

Introduced before R2006a

 pcov

1-1517

peak2peak
Maximum-to-minimum difference

Syntax
y = peak2peak(x)
y = peak2peak(x,dim)

Description
y = peak2peak(x) returns the difference between the maximum and minimum values in x.

y = peak2peak(x,dim) computes the maximum-to-minimum differences of x along dimension dim.

Examples

Peak-to-Peak Difference of Sinusoid

Compute the maximum-to-minimum difference of a 100 Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);

y = peak2peak(x)

y = 2

Peak-to-Peak Difference of Complex Exponential

Create a complex exponential with a frequency of π/4 rad/sample. Find the peak-to-peak difference.

n = 0:99;
x = exp(1j*pi/4*n);

y = peak2peak(x)

y = 0.0000e+00 + 1.1034e-15i

Peak-to-Peak Differences of 2-D Matrix

Create a matrix in which each column is a 100 Hz sinusoid sampled at 1 kHz with a different
amplitude. The amplitude is equal to the column index.

Compute the maximum-to-minimum differences of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)'*(1:4);

1 Functions

1-1518

y = peak2peak(x)

y = 1×4

 2 4 6 8

Peak-to-Peak Differences of 2-D Matrix Along Specified Dimension

Create a matrix where each row is a 100 Hz sinusoid sampled at 1 kHz with a different amplitude.
The amplitude is equal to the row index.

Compute the maximum-to-minimum differences of the rows, specifying the dimension equal to 2 with
the dim argument.

t = 0:0.001:1-0.001;
x = (1:4)'*cos(2*pi*100*t);

y = peak2peak(x,2)

y = 4×1

 2
 4
 6
 8

Input Arguments
x — Input array
vector | matrix | N-D array | gpuArray object

Input signal, specified as a vector, matrix, N-D array, or gpuArray object. For complex-valued inputs,
peak2peak identifies the maximum and minimum in complex magnitude. peak2peak then subtracts
the complex number with the minimum modulus from the complex number with the maximum
modulus.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Example: sin(2*pi*(0:255)/4) specifies a sinusoid as a row vector.
Example: sin(2*pi*[0.1;0.3]*(0:39))' specifies a two-channel sinusoid.
Data Types: double | single
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. By default, peak2peak operates
along the first array dimension of x with size greater than 1. For example, if x is a row or column

 peak2peak

1-1519

vector, y is a real-valued scalar. If x is an N-by-M matrix with N > 1, y is a 1-by-M row vector
containing the maximum-to-minimum differences of the columns of x.
Data Types: double | single

Output Arguments
y — Maximum-to-minimum difference
scalar | vector | matrix | N-D array | gpuArray object

Maximum-to-minimum difference, returned as a real-valued scalar, vector, matrix, N-D array, or
gpuArray object.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
min | max | peak2rms | rms | rssq

Introduced in R2012a

1 Functions

1-1520

peak2rms
Peak-magnitude-to-RMS ratio

Syntax
y = peak2rms(x)
y = peak2rms(x,dim)

Description
y = peak2rms(x) returns the ratio of the largest absolute value in x to the root-mean-square (RMS)
value of x.

y = peak2rms(x,dim) computes the peak-magnitude-to-RMS ratio of x along dimension dim.

Examples

Peak-Magnitude-to-RMS Ratio of Sinusoid

Compute the peak-magnitude-to-RMS ratio of a 100 Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);

y = peak2rms(x)

y = 1.4142

Peak-Magnitude-to-RMS Ratio of Complex Exponential

Create a complex exponential with a frequency of π/4 rad/sample. Find the peak-magnitude-to-RMS
ratio.

n = 0:99;
x = exp(1j*pi/4*n);

y = peak2rms(x)

y = 1

Peak-Magnitude-to-RMS Ratios of 2-D Matrix

Create a matrix in which each column is a 100 Hz sinusoid sampled at 1 kHz with a different
amplitude. The amplitude is equal to the column index.

Compute the peak-magnitude-to-RMS ratios of the columns.

 peak2rms

1-1521

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)'*(1:4);

y = peak2rms(x)

y = 1×4

 1.4142 1.4142 1.4142 1.4142

Peak-Magnitude-to-RMS Ratios of 2-D Matrix Along Specified Dimension

Create a matrix in which each row is a 100 Hz sinusoid sampled at 1 kHz with a different amplitude.
The amplitude is equal to the row index.

Compute the RMS levels of the rows, specifying the dimension equal to 2 with the dim argument.

t = 0:0.001:1-0.001;
x = (1:4)'*cos(2*pi*100*t);

y = peak2rms(x,2)

y = 4×1

 1.4142
 1.4142
 1.4142
 1.4142

Input Arguments
x — Input array
vector | matrix | N-D array | gpuArray object

Input signal, specified as a vector, matrix, N-D array, or gpuArray object.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Data Types: double | single
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. By default, peak2rms operates
along the first array dimension of x with size greater than 1. For example, if x is a row or column
vector, y is a real-valued scalar. If x is an N-by-M matrix with N > 1, y is a 1-by-M row vector
containing the peak-magnitude-to-RMS levels of the columns of y.
Data Types: double | single

1 Functions

1-1522

Output Arguments
y — Peak-magnitude-to-RMS-ratio
scalar | matrix | N-D array | gpuArray object

Peak-magnitude-to-RMS ratio, specified as a real-valued scalar, matrix, N-D array, or gpuArray
object.

More About
Peak-Magnitude-to-RMS Ratio

The peak-magnitude-to-RMS ratio is

X ∞

1
N ∑n = 1

N
Xn

2
,

where the infinity-norm and RMS values are computed along the specified dimension.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
min | max | mean | peak2peak | rms | rssq

 peak2rms

1-1523

Introduced in R2012a

1 Functions

1-1524

peig
Pseudospectrum using eigenvector method

Syntax
[S,wo] = peig(x,p)
[S,wo] = peig(x,p,wi)
[S,wo] = peig(___ ,nfft)
[S,wo] = peig(___ ,'corr')

[S,fo] = peig(x,p,nfft,fs)
[S,fo] = peig(x,p,fi,fs)
[S,fo] = peig(x,p,nfft,fs,nwin,noverlap)

[___] = peig(___ ,freqrange)
[___ ,v,e] = peig(___)
peig(___)

Description
[S,wo] = peig(x,p) implements the eigenvector spectral estimation method and returns S, the
pseudospectrum estimate of the input signal x, and a vector wo of normalized frequencies (in rad/
sample) at which the pseudospectrum is evaluated. The pseudospectrum is calculated using estimates
of the eigenvectors of a correlation matrix associated with the input data x. You can specify the signal
subspace dimension using the input argument p.

[S,wo] = peig(x,p,wi) returns the pseudospectrum computed at the normalized frequencies
specified in vector wi. The vector wi must have two or more elements, because otherwise the
function interprets it as nfft.

[S,wo] = peig(___ ,nfft) specifies the integer length of the FFT, nfft, to use to estimate the
pseudospectrum. This syntax can include any combination of input arguments from previous
syntaxes.

[S,wo] = peig(___ ,'corr') forces the input argument x to be interpreted as a correlation
matrix rather than a matrix of signal data. For this syntax, x must be a square matrix, and all of its
eigenvalues must be nonnegative.

[S,fo] = peig(x,p,nfft,fs) returns the pseudospectrum computed at the frequencies specified
in vector fo (in Hz). Supply the sample rate fs in Hz.

[S,fo] = peig(x,p,fi,fs) returns the pseudospectrum computed at the frequencies specified in
the vector fi. The vector fi must have two or more elements, because otherwise the function
interprets it as nfft.

[S,fo] = peig(x,p,nfft,fs,nwin,noverlap) returns the pseudospectrum S by segmenting
the input data x using the window nwin and overlap length noverlap.

[___] = peig(___ ,freqrange) specifies the range of frequency values to include in fo or wo.

 peig

1-1525

[___ ,v,e] = peig(___) returns the matrix v of noise eigenvectors, along with the associated
eigenvalues in the vector e.

peig(___) with no output arguments plots the pseudospectrum in the current figure window.

Examples

Pseudospectrum of Sum of Sinusoids

Implement the eigenvector method to find the pseudospectrum of the sum of three sinusoids in noise.
Use the default FFT length of 256. The inputs are complex sinusoids so you set p equal to the number
of inputs. Use the modified covariance method for the correlation matrix estimate.

n = 0:99;
s = exp(1i*pi/2*n)+2*exp(1i*pi/4*n)+exp(1i*pi/3*n)+randn(1,100);
X = corrmtx(s,12,'mod');
peig(X,3,'whole')

Pseudospectrum of Real Signal

Generate a real signal that consists of the sum of two sinusoids embedded in white Gaussian noise of
unit variance. The signal is sampled at 100 Hz for 1 second. The sinusoids have frequencies of 25 Hz
and 35 Hz. The lower-frequency sinusoid has twice the amplitude of the other.

1 Functions

1-1526

fs = 100;
t = 0:1/fs:1-1/fs;

s = 2*sin(2*pi*25*t)+sin(2*pi*35*t)+randn(1,100);

Use the eigenvector method to compute the pseudospectrum of the signal between 0 and the Nyquist
frequency. Specify a signal subspace dimension of 2 and a DFT length of 512.

peig(s,2,512,fs,'half')

It is not possible to resolve the two sinusoids because the signal is real. Repeat the computation using
a signal subspace of dimension 4.

peig(s,4,512,fs,'half')

 peig

1-1527

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then it is treated as one observation of
the signal. If x is a matrix, each row of x represents a separate observation of the signal. For
example, each row is one output of an array of sensors, as in array processing, such that x'*x is an
estimate of the correlation matrix.

Note You can use the output of corrmtx to generate x.

p — Subspace dimension
real positive integer | two-element vector

Subspace dimension, specified as a real positive integer or a two-element vector. If p is a real positive
integer, then it is treated as the subspace dimension. If p is a two-element vector, the second element
of p represents a threshold that is multiplied by λmin, the smallest estimated eigenvalue of the signal's
correlation matrix. Eigenvalues below the threshold λmin*p(2) are assigned to the noise subspace. In
this case, p(1) specifies the maximum dimension of the signal subspace. The extra threshold
parameter in the second entry in p provides you more flexibility and control in assigning the noise
and signal subspaces.

1 Functions

1-1528

Note If the inputs to peig are real sinusoids, set the value of p to double the number of input
signals. If the inputs are complex sinusoids, set p equal to the number of inputs.

wi — Input normalized frequencies
vector

Input normalized frequencies, specified as a vector.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. If nfft is specified as empty, the default nfft
is used.

fs — Sample rate
1 (default) | positive scalar | []

Sample rate, specified as a positive scalar in Hz. in Hz. If you specify fs with the empty vector [], the
sample rate defaults to 1 Hz.

fi — Input frequency
vector

Input frequencies, specified as a vector. The pseudospectrum is computed at the frequencies specified
in the vector.

nwin — Length of rectangular window
2*p(1) (default) | nonnegative integer

Length of rectangular window, specified as a nonnegative integer.

noverlap — Number of overlapped samples
nwin-1 (default) | nonnegative integer

Number of overlapped samples, specified as a nonnegative integer smaller than the length of window.

Note The arguments nwin and noverlap are ignored when you include 'corr' in the syntax.

freqrange — Frequency range of pseudospectrum estimates
'half' | 'whole' | 'centered'

Frequency range of pseudospectrum estimates,specified as one of 'half', whole, or 'centered'.

• 'half' — Returns half the spectrum for a real input signal x. If nfft is even, then S has length
nfft/2 + 1 and is computed over the interval [0, π]. If nfft is odd, the length of S is (nfft + 1)/2
and the frequency interval is [0,π). When your specify fs, the intervals are [0, fs/2) and [0, fs/2]
for even and odd nfft, respectively.

• 'whole' — Returns the whole spectrum for either real or complex input x. In this case, S has
length nfft and is computed over the interval [0, 2π). When you specify fs, the frequency
interval is [0, fs).

 peig

1-1529

• 'centered' — Returns the centered whole spectrum for either real or complex input x. In this
case, S has length nfft and is computed over the interval (–π, π] for even nfft and (–π, π) for
odd nfft. When you specify fs, the frequency intervals are (–fs/2, fs/2] and (–fs/2, fs/2) for
even and odd nfft, respectively.

Note You can put the arguments freqrange or 'corr' anywhere in the input argument list after p.

Output Arguments
S — Pseudospectrum estimate
vector

Pseudospectrum estimate, returned as a vector. The pseudospectrum is calculated using estimates of
the eigenvectors of a correlation matrix associated with the input data x.

wo — Output normalized frequencies
vector

Output normalized frequencies, specified as a vector. S and wo have the same length. In general, the
length of the FFT and the values of the input x determine the length of the computed S and the range
of the corresponding normalized frequencies. The table indicates the length of S (and wo) and the
range of the corresponding normalized frequencies for the first syntax.

S Characteristics for an FFT Length of 256 (Default)

Input Data Type Length of S and w0 Range of the Corresponding
Normalized Frequencies

Real 129 [0, π]
Complex 256 [0, 2π)

If nfft is specified, the following table indicates the length of S and wo and the frequency range for
wo.

S and Frequency Vector Characteristics

Input Data Type nfft Even or Odd Length of S and w Range of w
Real Even (nfft/2)+ 1 [0, π]
Real Odd (nfft + 1)/2 [0, π)
Complex Even or odd nfft [0, 2π)

fo — Output frequency
vector

Output frequency, returned as a vector. The frequency range for fo depends on nfft, fs, and the
values of the input x. The length of S (and fo) is the same as in the S and Frequency Vector
Characteristics above. The following table indicates the frequency range for fo if nfft and fs are
specified.

1 Functions

1-1530

S and Frequency Vector Characteristics with fs Specified

Input Data Type nfft Even/Odd Range of f
Real Even [0, fs/2]
Real Odd [0, fs/2)
Complex Even or odd [0, fs)

Additionally, if nwin and noverlap are also specified, the input data x is segmented and windowed
before the matrix used to estimate the correlation matrix eigenvalues is formulated. The
segmentation of the data depends on nwin, noverlap, and the form of x. Comments on the resulting
windowed segments are described in the following table.

Windowed Data Depending on x and nwin

form of x Form of nwin Windowed Data
Data vector Scalar Length is nwin.
Data vector Vector of coefficients Length is length(nwin).
Data matrix Scalar Data is not windowed.
Data matrix Vector of coefficients length(nwin) must be the same as the

column length of x, and noverlap is not
used.

See the Eigenvector Length Depending on Input Data and Syntax for related information on this
syntax.

v — Noise eigenvector
matrix

Noise eigenvectors, returned as a matrix. The columns of v span the noise subspace of dimension
size(v,2). The dimension of the signal subspace is size(v,1)-size(v,2).

e — Estimated eigenvalues
vector

Estimated eigenvalues of the correlation matrix, returned as a vector.

Algorithms
The eigenvector method estimates the pseudospectrum from a signal or a correlation matrix using a
weighted version of the MUSIC algorithm derived from Schmidt's eigenspace analysis method [1] [2].
The algorithm performs eigenspace analysis of the signal's correlation matrix to estimate the signal's
frequency content. If you do not supply the correlation matrix, the eigenvalues and eigenvectors of
the signal's correlation matrix are estimated using svd. This algorithm is particularly suitable for
signals that are the sum of sinusoids with additive white Gaussian noise.

The eigenvector method produces a pseudospectrum estimate given by

Pev(f) = 1

∑
k = p + 1

N
vk

He(f) 2 /λk

 peig

1-1531

where N is the dimension of the eigenvectors and vkis the kth eigenvector of the correlation matrix of
the input signal. The integer p is the dimension of the signal subspace, so the eigenvectors vk used in
the sum correspond to the smallest eigenvalues λk of the correlation matrix. The eigenvectors used
span the noise subspace. The vector e(f) consists of complex exponentials, so the inner product vk

He(f)
amounts to a Fourier transform. This is used for computation of the pseudospectrum. The FFT is
computed for each vk and then the squared magnitudes are summed and scaled.

References
[1] Marple, S. Lawrence. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 373–

378.

[2] Schmidt, R. O. “Multiple Emitter Location and Signal Parameter Estimation.” IEEE Transactions
on Antennas and Propagation. Vol. AP-34, March, 1986, pp. 276–280.

[3] Stoica, Petre, and Randolph L. Moses. Spectral Analysis of Signals. Upper Saddle River, NJ:
Prentice Hall, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If nfft or nwin is variable-size during code generation, then it must not reduce to a scalar or an
empty array at runtime.

See Also
corrmtx | pburg | periodogram | pmtm | pmusic | prony | pwelch | rooteig | rootmusic

Introduced before R2006a

1 Functions

1-1532

pentropy
Spectral entropy of signal

Syntax
se = pentropy(xt)
se = pentropy(x,sampx)

se = pentropy(p,fp,tp)
se = pentropy(___ ,Name,Value)

[se,t] = pentropy(___)

pentropy(___)

Description
se = pentropy(xt) returns the “Spectral Entropy” on page 1-1543 of single-variable, single-
column timetable xt as the timetable se. pentropy computes the spectrogram of xt using the
default options of pspectrum.

se = pentropy(x,sampx) returns the spectral entropy of vector x, sampled at rate or time interval
sampx, as a vector.

se = pentropy(p,fp,tp) returns the spectral entropy using the power spectrogram p, along with
spectrogram frequency and time vectors fp and tp.

Use this syntax when you want to customize the options for pspectrum, rather than accept the
default pspectrum options that pentropy applies.

se = pentropy(___ ,Name,Value) specifies additional properties using name-value pair
arguments. Options include instantaneous or whole-signal entropy, scaling by white noise entropy,
frequency limits, and time limits. You can use Name,Value with any of the input arguments in
previous syntaxes.

[se,t] = pentropy(___) returns the spectral entropy se along with the time vector or
timetable t. If se is a timetable, then t is equal to the row times of timetable se. This syntax
does not apply if Instantaneous is set to false.

pentropy(___) with no output arguments plots the spectral entropy against time. If
Instantaneous is set to false, the function outputs the scalar value of the spectral entropy.

Examples

Plot Spectral Entropy of Signal

Plot the spectral entropy of a signal expressed as a timetable and as a time series.

Generate a random series with normal distribution (white noise).

 pentropy

1-1533

xn = randn(1000,1);

Create time vector t and convert to duration vector tdur. Combine tdur and xn in a timetable.

fs = 10;
ts = 1/fs;
t = 0.1:ts:100;
tdur = seconds(t);
xt = timetable(tdur',xn);

Plot the spectral entropy of the timetable xt.

pentropy(xt)
title('Spectral Entropy of White Noise Signal Timetable')

Plot the spectral entropy of the signal, using time-point vector t and the form which returns se and
associated time te. Match the x-axis units and grid to the pentropy-generated plots for comparison.

[se,te] = pentropy(xn,t');
te_min = te/60;
plot(te_min,se)
title('Spectral Entropy of White Noise Signal Vector')
xlabel('Time (mins)')
ylabel('Spectral Entropy')
grid on

1 Functions

1-1534

Both yield the same result.

The second input argument for pentropy can represent either frequency or time. The software
interprets according to the data type of the argument. Plot the spectral entropy of the signal, using
sample rate scalar fs instead of time vector t.

pentropy(xn,fs)
title('Spectral Entropy of White Noise Signal Vector using Sample Rate')

 pentropy

1-1535

This plot matches the previous plots.

Plot Spectral Entropy of Speech Signal

Plot the spectral entropy of a speech signal and compare it to the original signal. Visualize the
spectral entropy on a color map by first creating a power spectrogram, and then taking the spectral
entropy of frequency bins within the bandwidth of speech.

Load the data, x, which contains a two-channel recording of the word "Hello" embedded by low-level
white noise. x consists of two columns representing the two channels. Use only the first channel.

Define the sample rate and the time vector. Augment the first channel of x with white noise to achieve
a signal-to-noise ratio of about 5 to 1.

load Hello x
fs = 44100;
t = 1/fs*(0:length(x)-1);
x1 = x(:,1) + 0.01*randn(length(x),1);

Find the spectral entropy. Visualize the data for the original signal and for the spectral entropy.

[se,te] = pentropy(x1,fs);

subplot(2,1,1)

1 Functions

1-1536

plot(t,x1)
ylabel('Speech Signal')
xlabel('Time')

subplot(2,1,2)
plot(te,se)
ylabel('Spectral Entropy')
xlabel('Time')

The spectral entropy drops when "Hello" is spoken. This is because the signal spectrum has changed
from almost a constant (white noise) to the distribution of a human voice. The human-voice
distribution contains more information and has lower spectral entropy.

Compute the power spectrogram p of the original signal, returning frequency vector fp and time
vector tp as well. For this case, specifying a frequency resolution of 20 Hz provides acceptable clarity
in the result.

[p,fp,tp] = pspectrum(x1,fs,'FrequencyResolution',20,'spectrogram');

The frequency vector of the power spectrogram goes to 22,050 Hz, but the range of interest with
respect to speech is limited to the telephony bandwidth of 300–3400 Hz. Divide the data into five
frequency bins by defining start and end points, and compute the spectral entropy for each bin.

flow = [300 628 1064 1634 2394];
fup = [627 1060 1633 2393 3400];

se2 = zeros(length(flow),size(p,2));
for i = 1:length(flow)
 se2(i,:) = pentropy(p,fp,tp,'FrequencyLimits',[flow(i) fup(i)]);
end

Visualize the data in a color map that shows ascending frequency bins, and compare with the original
signal.

subplot(2,1,1)
plot(t,x1)
xlabel('Time (seconds)')
ylabel('Speech Signal')

subplot(2,1,2)
imagesc(tp,[],flip(se2)) % Flip se2 so its plot corresponds to the ascending frequency bins.
h = colorbar(gca,'NorthOutside');
ylabel(h,'Spectral Entropy')
yticks(1:5)
set(gca,'YTickLabel',num2str((5:-1:1).')) % Label the ticks for the ascending bins.
xlabel('Time (seconds)')
ylabel('Frequency Bin')

 pentropy

1-1537

Use Spectral Entropy to Detect Sine Wave in White Noise

Create a signal that combines white noise with a segment that consists of a sine wave. Use spectral
entropy to detect the existence and position of the sine wave.

Generate and plot the signal, which contains three segments. The middle segment contains the sine
wave along with white noise. The other two segments are pure white noise.

fs = 100;
t = 0:1/fs:10;
sin_wave = 2*sin(2*pi*20*t')+randn(length(t),1);
x = [randn(1000,1);sin_wave;randn(1000,1)];
t3 = 0:1/fs:30;

plot(t3,x)
title('Sine Wave in White Noise')

1 Functions

1-1538

Plot the spectral entropy.

pentropy(x,fs)
title('Spectral Entropy of Sine Wave in White Noise')

 pentropy

1-1539

The plot clearly differentiates the segment with the sine wave from the white-noise segments. This is
because the sine wave contains information. Pure white noise has the highest spectral entropy.

The default for pentropy is to return or plot the instantaneous spectral entropy for each time point,
as the previous plot displays. You can also distill the spectral entropy information into a single
number that represents the entire signal by setting 'Instantaneous' to false. Use the form that
returns the spectral entropy value if you want to directly use the result in other calculations.
Otherwise, pentropy returns the spectral entropy in ans.

se = pentropy(x,fs,'Instantaneous',false)

se = 0.9033

A single number characterizes the spectral entropy, and therefore the information content, of the
signal. You can use this number to efficiently compare this signal with other signals.

Input Arguments
xt — Signal timetable
timetable

Signal timetable from which pentropy returns the spectral entropy se, specified as a timetable
that contains a single variable with a single column. xt must contain increasing, finite row times. If
the xt timetable has missing or duplicate time points, you can fix it using the tips in “Clean

1 Functions

1-1540

Timetable with Missing, Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the
pspectrum constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

For an example, see “Plot Spectral Entropy of Signal” on page 1-1533.

x — Time-series signal
vector

Time-series signal from which pentropy returns the spectral entropy se, specified as a vector.

sampx — Sample rate or sample time of signal
normalized frequency (default) | positive numeric scalar | duration scalar | numeric vector in
seconds | duration array | datetime array

Sample rate or sample time, specified as one of the following:

• Positive numeric scalar — Sample rate in hertz
• duration scalar — Time interval between consecutive samples of X
• Vector, duration array, or datetime array — Time instant or duration corresponding to each

element of x

When sampx represents a time vector, time samples can be nonuniform, with the pspectrum
constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

For an example, see “Plot Spectral Entropy of Signal” on page 1-1533.

p — Power spectrogram or spectrum of signal
real nonnegative matrix

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a column vector
(spectrum). If you specify p, then pentropy uses p rather than generate its own spectrogram or
power spectrogram. fp and tp, which provide the frequency and time information, must accompany
p. Each element of p at the i'th row and the j'th column represents the signal power at the frequency
bin centered at fp(i) and the time instance tp(j).

For an example, see “Plot Spectral Entropy of Speech Signal” on page 1-1536.

fp — Frequencies for spectrogram p
vector

Frequencies for spectrogram or power spectrogram p when p is supplied explicitly to pentropy,
specified as a vector in hertz. The length of fp must be equal to the number of rows in s.

tp — Time information for spectrogram p
vector | duration array | datetime array

Time information for power spectrogram or spectrum p when p is supplied explicitly to pentropy,
specified as one of the following:

 pentropy

1-1541

• Vector of time points, whose data type can be numeric, duration, or datetime. The length of
vector tp must be equal to the number of columns in p.

• duration scalar that represents the time interval in p. The scalar form of tp can be used only
when p is a power spectrogram matrix.

• For the special case where p is a column vector (power spectrum), tp can be a numeric,
duration, or datetime scalar representing the time point of the spectrum.

For the special case where p is a column vector (power spectrum), tp can be a single/double/
duration/datetime scalar representing the time point of the spectrum.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Instantaneous',false,'FrequencyLimits',[25 50] computes the scalar spectral
entropy representing the portion of the signal ranging from 25 Hz to 50 Hz.

Instantaneous — Instantaneous time series option
true (default) | false

Instantaneous time series option, specified as the comma-separated pair consisting of
'Instantaneous' and a logical.

• If Instantaneous is true, then pentropy returns the instantaneous spectral entropy as a time-
series vector.

• If Instantaneous is false, then pentropy returns the spectral entropy value of the whole
signal or spectrum as a scalar.

For an example, see “Use Spectral Entropy to Detect Sine Wave in White Noise” on page 1-1538.

Scaled — Scale by white noise option
true (default) | false

Scale by white noise option, specified as the comma-separated pair consisting of 'Scaled' and a
logical. Scaling by white noise — or log2n, where n is the number of frequency points — is equivalent
to normalizing in “Spectral Entropy” on page 1-1543. It allows you to perform a direct comparison on
signals of different length.

• If Scaled is true, then pentropy returns the spectral entropy scaled by the spectral entropy of
the corresponding white noise.

• If Scaled is false, then pentropy does not scale the spectral entropy.

FrequencyLimits — Frequency limits
[0 sampfreq/2] (default) | [f1 f2]

Frequency limits to use, specified as the comma-separated pair consisting of 'FrequencyLimits'
and a two-element vector containing lower and upper bounds f1 and f2 in hertz. The default is [0
sampfreq/2], where sampfreq is the sample rate in hertz that pentropy derives from sampx.

This specification allows you to exclude a band of data at either end of the spectral range.

For an example, see “Plot Spectral Entropy of Speech Signal” on page 1-1536.

1 Functions

1-1542

TimeLimits — Time Limits
full timespan (default) | [t1 t2]

Time limits, specified as the comma-separated pair consisting of 'TimeLimits' and a two-element
vector containing lower and upper bounds t1 and t2 in the same units as the sample time provided in
sampx, and of the data types:

• Numeric or duration when sampx is numeric or duration
• Numeric, duration, or datetime when sampx is datetime

This specification allows you to extract a time segment of data from the full timespan.

Output Arguments
se — Spectral entropy
timetable | double vector

“Spectral Entropy” on page 1-1543, returned as a timetable if the input signal is timetable xt,
and as a double vector if the input signal is time series x.

t — time values corresponding to se
timetable | double vector

Time values associated with se, returned in the same form as the time in se. This argument does not
apply if Instantaneous is set to false.

For an example, see “Plot Spectral Entropy of Signal” on page 1-1533.

More About
Spectral Entropy

The spectral entropy (SE) of a signal is a measure of its spectral power distribution. The concept is
based on the Shannon entropy, or information entropy, in information theory. The SE treats the
signal's normalized power distribution in the frequency domain as a probability distribution, and
calculates the Shannon entropy of it. The Shannon entropy in this context is the spectral entropy of
the signal. This property can be useful for feature extraction in fault detection and diagnosis [2], [1].
SE is also widely used as a feature in speech recognition [3] and biomedical signal processing [4].

The equations for spectral entropy arise from the equations for the power spectrum and probability
distribution for a signal. For a signal x(n), the power spectrum is S(m) = |X(m)|2, where X(m) is the
discrete Fourier transform of x(n). The probability distribution P(m) is then:

P m = S m
∑iS i

.

The spectral entropy H follows as:

H = − ∑
m = 1

N
P m log2P m .

Normalizing:

 pentropy

1-1543

Hn = −
∑

m = 1

N
P m log2P m

log2N ,

where N is the total frequency points. The denominator, log2N represents the maximal spectral
entropy of white noise, uniformly distributed in the frequency domain.

If a time-frequency power spectrogram S(t,f) is known, then the probability distribution becomes:

P m =
∑tS(t, m)
∑f ∑tS t, f

.

Spectral entropy is still:

H = − ∑
m = 1

N
P m log2P m .

To compute the instantaneous spectral entropy given a time-frequency power spectrogram S(t,f), the
probability distribution at time t is:

P t, m = S t, m
∑f S t, f

.

Then the spectral entropy at time t is:

H t = − ∑
m = 1

N
P t, m log2P t, m .

References
[1] Pan, Y. N., J. Chen, and X. L. Li. "Spectral Entropy: A Complementary Index for Rolling Element

Bearing Performance Degradation Assessment." Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science. Vol. 223, Issue 5, 2009, pp.
1223–1231.

[2] Sharma, V., and A. Parey. "A Review of Gear Fault Diagnosis Using Various Condition Indicators."
Procedia Engineering. Vol. 144, 2016, pp. 253–263.

[3] Shen, J., J. Hung, and L. Lee. "Robust Entropy-Based Endpoint Detection for Speech Recognition in
Noisy Environments." ICSLP. Vol. 98, November 1998.

[4] Vakkuri, A., A. Yli‐Hankala, P. Talja, S. Mustola, H. Tolvanen‐Laakso, T. Sampson, and H. Viertiö‐
Oja. "Time‐Frequency Balanced Spectral Entropy as a Measure of Anesthetic Drug Effect in
Central Nervous System during Sevoflurane, Propofol, and Thiopental Anesthesia." Acta
Anaesthesiologica Scandinavica. Vol. 48, Number 2, 2004, pp. 145–153.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1544

• Arguments specified using name-value pairs must be compile-time constants.
• datetime and duration arrays are not supported for code generation.
• Timetables are not supported for code generation.

See Also
kurtogram | pkurtosis | pspectrum

Introduced in R2018a

 pentropy

1-1545

periodogram
Periodogram power spectral density estimate

Syntax
pxx = periodogram(x)
pxx = periodogram(x,window)
pxx = periodogram(x,window,nfft)

[pxx,w] = periodogram(___)
[pxx,f] = periodogram(___ ,fs)

[pxx,w] = periodogram(x,window,w)
[pxx,f] = periodogram(x,window,f,fs)

[___] = periodogram(x,window, ___ ,freqrange)

[___ ,pxxc] = periodogram(___ ,'ConfidenceLevel',probability)

[rpxx,f] = periodogram(___ ,'reassigned')
[rpxx,f,pxx,fc] = periodogram(___ ,'reassigned')

[___] = periodogram(___ ,spectrumtype)

periodogram(___)

Description
pxx = periodogram(x) returns the periodogram power spectral density (PSD) estimate, pxx, of
the input signal, x, found using a rectangular window. When x is a vector, it is treated as a single
channel. When x is a matrix, the PSD is computed independently for each column and stored in the
corresponding column of pxx. If x is real-valued, pxx is a one-sided PSD estimate. If x is complex-
valued, pxx is a two-sided PSD estimate. The number of points, nfft, in the discrete Fourier
transform (DFT) is the maximum of 256 or the next power of two greater than the signal length.

pxx = periodogram(x,window) returns the modified periodogram PSD estimate using the
window, window. window is a vector the same length as x.

pxx = periodogram(x,window,nfft) uses nfft points in the discrete Fourier transform (DFT).
If nfft is greater than the signal length, x is zero-padded to length nfft. If nfft is less than the
signal length, the signal is wrapped modulo nfft and summed using datawrap. For example, the
input signal [1 2 3 4 5 6 7 8] with nfft equal to 4 results in the periodogram of sum([1 5; 2
6; 3 7; 4 8],2).

[pxx,w] = periodogram(___) returns the normalized frequency vector, w. If pxx is a one-sided
periodogram, w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided
periodogram, w spans the interval [0,2π).

[pxx,f] = periodogram(___ ,fs) returns a frequency vector, f, in cycles per unit time. The
sample rate, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz). For real-valued signals, f spans the interval [0,fs/2] when nfft is even and

1 Functions

1-1546

[0,fs/2) when nfft is odd. For complex-valued signals, f spans the interval [0,fs). fs must be the
fourth input to periodogram. To input a sample rate and still use the default values of the preceding
optional arguments, specify these arguments as empty, [].

[pxx,w] = periodogram(x,window,w) returns the two-sided periodogram estimates at the
normalized frequencies specified in the vector, w. w must contain at least two elements, because
otherwise the function interprets it as nfft.

[pxx,f] = periodogram(x,window,f,fs) returns the two-sided periodogram estimates at the
frequencies specified in the vector. The vector f must contain at least two elements, because
otherwise the function interprets it as nfft. The frequencies in f are in cycles per unit time. The
sample rate, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz).

[___] = periodogram(x,window, ___ ,freqrange) returns the periodogram over the
frequency range specified by freqrange. Valid options for freqrange are: 'onesided',
'twosided', or 'centered'.

[___ ,pxxc] = periodogram(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

[rpxx,f] = periodogram(___ ,'reassigned') reassigns each PSD estimate to the frequency
closest to its center of energy. rpxx contains the sum of the estimates reassigned to each element of
f.

[rpxx,f,pxx,fc] = periodogram(___ ,'reassigned') also returns the nonreassigned PSD
estimates, pxx, and the center-of-energy frequencies, fc. If you use the 'reassigned' flag, then
you cannot specify a probability confidence interval.

[___] = periodogram(___ ,spectrumtype) returns the PSD estimate if spectrumtype is
specified as 'psd' and returns the power spectrum if spectrumtype is specified as 'power'.

periodogram(___) with no output arguments plots the periodogram PSD estimate in dB per unit
frequency in the current figure window.

Examples

Periodogram Using Default Inputs

Obtain the periodogram of an input signal consisting of a discrete-time sinusoid with an angular
frequency of π/4 rad/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0, 1) white noise.
The signal is 320 samples in length. Obtain the periodogram using the default rectangular window
and DFT length. The DFT length is the next power of two greater than the signal length, or 512
points. Because the signal is real-valued and has even length, the periodogram is one-sided and there
are 512/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
[pxx,w] = periodogram(x);
plot(w,10*log10(pxx))

 periodogram

1-1547

Repeat the plot using periodogram with no outputs.

periodogram(x)

1 Functions

1-1548

Modified Periodogram with Hamming Window

Obtain the modified periodogram of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 radians/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/4 radians/sample with additive N(0, 1) white noise.
The signal is 320 samples in length. Obtain the modified periodogram using a Hamming window and
default DFT length. The DFT length is the next power of two greater than the signal length, or 512
points. Because the signal is real-valued and has even length, the periodogram is one-sided and there
are 512/2+1 points.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
periodogram(x,hamming(length(x)))

 periodogram

1-1549

DFT Length Equal to Signal Length

Obtain the periodogram of an input signal consisting of a discrete-time sinusoid with an angular
frequency of π/4 radians/sample with additive N(0, 1) white noise. Use a DFT length equal to the
signal length.

Create a sine wave with an angular frequency of π/4 radians/sample with additive N(0, 1) white noise.
The signal is 320 samples in length. Obtain the periodogram using the default rectangular window
and DFT length equal to the signal length. Because the signal is real-valued, the one-sided
periodogram is returned by default with a length equal to 320/2+1.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
nfft = length(x);
periodogram(x,[],nfft)

1 Functions

1-1550

Periodogram of Relative Sunspot Numbers

Obtain the periodogram of the Wolf (relative sunspot) number data sampled yearly between 1700 and
1987.

Load the relative sunspot number data. Obtain the periodogram using the default rectangular window
and number of DFT points (512 in this example). The sample rate for these data is 1 sample/year. Plot
the periodogram.

load sunspot.dat
relNums=sunspot(:,2);

[pxx,f] = periodogram(relNums,[],[],1);

plot(f,10*log10(pxx))
xlabel('Cycles/Year')
ylabel('dB / (Cycles/Year)')
title('Periodogram of Relative Sunspot Number Data')

 periodogram

1-1551

You see in the preceding figure that there is a peak in the periodogram at approximately 0.1 cycles/
year, which indicates a period of approximately 10 years.

Periodogram at a Given Set of Normalized Frequencies

Obtain the periodogram of an input signal consisting of two discrete-time sinusoids with an angular
frequencies of π/4 and π/2 rad/sample in additive N(0, 1) white noise. Obtain the two-sided
periodogram estimates at π/4 and π/2 rad/sample. Compare the result to the one-sided periodogram.

n = 0:319;
x = cos(pi/4*n)+0.5*sin(pi/2*n)+randn(size(n));

[pxx,w] = periodogram(x,[],[pi/4 pi/2]);
pxx

pxx = 1×2

 14.0589 2.8872

[pxx1,w1] = periodogram(x);
plot(w1/pi,pxx1,w/pi,2*pxx,'o')
legend('pxx1','2 * pxx')
xlabel('\omega / \pi')

1 Functions

1-1552

The periodogram values obtained are 1/2 the values in the one-sided periodogram. When you
evaluate the periodogram at a specific set of frequencies, the output is a two-sided estimate.

Periodogram at a Given Set of Cyclical Frequencies

Create a signal consisting of two sine waves with frequencies of 100 and 200 Hz in N(0,1) white
additive noise. The sampling frequency is 1 kHz. Obtain the two-sided periodogram at 100 and 200
Hz.

fs = 1000;
t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+sin(2*pi*200*t)+randn(size(t));

freq = [100 200];
pxx = periodogram(x,[],freq,fs)

pxx = 1×2

 0.2647 0.2313

 periodogram

1-1553

Upper and Lower 95%-Confidence Bounds

The following example illustrates the use of confidence bounds with the periodogram. While not a
necessary condition for statistical significance, frequencies in the periodogram where the lower
confidence bound exceeds the upper confidence bound for surrounding PSD estimates clearly
indicate significant oscillations in the time series.

Create a signal consisting of the superposition of 100 Hz and 150 Hz sine waves in additive white
N(0,1) noise. The amplitude of the two sine waves is 1. The sampling frequency is 1 kHz.

fs = 1000;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*100*t) + sin(2*pi*150*t) + randn(size(t));

Obtain the periodogram PSD estimate with 95%-confidence bounds. Plot the periodogram along with
the confidence interval and zoom in on the frequency region of interest near 100 and 150 Hz.

[pxx,f,pxxc] = periodogram(x,rectwin(length(x)),length(x),fs,...
 'ConfidenceLevel',0.95);

plot(f,10*log10(pxx))
hold on
plot(f,10*log10(pxxc),'-.')

xlim([85 175])
xlabel('Hz')
ylabel('dB/Hz')
title('Periodogram with 95%-Confidence Bounds')

1 Functions

1-1554

The lower confidence bound in the immediate vicinity of 100 and 150 Hz is significantly above the
upper confidence bound outside the vicinity of 100 and 150 Hz.

DC-Centered Periodogram

Obtain the periodogram of a 100 Hz sine wave in additive N(0, 1) noise. The data are sampled at 1
kHz. Use the 'centered' option to obtain the DC-centered periodogram and plot the result.

fs = 1000;
t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)+randn(size(t));
periodogram(x,[],length(x),fs,'centered')

Reassigned Periodogram

Generate a signal that consists of a 200 Hz sinusoid embedded in white Gaussian noise. The signal is
sampled at 1 kHz for 1 second. The noise has a variance of 0.01². Reset the random number
generator for reproducible results.

rng('default')

Fs = 1000;

 periodogram

1-1555

t = 0:1/Fs:1-1/Fs;
N = length(t);
x = sin(2*pi*t*200)+0.01*randn(size(t));

Use the FFT to compute the power spectrum of the signal, normalized by the signal length. The
sinusoid is in-bin, so all the power is concentrated in a single frequency sample. Plot the one-sided
spectrum. Zoom in to the vicinity of the peak.

q = fft(x,N);
ff = 0:Fs/N:Fs-Fs/N;

ffts = q*q'/N^2

ffts = 0.4997

ff = ff(1:floor(N/2)+1);
q = q(1:floor(N/2)+1);

stem(ff,abs(q)/N,'*')
axis([190 210 0 0.55])

Use periodogram to compute the power spectrum of the signal. Specify a Hann window and an FFT
length of 1024. Find the percentage difference between the estimated power at 200 Hz and the actual
value.

wind = hann(N);

1 Functions

1-1556

[pun,fr] = periodogram(x,wind,1024,Fs,'power');

hold on
stem(fr,pun)

periodogErr = abs(max(pun)-ffts)/ffts*100

periodogErr = 4.7349

Recompute the power spectrum, but this time use reassignment. Plot the new estimate and compare
its maximum with the FFT value.

[pre,ft,pxx,fx] = periodogram(x,wind,1024,Fs,'power','reassigned');

stem(fx,pre)
hold off
legend('Original','Periodogram','Reassigned')

 periodogram

1-1557

reassignErr = abs(max(pre)-ffts)/ffts*100

reassignErr = 0.0779

Power Estimate of Sinusoid

Estimate the power of sinusoid at a specific frequency using the 'power' option.

Create a 100 Hz sinusoid one second in duration sampled at 1 kHz. The amplitude of the sine wave is
1.8, which equates to a power of 1.8²/2 = 1.62. Estimate the power using the 'power' option.

fs = 1000;
t = 0:1/fs:1-1/fs;
x = 1.8*cos(2*pi*100*t);
[pxx,f] = periodogram(x,hamming(length(x)),length(x),fs,'power');
[pwrest,idx] = max(pxx);
fprintf('The maximum power occurs at %3.1f Hz\n',f(idx))

The maximum power occurs at 100.0 Hz

fprintf('The power estimate is %2.2f\n',pwrest)

The power estimate is 1.62

1 Functions

1-1558

Periodogram PSD Estimate of a Multichannel Signal

Generate 1024 samples of a multichannel signal consisting of three sinusoids in additive N(0, 1) white
Gaussian noise. The sinusoids' frequencies are π/2, π/3, and π/4 rad/sample. Estimate the PSD of the
signal using the periodogram and plot it.

N = 1024;
n = 0:N-1;

w = pi./[2;3;4];
x = cos(w*n)' + randn(length(n),3);

periodogram(x)

Compute Modified Periodogram Using Generated C Code

Create a function periodogram_data.m that returns the modified periodogram power spectral
density (PSD) estimate of an input signal using a window. The function specifies a number of discrete
Fourier transform points equal to the length of the input signal.

type periodogram_data

function [pxx,f] = periodogram_data(inputData,window)
%#codegen

 periodogram

1-1559

nfft = length(inputData);
[pxx,f] = periodogram(inputData,window,nfft);
end

Use codegen (MATLAB Coder) to generate a MEX function.

• The %#codegen directive in the function indicates that the MATLAB® code is intended for code
generation.

• The -args option specifies example arguments that define the size, class, and complexity of the
inputs to the MEX-file. For this example, specify inputData as a 1024-by-1 double precision
random vector and window as a Hamming window of length 1024. In subsequent calls to the MEX
function, use 1024-sample input signals and windows.

• If you want the MEX function to have a different name, use the -o option.
• If you want to view a code generation report, add the -report option at the end of the codegen

command.

codegen periodogram_data -args {randn(1024,1),hamming(1024)}

Code generation successful.

Compute the PSD estimate of a 1024-sample noisy sinusoid using the periodogram function and the
MEX function you generated. Specify a sinusoid normalized frequency of 2π/5 rad/sample and a Hann
window. Plot the two estimates to verify they coincide.

N = 1024;
x = 2*cos(2*pi/5*(0:N-1)') + randn(N,1);
periodogram(x,hann(N))
[pxMex,fMex] = periodogram_data(x,hann(N));
hold on
plot(fMex/pi,pow2db(pxMex),':','Color',[0 0.4 0])
hold off
grid on
legend('periodogram','MEX function')

1 Functions

1-1560

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

window — Window
rectwin(length(x)) | kaiser(length(x),38) | vector | []

Window, specified as a row or column vector with the same length as the input signal. If you specify
window as empty, then periodogram uses a rectangular window. If you specify the 'reassigned'
flag and an empty window, then the function uses a Kaiser window with β = 38.
Data Types: single | double

nfft — Number of DFT points
max(256,2^nextpow2(length(x))) (default) | integer | []

 periodogram

1-1561

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2 + 1) if nfft is even, and (nfft + 1)/2 if nfft is odd. For a
complex-valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as
empty, the default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

1 Functions

1-1562

spectrumtype — Power spectrum scaling
'psd' (default) | 'power'

Power spectrum scaling, specified as 'psd' or 'power'. To return the power spectral density, omit
spectrumtype or specify 'psd'. To obtain an estimate of the power at each frequency, use 'power'
instead. Specifying 'power' scales each estimate of the PSD by the equivalent noise bandwidth of
the window, except when the 'reassigned' flag is used.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and

 periodogram

1-1563

pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

rpxx — Reassigned PSD estimate
vector | matrix

Reassigned PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each
column of rpxx is the reassigned PSD estimate of the corresponding column of x.

fc — Center-of-energy frequencies
vector | matrix

Center-of-energy frequencies, specified as a vector or matrix.

More About
Periodogram

The periodogram is a nonparametric estimate of the power spectral density (PSD) of a wide-sense
stationary random process. The periodogram is the Fourier transform of the biased estimate of the
autocorrelation sequence. For a signal xn sampled at fs samples per unit time, the periodogram is
defined as

P (f) = Δt
N ∑

n = 0

N − 1
xne− j2πf Δt n

2
, − 1/2Δt < f ≤ 1/2Δt,

where Δt is the sampling interval. For a one-sided periodogram, the values at all frequencies except 0
and the Nyquist, 1/2Δt, are multiplied by 2 so that the total power is conserved.

If the frequencies are in radians/sample, the periodogram is defined as

P (ω) = 1
2πN ∑

n = 0

N − 1
xne− jωn

2
, − π < ω ≤ π .

The frequency range in the preceding equations has variations depending on the value of the
freqrange argument. See the description of freqrange in “Input Arguments” on page 1-1561.

The integral of the true PSD, P(f), over one period, 1/Δt for cyclical frequency and 2π for normalized
frequency, is equal to the variance of the wide-sense stationary random process:

σ2 =∫−1/2Δt
1/2Δt

P(f) df .

For normalized frequencies, replace the limits of integration appropriately.

Modified Periodogram

The modified periodogram multiplies the input time series by a window function. A suitable window
function is nonnegative and decays to zero at the beginning and end points. Multiplying the time
series by the window function tapers the data gradually on and off and helps to alleviate the leakage
in the periodogram. See “Bias and Variability in the Periodogram” for an example.

1 Functions

1-1564

If hn is a window function, the modified periodogram is defined by

P (f) = Δt
N ∑

n = 0

N − 1
hnxne− j2πf Δt n

2
, − 1/2Δt < f ≤ 1/2Δt,

where Δt is the sampling interval.

If the frequencies are in radians/sample, the modified periodogram is defined as

P (ω) = 1
2πN ∑

n = 0

N − 1
hnxne− jωn

2
, − π < ω ≤ π .

The frequency range in the preceding equations has variations depending on the value of the
freqrange argument. See the description of freqrange in “Input Arguments” on page 1-1561.

Reassigned Periodogram

The reassignment technique sharpens the localization of spectral estimates and produces
periodograms that are easier to read and interpret. This technique reassigns each PSD estimate to
the center of energy of its bin, away from the bin’s geometric center. It provides exact localization for
chirps and impulses.

References
[1] Auger, François, and Patrick Flandrin. "Improving the Readability of Time-Frequency and Time-

Scale Representations by the Reassignment Method." IEEE Transactions on Signal
Processing. Vol. 43, May 1995, pp. 1068–1089.

[2] Fulop, Sean A., and Kelly Fitz. "Algorithms for computing the time-corrected instantaneous
frequency (reassigned) spectrogram, with applications." Journal of the Acoustical Society of
America. Vol. 119, January 2006, pp. 360–371.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Analyzer

Functions
bandpower | pcov | pburg | plomb | pmcov | pmtm | pspectrum | pwelch | sfdr

 periodogram

1-1565

Topics
“Bias and Variability in the Periodogram”
“Power Spectral Density Estimates Using FFT”
“Nonparametric Methods”

Introduced before R2006a

1 Functions

1-1566

phasedelay
Phase delay of digital filter

Syntax
[phi,w] = phasedelay(b,a,n)
[phi,w] = phasedelay(sos,n)
[phi,w] = phasedelay(d,n)
[phi,w] = phasedelay(___ ,n,'whole')

[phi,f] = phasedelay(___ ,n,fs)
[phi,f] = phasedelay(___ ,n,'whole',fs)

phi = phasedelay(___ ,w)
phi = phasedelay(___ ,f,fs)

[phi,w,s] = phasedelay(___)
[phi,f,s] = phasedelay(___)

phasedelay(___)

Description
[phi,w] = phasedelay(b,a,n) returns the n-point phase delay response vector phi and the
corresponding n-point angular frequency vector w for the digital filter with transfer function
coefficients stored in b and a.

[phi,w] = phasedelay(sos,n) returns the n-point phase delay response corresponding to the
second-order sections sos.

[phi,w] = phasedelay(d,n) returns the n-point phase delay response of the digital filter d.

[phi,w] = phasedelay(___ ,n,'whole') returns the phase delay response at n equally spaced
points around the whole unit circle.

[phi,f] = phasedelay(___ ,n,fs) returns the phase delay response and the corresponding n-
point frequency vector f for a digital filter designed to filter signals sampled at a rate fs.

[phi,f] = phasedelay(___ ,n,'whole',fs) returns the frequency vector f at n points ranging
between 0 and fs.

phi = phasedelay(___ ,w) returns the phase delay response evaluated at the angular
frequencies specified in w.

phi = phasedelay(___ ,f,fs) returns the phase delay response evaluated at the frequencies
specified in f.

[phi,w,s] = phasedelay(___) returns plotting information, where s is a structure with fields
that you can change to display different frequency response plots.

 phasedelay

1-1567

[phi,f,s] = phasedelay(___) returns plotting information, where s is a structure with fields
that you can change to display different frequency response plots.

phasedelay(___) plots the phase delay response versus frequency.

Examples

Phase Delay Response of an FIR Filter

Use constrained least squares to design a lowpass FIR filter of order 54 and normalized cutoff
frequency 0.3. Specify the passband ripple and stopband attenuation as 0.02 and 0.08, respectively,
expressed in linear units. Compute and plot the phase delay response of the filter.

Ap = 0.02;
As = 0.008;

b = fircls1(54,0.3,Ap,As);
phasedelay(b)

Repeat the example using designfilt. Keep in mind that this function expresses the ripples in
decibels.

Apd = 40*log10((1+Ap)/(1-Ap));
Asd = -20*log10(As);

1 Functions

1-1568

d = designfilt('lowpassfir','FilterOrder',54,'CutoffFrequency',0.3, ...
 'PassbandRipple',Apd,'StopbandAttenuation',Asd);
phasedelay(d)

Phase Delay Response from Second-Order Sections

Design a third-order lowpass Butterworth filter with a cutoff frequency of 200 Hz. The sample rate is
1000 Hz.

fc = 200;
fs = 1000;

[z,p,k] = butter(3,fc/(fs/2),'low');

Use the zp2sos function to convert the zeros, poles, and gain to second-order sections. Compute the
phase delay response of the filter and set the number of evaluation points to 1024. Display the result.

sos = zp2sos(z,p,k);
phasedelay(sos,1024)

 phasedelay

1-1569

Phase Delay Response of an Elliptic Filter

Design an elliptic filter of order 10 and normalized passband frequency 0.4. Specify a passband ripple
of 0.5 dB and a stopband attenuation of 20 dB. Display the phase delay response of the filter over the
complete unit circle.

[b,a] = ellip(10,0.5,20,0.4);
phasedelay(b,a,512,'whole')

1 Functions

1-1570

Repeat the example using designfilt.

d = designfilt('lowpassiir','DesignMethod','ellip','FilterOrder',10, ...
 'PassbandFrequency',0.4, ...
 'PassbandRipple',0.5,'StopbandAttenuation',20);
phasedelay(d,512,'whole')

 phasedelay

1-1571

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors.
Data Types: single | double

n — Number of evaluation points
512 (default) | positive integer

Number of evaluation points, specified as a positive integer. Set n to a value greater than the filter
order.
Data Types: single | double

sos — Second-order section coefficients
matrix

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where K is the
number of sections and must be greater than or equal to 2. If the number of sections is less than 2,
the function considers the input to be a numerator vector, b. Each row of sos corresponds to the
coefficients of a second-order (biquad) filter. The ith row of the sos matrix corresponds to [bi(1)
bi(2) bi(3) ai(1) ai(2) ai(3)].

1 Functions

1-1572

Data Types: single | double

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. To generate d based on frequency-response
specifications, use the designfilt function.

w — Angular frequencies
vector

Angular frequencies at which the function evaluates the phase delay response, specified as a vector
and expressed in rad/sample. The frequencies are normally between 0 and π. w must contain at least
two elements.

fs — Sample rate
real-valued scalar

Sample rate, specified as a real-valued scalar and expressed in hertz.
Data Types: double

f — Frequencies
vector

Frequencies at which the function evaluates the phase delay response, specified as a vector and
expressed in hertz. f must contain at least two elements.

Output Arguments
phi — Phase delay response
vector

Phase delay response, returned as a vector of length n. The phase delay response is evaluated at n
equally spaced points around the upper half of the unit circle.

Note If the input to phasedelay is single precision, the function calculates the phase delay
response using single-precision arithmetic. The output phi is single precision.

w — Angular frequencies
vector

Angular frequencies in rad/sample, returned as a vector. If you specify n, w has length n. If you do not
specify n or you specify n as an empty vector, then w has length 512.

f — Frequencies
vector

Frequencies in hertz, returned as a vector. If you specify n, f has length n. If you do not specify n or
you specify n as an empty vector, then f has length 512.

s — Plotting information
structure

 phasedelay

1-1573

Plotting information, returned as a structure. You can modify the fields in s to display different
frequency response plots.

Algorithms
The phase delay response of a filter corresponds to the time delay that each frequency component
experiences as the input signal passes through the system. The phasedelay function returns the
phase delay response and the frequency vector of the filter

H(e jω) = B(e jω)
A(e jω)

= b(1) + b(2)e− jω + … + b(m + 1)e− jmω

a(1) + a(2)e− jω + … + a(n + 1)e− jnω

given numerator and denominator coefficients in inputs b and a.

See Also
designfilt | digitalFilter | freqz | FVTool | phasez | grpdelay

Introduced before R2006a

1 Functions

1-1574

phasez
Phase response of digital filter

Syntax
[phi,w] = phasez(b,a,n)
[phi,w] = phasez(sos,n)
[phi,w] = phasez(d,n)
[phi,w] = phasez(___ ,n,'whole')

[phi,f] = phasez(___ ,n,fs)
phi = phasez(___ ,f,fs)

phi = phasez(___ ,w)
phasez(___)

Description
[phi,w] = phasez(b,a,n) returns the n-point phase response vector phi and the corresponding
angular frequency vector w for the digital filter with the transfer function coefficients stored in b and
a.

[phi,w] = phasez(sos,n) returns the n-point phase response corresponding to the second-order
sections matrix sos.

[phi,w] = phasez(d,n) returns the n-point phase response for the digital filter d.

[phi,w] = phasez(___ ,n,'whole') returns the phase response at n sample points around the
entire unit circle. This syntax can include any combination of input arguments from the previous
syntaxes.

[phi,f] = phasez(___ ,n,fs) returns the frequency vector.

phi = phasez(___ ,f,fs) returns the phase response vector phi evaluated at the physical
frequencies supplied in f. This syntax can include any combination of input arguments from the
previous syntaxes.

phi = phasez(___ ,w) returns the unwrapped phase response in radians at frequencies specified
in w.

phasez(___) with no output arguments plots the phase response of the filter.

Examples

Phase Response of an FIR Filter

Use designfilt to design an FIR filter of order 54, normalized cutoff frequency 0 . 3π rad/s,
passband ripple 0.7 dB, and stopband attenuation 42 dB. Use the method of constrained least
squares. Display the phase response of the filter.

 phasez

1-1575

Nf = 54;
Fc = 0.3;
Ap = 0.7;
As = 42;

d = designfilt('lowpassfir','CutoffFrequency',Fc,'FilterOrder',Nf, ...
 'PassbandRipple',Ap,'StopbandAttenuation',As, ...
 'DesignMethod','cls');
phasez(d)

Design the same filter using fircls1. Keep in mind that fircls1 uses linear units to measure the
ripple and attenuation.

pAp = 10^(Ap/40);
Apl = (pAp-1)/(pAp+1);

pAs = 10^(As/20);
Asl = 1/pAs;

b = fircls1(Nf,Fc,Apl,Asl);
phasez(b)

1 Functions

1-1576

Phase Response of an Equiripple Filter

Design a lowpass equiripple filter with normalized passband frequency 0 . 45π rad/s, normalized
stopband frequency 0 . 55π rad/s, passband ripple 1 dB, and stopband attenuation 60 dB. Display the
phase response of the filter.

d = designfilt('lowpassfir', ...
 'PassbandFrequency',0.45,'StopbandFrequency',0.55, ...
 'PassbandRipple',1,'StopbandAttenuation',60, ...
 'DesignMethod','equiripple');
phasez(d)

 phasez

1-1577

Phase Response of an Elliptic Filter

Design an elliptic lowpass IIR filter with normalized passband frequency 0 . 4π rad/s, normalized
stopband frequency 0 . 5π rad/s, passband ripple 1 dB, and stopband attenuation 60 dB. Display the
phase response of the filter.

d = designfilt('lowpassiir', ...
 'PassbandFrequency',0.4,'StopbandFrequency',0.5, ...
 'PassbandRipple',1,'StopbandAttenuation',60, ...
 'DesignMethod','ellip');
phasez(d)

1 Functions

1-1578

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(e jω) = B(e jω)
A(e jω)

= b(1)+b(2) e− jω + b(3) e− j2ω +⋯+ b(M) e− j(M − 1)ω

a(1)+a(2) e− jω + a(3) e− j2ω +⋯+ a(N) e− j(N − 1)ω .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

n — Number of evaluation points
512 (default) | positive integer scalar

Number of evaluation points, specified as a positive integer scalar no less than 2. When n is absent, it
defaults to 512. For best results, set n to a value greater than the filter order.

sos — Second-order section coefficients
matrix

 phasez

1-1579

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, the function
treats the input as a numerator vector. Each row of sos corresponds to the coefficients of a second-
order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2)
ai(3)].
Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. When the unit of time is seconds, fs is expressed in hertz.
Data Types: double

w — Angular frequencies
vector

Angular frequencies, specified as a vector and expressed in rad/sample. w must have at least two
elements, because otherwise the function interprets it as n. w = π corresponds to the Nyquist
frequency.

f — Frequencies
vector

Frequencies, specified as a vector. f must have at least two elements, because otherwise the function
interprets it as n. When the unit of time is seconds, f is expressed in hertz.
Data Types: double

Output Arguments
phi — Phase response
vector

Phase response, returned as a vector. If you specify n, then phi has length n. If you do not specify n,
or specify n as an empty vector, then phi has length 512.

If the input to phasez is single precision, the function computes the phase response using single-
precision arithmetic. The output phi is single precision.

w — Angular frequencies
vector

1 Functions

1-1580

Angular frequencies, returned as a vector. w has values ranging from 0 to π. If you specify 'whole' in
your input, the values in w range from 0 to 2π. If you specify n, w has length n. If you do not specify n,
or specify n as the empty vector, w has length 512.

f — Frequencies
vector

Frequencies, returned as a vector expressed in hertz. f has values ranging from 0 to fs/2 Hz. If you
specify 'whole' in your input, the values in f range from 0 to fs Hz. If you specify n, f has length n.
If you do not specify n, or specify n as an empty vector, f has length 512.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If input b is a variable-sized matrix during code generation, then it must not reduce to a vector at
runtime.

• If input n is a variable-sized vector during code generation, then it must not reduce to a scalar at
runtime.

• If there is a discontinuity in the phase response, the result returned by the generated code might
differ from the result returned by MATLAB by 2π.

See Also
designfilt | digitalFilter | freqz | FVTool | phasedelay | grpdelay

Introduced before R2006a

 phasez

1-1581

pkurtosis
Spectral kurtosis from signal or spectrogram

Syntax
sk = pkurtosis(x)
sk = pkurtosis(x,sampx)
sk = pkurtosis(xt)
sk = pkurtosis(___ ,window)

sk = pkurtosis(s,sampx,f,window)

[sk,fout] = pkurtosis(___)
[___ ,thresh] = pkurtosis(___ ,'ConfidenceLevel',p)

pkurtosis(___)

Description
sk = pkurtosis(x) returns the spectral kurtosis on page 1-1593 of vector x as the vector sk.
pkurtosis uses normalized frequency (evenly spaced frequency vector spanning [0 π]) to compute
the time values. pkurtosis computes the spectrogram of x using pspectrum with default window
size (time resolution in samples), and 80% window overlap.

sk = pkurtosis(x,sampx) returns the spectral kurtosis of vector x sampled at rate or time
interval sampx.

sk = pkurtosis(xt) returns the spectral kurtosis of single-variable timetable xt in the vector
sk. xt must contain increasing finite time samples.

sk = pkurtosis(___ ,window) returns the spectral kurtosis using the time resolution specified in
window for the pspectrum spectrogram computation. You can use window with any of the input
arguments in previous syntaxes.

sk = pkurtosis(s,sampx,f,window) returns the spectral kurtosis using the spectrogram or
power spectrogram s, along with:

• Sample rate or time, sampx, of the original time-series signal that was transformed to produce s
• Spectrogram frequency vector f
• Spectrogram time resolution window

Use this syntax when you want to customize the options for pspectrum, rather than accept the
default pspectrum options that pkurtosis applies. You can specify sampx as empty to default to
normalized frequency. Although window is optional for previous syntaxes, you must supply a value for
window when using this syntax.

[sk,fout] = pkurtosis(___) returns the spectral kurtosis sk along with the frequency vector
fout. You can use these output arguments with any of the input arguments in previous syntaxes.

[___ ,thresh] = pkurtosis(___ ,'ConfidenceLevel',p) returns the spectral kurtosis
threshold thresh using the confidence level p. thresh represents the range within which the

1 Functions

1-1582

spectral kurtosis indicates a Gaussian stationary signal, at the optional confidence level p that you
either specify or accept as default. Specifying p allows you to tune the sensitivity of the spectral
kurtosis thresh results to behavior that is non-Gaussian or nonstationary. You can use the thresh
output argument with any of the input arguments in previous syntaxes. You can also set the
confidence level in previous syntaxes, but it has no effect unless you are returning or plotting
thresh.

pkurtosis(___) plots the spectral kurtosis, along with confidence level and thresholds, without
returning any data. You can use this syntax with any of the input arguments in previous syntaxes.

Examples

Plot Spectral Kurtosis of Nonstationary Signal Using Different Confidence Levels

Plot the spectral kurtosis of a chirp signal in white noise, and see how the nonstationary non-
Gaussian regime can be detected. Explore the effects of changing the confidence level, and of
invoking normalized frequency.

Create a chirp signal, add white Gaussian noise, and plot.

fs = 1000;
t = 0:1/fs:10;
f1 = 300;
f2 = 400;

xc = chirp(t,f1,10,f2);
x = xc + randn(1,length(t));

plot(t,x)
title('Chirp Signal with White Gaussian Noise')

 pkurtosis

1-1583

Plot the spectral kurtosis of the signal.

pkurtosis(x,fs)
title('Spectral Kurtosis of Chirp Signal with White Gaussian Noise')

1 Functions

1-1584

The plot shows a clear extended excursion from 300–400 Hz. This excursion corresponds to the signal
component which represents the nonstationary chirp. The area between the two horizontal red-
dashed lines represents the zone of probable stationary and Gaussian behavior, as defined by the 0.95
confidence interval. Any kurtosis points falling within this zone are likely to be stationary and
Gaussian. Outside of the zone, kurtosis points are flagged as nonstationary or non-Gaussian. Below
300 Hz, there are a few additional excursions slightly above the above the zone threshold. These
excursions represent false positives, where the signal is stationary and Gaussian, but because of the
noise, has exceeded the threshold.

Investigate the impact of the confidence level by changing it from the default 0.95 to 0.85.

pkurtosis(x,fs,'ConfidenceLevel',0.85)
title('Spectral Kurtosis of Chirp Signal with Noise at Confidence Level of 0.85')

 pkurtosis

1-1585

The lower confidence level implies more sensitive detection of nonstationary or non-Gaussian
frequency components. Reducing the confidence level shrinks the thresh-delimited zone. Now the
low-level excursions — false alarms — have increased in both number and amount. Setting the
confidence level is a balancing act between achieving effective detection and limiting the number of
false positives.

You can accurately determine and compare the zone width for the two cases by using the pkurtosis
form that returns it.

[sk1,~,thresh95] = pkurtosis(x);
[sk2,~,thresh85] = pkurtosis(x,'ConfidenceLevel',0.85);
thresh = [thresh95 thresh85]

thresh = 1×2

 0.3578 0.2628

Plot the spectral kurtosis again, but this time, omit the sample time information so that pkurtosis
plots normalized frequency.

pkurtosis(x,'ConfidenceLevel',0.85)
title('Spectral Kurtosis using Normalized Frequency')

1 Functions

1-1586

The frequency axis has changed from Hz to a scale from 0 to π rad/sample.

Plot Spectral Kurtosis Using a Customized Window Size

The pkurtosis function uses the default pspectrum window size (time resolution). You can specify
the window size to use instead. In this example, use the function kurtogram to return an optimal
window size and use that result for pkurtosis.

Create a chirp signal with white Gaussian noise.

fs = 1000;
t = 0:1/fs:10;
f1 = 300;
f2 = 400;
x = chirp(t,f1,10,f2)+randn(1,length(t));

Plot the spectral kurtosis with the default window size.

pkurtosis(x,fs)
title('Spectral Kurtosis with Default Window Size')

 pkurtosis

1-1587

Now compute the optimal window size using kurtogram.

kurtogram(x,fs)

1 Functions

1-1588

The kurtogram plot also illustrates the chirp between 300 and 400 Hz, and shows that the optimum
window size is 256. Feed w0 into pkurtosis.

w0 = 256;
pkurtosis(x,fs,w0)
title('Spectral Kurtosis with Optimum Window Size of 256')

 pkurtosis

1-1589

The main excursion has higher kurtosis values. The higher values improve the differentiation between
stationary and nonstationary components, and enhance your ability to extract the nonstationary
component as a feature.

Plot Spectral Kurtosis Using a Customized Spectrogram

When using signal input data, pkurtosis generates a spectrogram by using pspectrum with default
options. You can also create the spectrogram yourself if you want to customize the options.

Create a chirp signal with white Gaussian noise.

fs = 1000;
t = 0:1/fs:10;
f1 = 300;
f2 = 400;
x = chirp(t,f1,10,f2)+randn(1,length(t));

Generate a spectrogram that uses your specification for window, overlap, and number of FFT points.
Then use that spectrogram in pkurtosis.

window = 256;
overlap = round(window*0.8);
nfft = 2*window;
[s,f,t] = spectrogram(x,window,overlap,nfft,fs);

1 Functions

1-1590

figure
pkurtosis(s,fs,f,window)

The magnitude of the excursion is higher, and therefore better differentiated, than with default inputs
in previous examples. However, the excursion magnitude here is not as high as it is in the kurtogram-
optimized window example.

Input Arguments
x — Time-series signal
vector

Time-series signal from which pkurtosis returns the spectral kurtosis, specified as a vector.

sampx — Sample rate or sample time of signal
normalized frequency (default) | positive numeric scalar | duration scalar | numeric vector in
seconds | duration array | datetime array

Sample rate or sample time, specified as one of the following::

• Positive numeric scalar — frequency in hertz
• duration scalar — time interval between consecutive samples of X
• Vector, duration array, or datetime array — time instant or duration corresponding to each

element of x

 pkurtosis

1-1591

When sampx represents a time vector, time samples can be nonuniform, with the pspectrum
constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

If you specify sampx as empty, then pkurtosis uses normalized frequency. In other words, it
assumes an evenly spaced frequency vector spanning [0 π].

xt — Signal timetable
timetable

Signal timetable from which pkurtosis returns the spectral kurtosis, specified as a timetable that
contains a single variable with a single column. xt must contain increasing, finite row times. If the
timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”. xt can be nonuniformly sampled, with the
pspectrum constraint that the median time interval and the mean time interval must obey:

1
100 < Median time interval

Mean time interval < 100.

window — Window time resolution
positive scalar

Window time resolution to use for the internal pspectrum spectrogram computation, specified as a
positive scalar in samples. window is required for syntaxes that use an existing spectrogram as input,
and optional for the rest. You can use the function kurtogram to determine the optimal window size
to use. pspectrum uses 80% overlap by default.

s — Spectrogram or power spectrogram of signal
complex matrix | real nonnegative matrix

Power spectrogram or spectrum of a signal, specified as a matrix (spectrogram) or a column vector
(spectrum).

• If s is complex, then pkurtosis treats s as a short-time Fourier transform (STFT) of the original
signal (spectrogram).

• If s is real, then pkurtosis treats s as the square of the absolute values of the STFT of the
original signal (power spectrogram). Thus, every element of s must be nonnegative.

If you specify s, pkurtosis uses s rather than generate its own spectrogram or power spectrogram.
For an example, see “Plot Spectral Kurtosis Using a Customized Spectrogram” on page 1-1590.
Data Types: single | double
Complex Number Support: Yes

f — Frequencies for s
vector

Frequencies for spectrogram or power spectrogram s when s is supplied explicitly to pkurtosis,
specified as a vector in hertz. The length of f must be equal to the number of rows in s.

'ConfidenceLevel', p — Confidence level
0.95 (default) | [0 to 1]

1 Functions

1-1592

Confidence level used to determine whether signal is likely to be Gaussian and stationary, specified as
a numeric scalar value from 0 to 1. p influences the thresh range where the spectral kurtosis value
indicates a Gaussian and stationary signal. The confidence level therefore provides a detection-
sensitivity tuning parameter. Kurtosis values outside of this range indicate, with a probability of (1-p),
non-Gaussian or nonstationary behavior. For an example, see “Plot Spectral Kurtosis of Nonstationary
Signal Using Different Confidence Levels” on page 1-1583.

Output Arguments
sk — Spectral kurtosis
double vector

“Spectral Kurtosis” on page 1-1593, returned as a double vector. The spectral kurtosis is a statistical
quantity that contains low values where data is stationary and Gaussian, and high values where
transients occur. One use of the spectral kurtosis is to detect and locate nonstationary or non-
Gaussian behavior that could result from faults or degradation. The high-valued kurtosis data reveals
such signal components.

fout — frequencies for sk
double vector

Frequencies associated with sk values, returned as a vector in hertz.

thresh — Spectral kurtosis band size for stationary Gaussian behavior
scalar

Spectral kurtosis band size for stationary Gaussian behavior, specified as a numeric scalar
representing the thickness of the band centered at the sk = 0 line, given confidence level p.
Excursions outside the thresh-delimited band indicate possible nonstationary or non-Gaussian
behavior. Confidence level p directly influences the thickness of the band and the sensitivity of the
results. For an example, see “Plot Spectral Kurtosis of Nonstationary Signal Using Different
Confidence Levels” on page 1-1583.

More About
Spectral Kurtosis

Spectral kurtosis (SK) is a statistical tool that can indicate and pinpoint nonstationary or non-
Gaussian behavior in the frequency domain, by taking:

• Small values at frequencies where stationary Gaussian noise only is present
• High positive values at frequencies where transients occur

This capability makes SK a powerful tool for detecting and extracting signals associated with faults in
rotating mechanical systems. On its own, SK can identify features or conditional indicators for fault
detection and classification. As preprocessing for other tools such as envelope analysis, SK can supply
key inputs such as optimal band [2], [1].

The spectral kurtosis, or K(f), of a signal x(t) can be computed based on the short-time Fourier
transform (STFT) of the signal, S(t,f):

S t, f = ∫
−∞

+∞
x t w t − τ e−2πf tdt,

 pkurtosis

1-1593

where w(t) is the window function used in STFT. K(f) is calculated as:

K(f) =
S(t, f) 4

S(t, f) 2 2 − 2, f ≠ 0,

where · is the time-average operator.

If the signal x(t) contains only stationary Gaussian noise, then K(f) at each frequency f has an
asymptotic normal distribution with 0 mean and variance 4/M , where M is the number of elements
along the time axis in S(t,f). Hence, a statistical threshold sα given a confidence level α is:

sα = Φ−1 α 2
M ,

where Φ−1 is the quantile function of the standard normal distribution.

It is important to note that the STFT window length Nw directly drives frequency resolution, which is
fs/Nw, where fs is the sample rate. The window size must be shorter than the spacing between
transient impulses, but longer than the individual transient impulses.

References
[1] Antoni, J. "The Spectral Kurtosis: A Useful Tool for Characterising Non-Stationary Signals."

Mechanical Systems and Signal Processing. Vol. 20, Issue 2, 2006, pp. 282–307.

[2] Antoni, J., and R. B. Randall. "The Spectral Kurtosis: Application to the Vibratory Surveillance and
Diagnostics of Rotating Machines." Mechanical Systems and Signal Processing. Vol. 20, Issue
2, 2006, pp. 308–331.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• datetime and duration arrays are not supported for code generation.
• Timetables are not supported for code generation.

See Also
kurtogram | pentropy | pspectrum

Topics
“Rolling Element Bearing Fault Diagnosis” (Predictive Maintenance Toolbox)

Introduced in R2018a

1 Functions

1-1594

plomb
Lomb-Scargle periodogram

Syntax
[pxx,f] = plomb(x,t)
[pxx,f] = plomb(x,fs)

[pxx,f] = plomb(___ ,fmax)
[pxx,f] = plomb(___ ,fmax,ofac)

[pxx,fvec] = plomb(___ ,fvec)

[___] = plomb(___ ,spectrumtype)

[___ ,pth] = plomb(___ ,'Pd',pdvec)

[pxx,w] = plomb(x)

plomb(___)

Description
[pxx,f] = plomb(x,t) returns the Lomb-Scargle power spectral density (PSD) estimate, pxx, of a
signal, x, that is sampled at the instants specified in t. t must increase monotonically but need not be
uniformly spaced. All elements of t must be nonnegative. pxx is evaluated at the frequencies
returned in f.

• If x is a vector, it is treated as a single channel.
• If x is a matrix, then plomb computes the PSD independently for each column and returns it in the

corresponding column of pxx.

x or t can contain NaNs or NaTs. These values are treated as missing data and excluded from the
spectrum computation.

[pxx,f] = plomb(x,fs) treats the case where the signal is sampled uniformly, at a rate fs, but
has missing samples. Specify the missing data using NaNs.

[pxx,f] = plomb(___ ,fmax) estimates the PSD up to a maximum frequency, fmax, using any of
the input arguments from previous syntaxes. If the signal is sampled at N non-NaN instants, and Δt is
the time difference between the first and the last of them, then pxx is returned at round(fmax / fmin)
points, where fmin = 1/(4 × N × ts) is the smallest frequency at which pxx is computed and the
average sample time is ts = Δt/(N – 1). fmax defaults to 1/(2 × ts), which for uniformly sampled
signals corresponds to the Nyquist frequency.

[pxx,f] = plomb(___ ,fmax,ofac) specifies an integer oversampling factor, ofac. The use of
ofac to interpolate or smooth a spectrum resembles the zero-padding technique for FFT-based
methods. pxx is again returned at round(fmax/fmin) frequency points, but the minimum frequency
considered in this case is 1/(ofac × N × ts). ofac defaults to 4.

 plomb

1-1595

[pxx,fvec] = plomb(___ ,fvec) estimates the PSD of x at the frequencies specified in fvec.
fvec must have at least two elements. The second output argument is the same as the input fvec.

You cannot specify a maximum frequency or an oversampling factor if you use this syntax.

[___] = plomb(___ ,spectrumtype) specifies the normalization of the periodogram.

• Set spectrumtype to 'psd', or leave it unspecified, to obtain pxx as a power spectral density.
• Set spectrumtype to 'power' to get the power spectrum of the input signal.
• Set spectrumtype to 'normalized' to get the standard Lomb-Scargle periodogram, which is

scaled by two times the variance of x.

[___ ,pth] = plomb(___ ,'Pd',pdvec) returns the power-level threshold, pth, such that a
peak with a value larger than pth has a probability pdvec of being a true signal peak and not the
result of random fluctuations. pdvec can be a vector. Every element of pdvec must be greater than 0
and smaller than 1. Each row of pth corresponds to an element of pdvec. pth has the same number
of channels as x. This option is not available if you specify the output frequencies in fvec.

[pxx,w] = plomb(x) returns the PSD estimate of x evaluated at a set of evenly spaced normalized
frequencies, w, spanning the Nyquist interval. Use NaNs to specify missing samples. All of the above
options are available for normalized frequencies. To access them, specify an empty array as the
second input.

plomb(___) with no output arguments plots the Lomb-Scargle periodogram PSD estimate in the
current figure window.

Examples

Irregularly Sampled Signal and Signal with Missing Samples

The Lomb-Scargle method can handle signals that have been sampled unevenly or have missing
samples.

Generate a two-channel sinusoidal signal sampled at 1 kHz for about 0.5 s. The sinusoid frequencies
are 175 Hz and 400 Hz. Embed the signal in white noise with variance σ2 = 1/4.

Fs = 1000;
f0 = 175;
f1 = 400;

t = 0:1/Fs:0.5;

wgn = randn(length(t),2)/2;

sigOrig = sin(2*pi*[f0;f1]*t)' + wgn;

Compute and plot the periodogram of the signal. Use periodogram with the default settings.

periodogram(sigOrig,[],[],Fs)

axisLim = axis;
title('Periodogram')

1 Functions

1-1596

Use plomb with the default settings to estimate and plot the PSD of the signal. Use the axis limits
from the previous plot.

plomb(sigOrig,t)

axis(axisLim)
title('Lomb-Scargle')

 plomb

1-1597

Suppose the signal is missing 10% of the original samples. Place NaNs in random locations to simulate
the missing data points. Use plomb to estimate and plot the PSD of the signal with missing samples.

sinMiss = sigOrig;

misfrac = 0.1;
nTime = length(t)*2;

sinMiss(randperm(nTime,round(nTime*misfrac))) = NaN;

plomb(sinMiss,t)

axis(axisLim)
title('Missing Samples')

1 Functions

1-1598

Sample the original signal, but make the sampling nonuniform by adding jitter (uncertainty) to the
time measurements. The first instant continues to be at zero. Use plomb to estimate and plot the PSD
of the nonuniformly sampled signal.

tirr = t + (1/2-rand(size(t)))/Fs/2;
tirr(1) = 0;

sinIrreg = sin(2*pi*[f0;f1]*tirr)' + wgn;

plomb(sinIrreg,tirr)

axis(axisLim)
title('Nonuniform Sampling')

 plomb

1-1599

Periodogram of Data Set with Missing Samples

Galileo Galilei observed the motion of Jupiter's four largest satellites during the winter of 1610. When
the weather allowed, Galileo recorded the satellites' locations. Use his observations to estimate the
orbital period of one of the satellites, Callisto.

Callisto's angular position is measured in minutes of arc. Missing data due to cloudy conditions are
specified using NaNs. The first observation is dated January 15. Generate a datetime array of
observation times.

yg = [10.5 NaN 11.5 10.5 NaN NaN NaN -5.5 -10.0 -12.0 -11.5 -12.0 -7.5 ...
 NaN NaN NaN NaN 8.5 12.5 12.5 10.5 NaN NaN NaN -6.0 -11.5 -12.5 ...
 -12.5 -10.5 -6.5 NaN 2.0 8.5 10.5 NaN 13.5 NaN 10.5 NaN NaN NaN ...
 -8.5 -10.5 -10.5 -10.0 -8.0]';

obsv = datetime(1610,1,14+(1:length(yg)));

plot(yg,'o')

ax = gca;
nights = [1 18 32 46];
ax.XTick = nights;
ax.XTickLabel = char(obsv(nights));
grid

1 Functions

1-1600

Estimate the power spectrum of the data using plomb. Specify an oversampling factor of 10. Express
the resulting frequencies in inverse days.

[pxx,f] = plomb(yg,obsv,[],10,'power');
f = f*86400;

Use findpeaks to determine the location of the only prominent peak of the spectrum. Plot the power
spectrum and show the peak.

[pk,f0] = findpeaks(pxx,f,'MinPeakHeight',10);

plot(f,pxx,f0,pk,'o')
xlabel('Frequency (day^{-1})')
title('Power Spectrum and Prominent Peak')
grid

 plomb

1-1601

Determine Callisto's orbital period (in days) as the inverse of the frequency of maximum energy. The
result differs by less than 1% from the value published by NASA.

Period = 1/f0

Period = 16.6454

NASA = 16.6890184;
PercentDiscrep = (Period-NASA)/NASA*100

PercentDiscrep = -0.2613

Periodogram of Data Set with Irregular Sampling

Galileo Galilei discovered Jupiter's four largest satellites in January of 1610 and recorded their
locations every clear night until March of that year. Use Galileo's data to find the orbital period of
Callisto, the outermost of the four satellites.

Galileo's observations of Callisto's angular position are in minutes of arc. There are several gaps due
to cloudy conditions. Generate a duration array of observation times.

t = [0 2 3 7 8 9 10 11 12 17 18 19 20 24 25 26 27 28 29 31 32 33 35 37 ...
 41 42 43 44 45]';
td = days(t);

1 Functions

1-1602

yg = [10.5 11.5 10.5 -5.5 -10.0 -12.0 -11.5 -12.0 -7.5 8.5 12.5 12.5 ...
 10.5 -6.0 -11.5 -12.5 -12.5 -10.5 -6.5 2.0 8.5 10.5 13.5 10.5 -8.5 ...
 -10.5 -10.5 -10.0 -8.0]';

plot(td,yg,'o')

Use plomb to compute the periodogram of the data. Estimate the power spectrum up to a frequency
of 0 . 5 day−1. Specify an oversampling factor of 10. Choose the standard Lomb-Scargle
normalization.

oneday = seconds(days(1));

[pxx,f] = plomb(yg,td,0.5/oneday,10,'normalized');

f = f*oneday;

The periodogram has one clear maximum. Name the peak frequency f0. Plot the periodogram and
annotate the peak.

[pmax,lmax] = max(pxx);
f0 = f(lmax);

plot(f,pxx,f0,pmax,'o')
xlabel('Frequency (day^{-1})')

 plomb

1-1603

Use linear least squares to fit to the data a function of the form

y(t) = A + Bcos2πf0t + Csin2πf0t .

The fitting parameters are the amplitudes A, B, and C.

ft = 2*pi*f0*t;

ABC = [ones(size(ft)) cos(ft) sin(ft)] \ yg

ABC = 3×1

 0.4243
 10.4444
 6.6137

Use the fitting parameters to construct the fitting function on a 200-point interval. Plot the data and
overlay the fit.

x = linspace(t(1),t(end),200)';
fx = 2*pi*f0*x;

y = [ones(size(fx)) cos(fx) sin(fx)] * ABC;

plot(td,yg,'o',days(x),y)

1 Functions

1-1604

Irregular Sampling and Aliasing

Sample a 0.8 Hz sinusoid at 1 Hz for 100 s. Embed the sinusoid in white noise with a variance of
1/100. Reset the random number generator for repeatable results.

f0 = 0.8;

rng default
wgn = randn(1,100)/10;

ts = 1:100;
s = sin(2*pi*f0*ts) + wgn;

Compute and plot the power spectral density estimate up to the sample rate. Specify an oversampling
factor of 10.

plomb(s,ts,1,10)

 plomb

1-1605

There is aliasing because the frequency of the sinusoid is greater than the Nyquist frequency.

Repeat the calculation, but now sample the sinusoid at random times. Include frequencies up to 1 Hz.
Specify an oversampling factor of 2. Plot the PSD.

tn = sort(100*rand(1,100));
n = sin(2*pi*f0*tn) + wgn;

ofac = 2;

plomb(n,tn,1,ofac)

1 Functions

1-1606

The aliasing disappears. The irregular sampling increases the effective sample rate by shrinking some
time intervals.

Zoom in on the frequencies around 0.8 Hz. Use a fine grid with a spacing of 0.001 Hz. You cannot
specify an oversampling factor or a maximum frequency in this case.

df = 0.001;
fvec = 0.7:df:0.9;

hold on
plomb(n,tn,fvec)
legend('ofac = 2','df = 0.001')

 plomb

1-1607

Exponential Distribution

Generate N = 1024 samples of white noise with variance σ = 1, given a sample rate of 1 Hz. Compute
the power spectrum of the white noise. Choose the Lomb-Scargle normalization and specify an
oversampling factor ofac = 15. Reset the random number generator for repeatable results.

rng default

N = 1024;
t = (1:N)';
wgn = randn(N,1);

ofac = 15;
[pwgn,f] = plomb(wgn,t,[],ofac,'normalized');

Verify that the Lomb-Scargle power spectrum estimate of white noise has an exponential distribution
with unit mean. Plot a histogram of the values of pwgn and a histogram of a set of exponentially
distributed random numbers generated using the distribution function f (z |1) = e−z. To normalize the
histograms, recall that the total number of periodogram samples is N × ofac/2. Specify a bin width of
0.25. Overlay a plot of the theoretical distribution function.

dx = 0.25;
br = 0:dx:5;

1 Functions

1-1608

Nf = N*ofac/2;

hpwgn = histcounts(pwgn,br)';

hRand = histcounts(-log(rand(Nf,1)),br)';

bend = br(1:end-1);

bar(bend,[hpwgn hRand]/Nf/dx,'histc')
hold on
plot(br,exp(-br))
legend('wgn','Empirical pdf','Theoretical pdf')
hold off

Embed in the noise a sinusoidal signal of frequency 0.1 Hz. Use a signal-to-noise ratio of ξ = 0 . 01.
Specify the sinusoid amplitude, x0, using the relation x0 = σ 2ξ. Compute the power spectrum of the
signal and plot its histogram alongside the empirical and theoretical distribution functions.

SNR = 0.01;
x0 = sqrt(2*SNR);
sigsmall = wgn + x0*sin(2*pi/10*t);

[psigsmall,f] = plomb(sigsmall,t,[],ofac,'normalized');

hpsigsmall = histcounts(psigsmall,br)';

bar(bend,[hpsigsmall hRand]/Nf/dx,'histc')

 plomb

1-1609

hold on
plot(br,exp(-br))
legend('sigsmall','Empirical pdf','Theoretical pdf')
hold off

Repeat the calculation using ξ = 1. The distribution now differs noticeably.

SNR = 1;
x0 = sqrt(2*SNR);
siglarge = wgn + x0*sin(2*pi/10*t);

[psiglarge,f] = plomb(siglarge,t,[],ofac,'normalized');

hpsiglarge = histcounts(psiglarge,br)';

bar(bend,[hpsiglarge hRand]/Nf/dx,'histc')
hold on
plot(br,exp(-br))
legend('siglarge','Empirical pdf','Theoretical pdf')
hold off

1 Functions

1-1610

False-Alarm Probabilities

Generate 100 samples of a sinusoidal signal at a sample rate of 1 Hz. Specify an amplitude of 0.75
and a frequency of 0 . 6/2π ≈ 0 . 096 Hz. Embed the signal in white noise of variance 0.902. Reset the
random number generator for repeatable results.

rng default

X0 = 0.75;
f0 = 0.6;
vr = 0.902;

Nsamp = 100;
t = 1:Nsamp;
X = X0*cos(f0*(1:Nsamp))+randn(1,Nsamp)*sqrt(vr);

Discard 10% of the samples at random. Plot the signal.

X(randperm(Nsamp,Nsamp/10)) = NaN;

plot(t,X,'o')

 plomb

1-1611

Compute and plot the normalized power spectrum. Annotate the levels that correspond to false-alarm
probabilities of 50%, 10%, 1%, and 0.01%. If you generate many 90-sample white noise signals with
variance 0.902, then half of them have one or more peaks higher than the 50% line, 10% have one or
more peaks higher than the 10% line, and so on.

Pfa = [50 10 1 0.01]/100;
Pd = 1-Pfa;

[pxx,f,pth] = plomb(X,1:Nsamp,'normalized','Pd',Pd);

plot(f,pxx,f,pth*ones(size(f')))
xlabel('f')
text(0.3*[1 1 1 1],pth-.5,[repmat('P_{fa} = ',[4 1]) num2str(Pfa')])

1 Functions

1-1612

In this case, the peak is high enough that only about 0.01% of the possible signals can attain it.

Use plomb with no output arguments to repeat the calculation. The plot is now logarithmic, and the
levels are drawn in terms of detection probabilities.

plomb(X,1:Nsamp,'normalized','Pd',Pd)

 plomb

1-1613

Lomb-Scargle Periodogram of Noisy Sinusoids

When given a data vector as the only input, plomb estimates the power spectral density using
normalized frequencies.

Generate 128 samples of a sinusoid of normalized frequency π/2 rad/sample embedded in white
Gaussian noise of variance 1/100.

t = (0:127)';
x = sin(2*pi*t/4);
x = x + randn(size(x))/10;

Estimate the PSD using the Lomb-Scargle procedure. Repeat the calculation with periodogram.

[p,f] = plomb(x);
[pper,fper] = periodogram(x);

Plot the PSD estimates in decibels. Verify that the results are equivalent.

plot(f/pi,pow2db(p))
hold on
plot(fper/pi,pow2db(pper))

axis([0 1 -40 20])
xlabel('\omega / \pi')

1 Functions

1-1614

ylabel('PSD')
legend('plomb','periodogram')

Estimate the Lomb-Scargle PSD of a three-channel signal composed of sinusoids. Specify the
frequencies as 2π/3 rad/sample, π/2 rad/sample, and 2π/5 rad/sample. Add white Gaussian noise of
variance 1/100. Use plomb with no output arguments to compute and plot the PSD estimate in
decibels.

x3 = [sin(2*pi*t/3) sin(2*pi*t/4) sin(2*pi*t/5)];
x3 = x3 + randn(size(x3))/10;

figure
plomb(x3)

 plomb

1-1615

Compute the PSD estimate again, but now remove 25% of the data at random.

x3(randperm(numel(x3),0.25*numel(x3))) = NaN;

plomb(x3)

1 Functions

1-1616

Power Spectral Density of Signal with Missing Samples

If you do not have a time vector, use NaN's to specify missing samples in a signal.

Generate 1024 samples of a sinusoid of normalized frequency 2π/5 rad/sample embedded in white
noise of variance 1/100. Estimate the power spectral density using the Lomb-Scargle procedure. Use
plomb with no output arguments to plot the estimate.

t = (0:1023)';
x = sin(2*pi*t/5);
x = x + randn(size(x))/10;

[pxx,f] = plomb(x);

plomb(x)

 plomb

1-1617

Remove every other sample by assigning NaN's. Use plomb to compute and plot the PSD. The
periodogram peaks at the same frequency because the time axis is unchanged.

xnew = x;
xnew(2:2:end) = NaN;

plomb(xnew)

1 Functions

1-1618

Remove every other sample by downsampling. The function now estimates the periodicity at twice the
original frequency. This is probably not the result you want.

xdec = x(1:2:end);

plomb(xdec)

 plomb

1-1619

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then plomb computes the PSD estimate independently for each column and returns it in the
corresponding column of pxx. x can contain NaNs. NaNs are treated as missing data and are excluded
from the spectrum computation.
Data Types: single | double

t — Time instants
nonnegative real vector | datetime array | duration array

Time instants, specified as a nonnegative real vector, a datetime array, or a duration array. t must
increase monotonically but need not be uniformly spaced. t can contain NaNs or NaTs. These values
are treated as missing data and excluded from the spectrum computation.
Data Types: single | double | datetime | duration

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, the sample rate has units of hertz.

1 Functions

1-1620

Data Types: single | double

fmax — Maximum frequency
positive scalar

Maximum frequency, specified as a positive scalar. fmax can be higher than the Nyquist frequency.
Data Types: single | double

ofac — Oversampling factor
4 (default) | positive integer scalar

Oversampling factor, specified as a positive integer scalar.
Data Types: single | double

fvec — Input frequencies
vector

Input frequencies, specified as a vector. fvec must have at least two elements.
Data Types: single | double

spectrumtype — Power spectrum scaling
'psd' (default) | 'power' | 'normalized'

Power spectrum scaling, specified as one of 'psd', 'power', or 'normalized'. Omitting
spectrumtype, or specifying 'psd', returns the power spectral density estimate. Specifying
'power' scales each estimate of the PSD by the equivalent noise bandwidth of the window. Specify
'power' to obtain an estimate of the power at each frequency. Specifying 'normalized' scales pxx
by two times the variance of x.

pdvec — Probabilities of detection
scalar | vector

Probabilities of detection, specified as the comma-separated pair consisting of 'Pd' and a scalar or a
vector of real values between 0 and 1, exclusive. The probability of detection is the probability that a
peak in the spectrum is not due to random fluctuations.
Data Types: single | double

Output Arguments
pxx — Lomb-Scargle periodogram
vector | matrix

Lomb-Scargle periodogram, returned as a vector or matrix. When the input signal, x, is a vector, then
pxx is a vector. When x is a matrix, the function treats each column of x as an independent channel
and computes the periodogram of each channel.

f — Frequencies
vector

Frequencies, returned as a vector.
Data Types: single | double

 plomb

1-1621

w — Normalized frequencies
vector

Normalized frequencies, returned as a vector.
Data Types: single | double

pth — Power-level thresholds
vector | matrix

Power-level thresholds, returned as a vector or matrix. The power-level threshold is the amplitude
that a peak in the spectrum must exceed so it can be ruled out (with probability pdvec) that the peak
is due to random fluctuations. Each row of pth corresponds to an element of pdvec. pth has the
same number of channels as x.
Data Types: single | double

More About
Lomb-Scargle Periodogram

The Lomb-Scargle periodogram lets you find and test weak periodic signals in otherwise random,
unevenly sampled data.

Consider N observations, xk, taken at times tk, where k = 1, …, N. The Lomb-Scargle periodogram is
defined by [2]

PLS(f) = 1
2σ2

∑k = 1
N (xk− x)cos 2πf (tk− τ)

2

∑k = 1
N cos2 2πf (tk− τ)

+
∑k = 1

N (xk− x)sin 2πf (tk− τ)
2

∑k = 1
N sin2 2πf (tk− τ)

,

where

x = 1
N∑k = 1

N xk

and

σ2 = 1
N − 1∑k = 1

N (xk− x)2

are respectively the mean and the variance of the data.

The time offset, τ, is chosen as

tan 2(2πf)τ =
∑k = 1

N sin 2(2πf)tk

∑k = 1
N cos 2(2πf)tk

to guarantee the time invariance of the computed spectrum. Any shift tk → tk + T in the time
measurements results in an identical shift in the offset: τ → τ + T. Moreover, the choice ensures that
"a maximum in the periodogram occurs at the same frequency which minimizes the sum of squares of
the residuals of the fit of a sine wave to the data." [4] The offset depends only on the measurement
times and vanishes when the times are equally spaced.

1 Functions

1-1622

If the input signal consists of white Gaussian noise, then PLS(f) follows an exponential probability
distribution with unit mean [3].

References
[1] Horne, James H., and Sallie L. Baliunas. "A Prescription for Period Analysis of Unevenly Sampled

Time Series." Astrophysical Journal. Vol. 302, 1986, pp. 757–763.

[2] Lomb, Nicholas R. "Least-Squares Frequency Analysis of Unequally Spaced Data." Astrophysics
and Space Science. Vol. 39, 1976, pp. 447–462.

[3] Press, William H., and George B. Rybicki. "Fast Algorithm for Spectral Analysis of Unevenly
Sampled Data." Astrophysical Journal. Vol. 338, 1989, pp. 277–280.

[4] Scargle, Jeffrey D. "Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral
Analysis of Unevenly Spaced Data." Astrophysical Journal. Vol. 263, 1982, pp. 835–853.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
bandpower | pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear |
spectrogram

Topics
“Detect Periodicity in a Signal with Missing Samples”
“Spectral Analysis of Nonuniformly Sampled Signals”

Introduced in R2014b

 plomb

1-1623

pmcov
Autoregressive power spectral density estimate — modified covariance method

Syntax
pxx = pmcov(x,order)
pxx = pmcov(x,order,nfft)

[pxx,w] = pmcov(___)
[pxx,f] = pmcov(___ ,fs)

[pxx,w] = pmcov(x,order,w)
[pxx,f] = pmcov(x,order,f,fs)

[___] = pmcov(x,order, ___ ,freqrange)

[___ ,pxxc] = pmcov(___ ,'ConfidenceLevel',probability)

pmcov(___)

Description
pxx = pmcov(x,order) returns the power spectral density estimate, pxx, of a discrete-time signal,
x, found using the modified covariance method. When x is a vector, it is treated as a single channel.
When x is a matrix, the PSD is computed independently for each column and stored in the
corresponding column of pxx. pxx is the distribution of power per unit frequency. The frequency is
expressed in units of rad/sample. order is the order of the autoregressive (AR) model used to
produce the PSD estimate.

pxx = pmcov(x,order,nfft) uses nfft points in the discrete Fourier transform (DFT). For real x,
pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For complex–valued x,
pxx always has length nfft. If you omit nfft, or specify it as empty, then pmcov uses a default DFT
length of 256.

[pxx,w] = pmcov(___) returns the vector of normalized angular frequencies, w, at which the PSD
is estimated. w has units of rad/sample. For real–valued signals, w spans the interval [0,π] when nfft
is even and [0,π) when nfft is odd. For complex–valued signals, w always spans the interval [0,2π).

[pxx,f] = pmcov(___ ,fs) returns a frequency vector, f, in cycles per unit time. The sampling
frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz). For real-valued signals, f spans the interval [0,fs/2] when nfft is even and
[0,fs/2) when nfft is odd. For complex-valued signals, f spans the interval [0,fs).

[pxx,w] = pmcov(x,order,w) returns the two-sided AR PSD estimates at the normalized
frequencies specified in the vector, w. The vector w must contain at least two elements, because
otherwise the function interprets it as nfft.

[pxx,f] = pmcov(x,order,f,fs) returns the two-sided AR PSD estimates at the frequencies
specified in the vector, f. The vector f must contain at least two elements, because otherwise the
function interprets it as nfft. The frequencies in f are in cycles per unit time. The sampling

1 Functions

1-1624

frequency, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/second (Hz).

[___] = pmcov(x,order, ___ ,freqrange) returns the AR PSD estimate over the frequency
range specified by freqrange. Valid options for freqrange are: 'onesided', 'twosided', or
'centered'.

[___ ,pxxc] = pmcov(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

pmcov(___) with no output arguments plots the AR PSD estimate in dB per unit frequency in the
current figure window.

Examples

Modified-Covariance PSD Estimate of AR(4) Process

Create a realization of an AR(4) wide-sense stationary random process. Estimate the PSD using the
modified covariance method. Compare the PSD estimate based on a single realization to the true PSD
of the random process.

Create an AR(4) system function. Obtain the frequency response and plot the PSD of the system.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

 pmcov

1-1625

Create a realization of the AR(4) random process. Set the random number generator to the default
settings for reproducible results. The realization is 1000 samples in length. Assume a sampling
frequency of 1 Hz. Use pmcov to estimate the PSD for a 4th-order process. Compare the PSD
estimate with the true PSD.

rng default

x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F] = pmcov(y,4,1024,1);

hold on
plot(F,10*log10(Pxx))
legend('True Power Spectral Density','pmcov PSD Estimate')

1 Functions

1-1626

Modified-Covariance PSD Estimate of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0, 1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos(2*pi*f*t)'+randn(length(t),3);

Estimate the PSD of the signal using the modified covariance method with a 12th-order
autoregressive model. Use the default DFT length. Plot the estimate.

morder = 12;

pmcov(x,morder,[],Fs)

 pmcov

1-1627

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

order — Order of autoregressive model
positive integer

Order of the autoregressive model, specified as a positive integer.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For a complex-

1 Functions

1-1628

valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as empty, the
default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

 pmcov

1-1629

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1630

If the nfft argument is variable-size at compile time, then it must not become a scalar or an empty
array at runtime.

See Also
pburg | pcov | pyulear

Introduced before R2006a

 pmcov

1-1631

pmtm
Multitaper power spectral density estimate

Syntax
pxx = pmtm(x)
pxx = pmtm(x,'Tapers',tapertype)

pxx = pmtm(x,nw)
pxx = pmtm(x,m,'Tapers','sine')

pxx = pmtm(___ ,nfft)

[pxx,w] = pmtm(___)
[pxx,f] = pmtm(___ ,fs)

[pxx,w] = pmtm(x,nw,w)
[pxx,w] = pmtm(x,m,'Tapers','sine',w)
[pxx,f] = pmtm(___ ,f,fs)

[___] = pmtm(___ ,freqrange)
[___ ,pxxc] = pmtm(___ ,'ConfidenceLevel',probability)

[___] = pmtm(___ ,'DropLastTaper',dropflag)
[___] = pmtm(___ ,method)
[___] = pmtm(x,e,v, ___)
[___] = pmtm(x,dpss_params, ___)

pmtm(___)

Description
pxx = pmtm(x) returns Thomson’s multitaper power spectral density (PSD) estimate, pxx, of the
input signal x using “Discrete Prolate Spheroidal (Slepian) Sequences” on page 1-1653 as tapers.

pxx = pmtm(x,'Tapers',tapertype) specifies the type of tapers to use when computing the
multitaper PSD estimate. You can specify the 'Tapers',tapertype name-value pair anywhere after
x in the function call.

pxx = pmtm(x,nw) uses the time-halfbandwidth product nw to control the frequency resolution
when computing a PSD estimate using Slepian tapers.

pxx = pmtm(x,m,'Tapers','sine') specifies the number of tapers or the averaging weights to
apply when computing a PSD estimate using “Sine Tapers” on page 1-1653.

pxx = pmtm(___ ,nfft) uses nfft discrete Fourier transform (DFT) points in combination with
any of the previous syntaxes. If nfft is greater than the signal length, x is zero-padded to length
nfft. If nfft is less than the signal length, the signal is wrapped modulo nfft.

[pxx,w] = pmtm(___) returns a vector with the normalized frequencies at which pxx is
computed.

1 Functions

1-1632

[pxx,f] = pmtm(___ ,fs) returns a frequency vector, f, in cycles per unit time. fs must follow x,
nw (or m for sine tapers), and nfft in the function call. To input a sample rate and still use the default
values of the preceding arguments, specify these arguments as empty, [].

[pxx,w] = pmtm(x,nw,w) returns the multitaper PSD estimate computed using Slepian sequences
at the normalized frequencies specified in w. The vector w must contain at least two elements.

[pxx,w] = pmtm(x,m,'Tapers','sine',w) returns the multitaper PSD estimate computed
using sine tapers at the normalized frequencies specified in w. The vector w must contain at least two
elements.

[pxx,f] = pmtm(___ ,f,fs) computes the multitaper PSD estimate at the frequencies specified
in f. The vector f must contain at least two elements in the same units as the sample rate fs.

[___] = pmtm(___ ,freqrange) returns the multitaper PSD estimate over the frequency range
specified by freqrange.

[___ ,pxxc] = pmtm(___ ,'ConfidenceLevel',probability) returns the probability ×
100% confidence intervals for the PSD estimate in pxxc.

[___] = pmtm(___ ,'DropLastTaper',dropflag) specifies whether pmtm drops the last
Slepian taper when computing the multitaper PSD estimate.

[___] = pmtm(___ ,method) combines the individual tapered PSD estimates using the method
specified in method. This syntax applies only to Slepian tapers.

[___] = pmtm(x,e,v, ___) uses the Slepian tapers in e and the eigenvalues in v to compute the
PSD. Use dpss to obtain e and v.

[___] = pmtm(x,dpss_params, ___) uses the cell array dpss_params to pass input arguments
to dpss. This syntax applies only to Slepian tapers.

pmtm(___) with no output arguments plots the multitaper PSD estimate in the current figure
window.

Examples

Multitaper Estimate Using Default Inputs

Obtain the multitaper PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 rad/sample with additive N(0,1) white noise.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0,1) white noise. The
signal is 320 samples in length. Obtain the multitaper PSD estimate using the default time-
halfbandwidth product of 4 and DFT length. The default number of DFT points is 512. Because the
signal is real-valued, the PSD estimate is one-sided and there are 512/2+1 points in the PSD estimate.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pxx = pmtm(x);

Plot the multitaper PSD estimate.

pmtm(x)

 pmtm

1-1633

Sine and Slepian Tapers

Generate 2048 samples of a two-channel signal embedded in additive N(0,1) white Gaussian noise.

• The first channel consists of two sinusoids with normalized frequencies of π/3 and π/5 rad/sample.
The first sinusoid has twice the amplitude of the second.

• The second channel has a normalized frequency of π/4 rad/sample.

Use the multitaper method to estimate the PSD of the signal over a 1024-sample interval from 0.1π
rad/sample to 0.4π rad/sample. Use 13 sine tapers weighted equally.

n = (0:2047)';

x = [sin(pi./[3 5].*n)*[2 1]' sin(pi/4*n)] + randn(length(n),2);

w = linspace(0.1,0.4,1024);

ntp = 13;
pmtm(x,ntp,'Tapers','sine',w*pi)

1 Functions

1-1634

Repeat the computation, but now weight the 13 tapers in linear descending order. You can place the
'Tapers','sine' name-value pair anywhere after x in the function call.

pmtm(x,(ntp:-1:1)/sum(1:ntp),w*pi,'Tapers','sine')

 pmtm

1-1635

Repeat the computation, but now use 13 Slepian tapers and specify a time-halfbandwidth product of
7.5.

nw = 7.5;

pmtm(x,{nw,ntp},w*pi)

1 Functions

1-1636

Repeat the computation, but now specify a sample rate of 2 kHz.

fs = 2e3;

pmtm(x,{nw,ntp},w*(fs/2),fs)

 pmtm

1-1637

Specify Time-Halfbandwidth Product

Obtain the multitaper PSD estimate with a specified time-halfbandwidth product.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0,1) white noise. The
signal is 320 samples in length. Obtain the multitaper PSD estimate with a time-halfbandwidth
product of 2.5. The resolution bandwidth is [− 2 . 5π/320, 2 . 5π/320] rad/sample. The default number
of DFT points is 512. Because the signal is real-valued, the PSD estimate is one-sided and there are
512/2+1 points in the PSD estimate.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pmtm(x,2.5)

1 Functions

1-1638

DFT Length Equal to Signal Length

Obtain the multitaper PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 rad/sample with additive N(0,1) white noise. Use a DFT length equal to the
signal length.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0,1) white noise. The
signal is 320 samples in length. Obtain the multitaper PSD estimate with a time-halfbandwidth
product of 3 and a DFT length equal to the signal length. Because the signal is real-valued, the one-
sided PSD estimate is returned by default with a length equal to 320/2+1.

n = 0:319;
x = cos(pi/4*n)+randn(size(n));
pmtm(x,3,length(x))

 pmtm

1-1639

Multitaper Estimate with Sample Rate

Obtain the multitaper PSD estimate of a signal sampled at 1 kHz. The signal is a 100 Hz sine wave in
additive N(0,1) white noise. The signal duration is 2 s. Use a time-halfbandwidth product of 3 and
DFT length equal to the signal length.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3,length(x),fs);

Plot the multitaper PSD estimate.

pmtm(x,3,length(x),fs)

1 Functions

1-1640

Average Single-Taper Estimates with Unity Weights

Obtain a multitaper PSD estimate where the individual tapered direct spectral estimates are given
equal weight in the average.

Obtain the multitaper PSD estimate of a signal sampled at 1 kHz. The signal is a 100 Hz sine wave in
additive N(0,1) white noise. The signal duration is 2 s. Use a time-halfbandwidth product of 3 and a
DFT length equal to the signal length. Use the 'unity' option to give equal weight in the average to
each of the individual tapered direct spectral estimates.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3,length(x),fs,'unity');

Plot the multitaper PSD estimate.

pmtm(x,3,length(x),fs,'unity')

 pmtm

1-1641

DPSS Sequences and Their Frequency-Domain Concentrations

This example examines the frequency-domain concentrations of the DPSS sequences. The example
produces a multitaper PSD estimate of an input signal by precomputing the Slepian sequences and
selecting only those with more than 99% of their energy concentrated in the resolution bandwidth.

The signal is a 100 Hz sine wave in additive N(0,1) white noise. The signal duration is 2 seconds.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));

Set the time-halfbandwidth product to 3.5. For the signal length of 2000 samples and a sampling
interval of 0.001 seconds, this results in a resolution bandwidth of [–1.75,1.75] Hz. Calculate the first
10 Slepian sequences and examine their frequency concentrations in the specified resolution
bandwidth.

[e,v] = dpss(length(x),3.5,10);
lv = length(v);

stem(1:lv,v,'filled')
ylim([0 1.2])
title('Proportion of Energy in [-w,w] of k-th Slepian Sequence')

1 Functions

1-1642

Determine the number of Slepian sequences with energy concentrations greater than 99%. Using the
selected DPSS sequences, obtain the multitaper PSD estimate. Set 'DropLastTaper' to false to
use all the selected tapers.

hold on
plot([1 lv],0.99*[1 1])
hold off

 pmtm

1-1643

idx = find(v>0.99,1,'last')

idx = 5

[pxx,f] = pmtm(x,e(:,1:idx),v(1:idx),length(x),fs,'DropLastTaper',false);

Plot the multitaper PSD estimate.

pmtm(x,e(:,1:idx),v(1:idx),length(x),fs,'DropLastTaper',false)

1 Functions

1-1644

DC-Centered Multitaper PSD Estimate

Obtain the multitaper PSD estimate of a 100 Hz sine wave in additive N(0,1) noise. The data are
sampled at 1 kHz. Use the 'centered' option to obtain the DC-centered PSD.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+randn(size(t));
[pxx,f] = pmtm(x,3.5,length(x),fs,'centered');

Plot the DC-centered PSD estimate.

pmtm(x,3.5,length(x),fs,'centered')

 pmtm

1-1645

Upper and Lower 95%-Confidence Bounds

The following example illustrates the use of confidence bounds with the multitaper PSD estimate.
While not a necessary condition for statistical significance, frequencies in the multitaper PSD
estimate where the lower confidence bound exceeds the upper confidence bound for surrounding PSD
estimates clearly indicate significant oscillations in the time series.

Create a signal consisting of the superposition of 100-Hz and 150-Hz sine waves in additive white
N(0,1) noise. The amplitude of the two sine waves is 1. The sampling frequency is 1 kHz. The signal is
2 s in duration.

fs = 1000;
t = 0:1/fs:2-1/fs;
x = cos(2*pi*100*t)+cos(2*pi*150*t)+randn(size(t));

Obtain the multitaper PSD estimate with 95%-confidence bounds. Plot the PSD estimate along with
the confidence interval and zoom in on the frequency region of interest near 100 and 150 Hz.

[pxx,f,pxxc] = pmtm(x,3.5,length(x),fs,'ConfidenceLevel',0.95);

plot(f,10*log10(pxx))
hold on
plot(f,10*log10(pxxc),'r-.')
xlim([85 175])

1 Functions

1-1646

xlabel('Hz')
ylabel('dB')
title('Multitaper PSD Estimate with 95%-Confidence Bounds')

The lower confidence bound in the immediate vicinity of 100 and 150 Hz is significantly above the
upper confidence bound outside the vicinity of 100 and 150 Hz.

Multitaper PSD Estimate of a Multichannel Signal

Generate 1024 samples of a multichannel signal consisting of three sinusoids in additive N(0, 1) white
Gaussian noise. The sinusoids' frequencies are π/2, π/3, and π/4 rad/sample. Estimate the PSD of the
signal using Thomson's multitaper method and plot it.

N = 1024;
n = 0:N-1;

w = pi./[2;3;4];
x = cos(w*n)' + randn(length(n),3);

pmtm(x)

 pmtm

1-1647

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

tapertype — Taper type
'slepian' (default) | 'sine'

Taper type, specified as 'slepian' or 'sine'.

• 'slepian' — Use “Discrete Prolate Spheroidal (Slepian) Sequences” on page 1-1653 as tapers.
• 'sine' — Use “Sine Tapers” on page 1-1653.

You can specify the 'Tapers',tapertype name-value pair anywhere after x in the function call.
Data Types: char | string

1 Functions

1-1648

nw — Time-halfbandwidth product
4 (default) | positive scalar

Time-halfbandwidth product, specified as a positive scalar. pmtm uses 2 × nw – 1 Slepian tapers in the
PSD estimate. Typical choices for nw are 2, 5/2, 3, 7/2, or 4.

In multitaper spectral estimation, the user specifies the resolution bandwidth of the multitaper
estimate [–W,W] where W = k/NΔt for some small k > 1. Equivalently, W is some small multiple of the
frequency resolution of the DFT. The time-halfbandwidth product is the product of the resolution
halfbandwidth and the number of samples in the input signal, N. The number of Slepian tapers whose
Fourier transforms are well-concentrated in [–W,W] (eigenvalues close to unity) is 2NW – 1.

m — Sine taper number or averaging weights
7 (default) | integer scalar | vector

Sine taper number or averaging weights, specified as an integer scalar or a vector.

• If m is a scalar, it denotes the number of sine tapers used as data windows when computing the
PSD estimate. The sine tapers are weighted uniformly.

• If m is a vector, it denotes the weights used to average the sine tapers when computing the PSD
estimate. The length of m indicates the number of tapers to use. The elements of m must add to 1.

Data Types: single | double

nfft — Number of DFT points
max(256,2^nextpow2(length(x))) (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2 + 1) if nfft is even, and (nfft + 1)/2 if nfft is odd. For a
complex-valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as
empty, the default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.

 pmtm

1-1649

Example: fs = 1000; f = [100 200]
Data Types: double

dropflag — Flag indicating whether to drop or keep the last DPSS sequence
true (default) | false

Flag indicating whether to drop or keep the last DPSS sequence, specified as a logical. The default is
true and pmtm drops the last taper. In a multitaper estimate, the first 2NW – 1 DPSS sequences have
eigenvalues close to unity. If you use less than 2NW – 1 sequences, it is likely that all the tapers have
eigenvalues close to 1 and you can specify dropflag as false to keep the last taper.

method — Weights on individual tapered PSD estimates
'adapt' (default) | 'eigen' | 'unity'

Weights on individual tapered PSD estimates, specified as one of 'adapt', 'eigen', or 'unity'.
The default is Thomson’s adaptive frequency-dependent weights, 'adapt'. The calculation of these
weights is detailed on pp. 368–370 in [2]. The 'eigen' method weights each tapered PSD estimate
by the eigenvalue (frequency concentration) of the corresponding Slepian taper. The 'unity'
method weights each tapered PSD estimate equally.

e — DPSS (Slepian) sequences
matrix

DPSS (Slepian) sequences, specified as a matrix. If x has length N, then e has N rows. The matrix e is
an output of dpss.

v — Eigenvalues for DPSS (Slepian) sequences
vector

Eigenvalues for DPSS (Slepian) sequences, specified as a column vector. The eigenvalues for the
DPSS sequences indicate the proportion of the sequence energy concentrated in the resolution
bandwidth, [–W, W]. The eigenvalues range lie in the interval (0, 1) and generally the first 2NW – 1
eigenvalues are close to 1 and then decrease toward 0. The vector v is an output of dpss.

dpss_params — Input arguments for dpss
cell array

Input arguments for dpss, specified as a cell array. The first input argument to dpss is the length of
the DPSS sequences and is omitted from dpss_params because it is obtained from the length of x.
Example: pmtm(randn(1000,1),{2.5,3}) computes the PSD of a random sequence using the first
3 Slepian sequences with time-halfbandwidth product 2.5.

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

1 Functions

1-1650

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-

 pmtm

1-1651

numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

More About
Thomson's Multitaper Spectral Estimation

The periodogram is not a consistent estimator of the true power spectral density (PSD) of a wide-
sense stationary process. To reduce the variability in the periodogram — and thus produce a
consistent estimate of the PSD — the multitaper method averages modified periodograms obtained
using a family of mutually orthogonal windows or tapers. In addition to mutual orthogonality, the
tapers also have optimal time-frequency concentration properties. Both the orthogonality and time-
frequency concentration of the tapers are critical to the success of the multitaper technique. See
“Discrete Prolate Spheroidal (Slepian) Sequences” on page 1-1653 for a brief description of the
Slepian sequences used in Thomson’s multitaper method.

The multitaper method uses K modified periodograms, each one obtained using a different Slepian
sequence as the window. Let

Sk(f) = Δt ∑
n = 0

N − 1
gk n x n e− j2πfnΔt

2

denote the modified periodogram obtained with the kth Slepian sequence, gk(n). In its simplest form,
the multitaper method simply averages the K modified periodograms to produce the multitaper PSD
estimate:

S(MT)(f) = 1
K ∑

k = 0

K − 1
Sk(f) .

Thomson's multitaper approach, introduced in [4], resembles Welch’s overlapped segment averaging
method, in that both average over approximately uncorrelated estimates of the PSD. However, the
two approaches differ in how they produce these uncorrelated PSD estimates. The multitaper method
uses the entire signal in each modified periodogram. The orthogonality of the Slepian tapers
decorrelates the different modified periodograms. Welch’s approach uses segments of the signal in
each modified periodogram, and the segmenting decorrelates the different modified periodograms.

The equation for S(MT)(f) corresponds to the 'unity' option in pmtm. However, as explained in
“Discrete Prolate Spheroidal (Slepian) Sequences” on page 1-1653, the Slepian sequences do not
possess equal energy concentration in the frequency band of interest. The higher the order of the
Slepian sequence, the less concentrated the sequence energy is in the band [–W,W] with the
concentration given by the eigenvalue. Consequently, it can be beneficial to use the eigenvalues to
weight the K modified periodograms prior to averaging. This corresponds to the 'eigen' option in
pmtm.

Using the sequence eigenvalues to produce a weighted average of modified periodograms accounts
for the frequency concentration properties of the Slepian sequences. However, it does not account for
the interaction between the power spectral density of the random process and the frequency
concentration of the Slepian sequences. Specifically, frequency regions where the random process
has little power are less reliably estimated in the modified periodograms using higher-order Slepian

1 Functions

1-1652

sequences. This argues for a frequency-dependent adaptive process, which accounts not only for the
frequency concentration of the Slepian sequence but also for the power distribution in the time
series. This adaptive weighting corresponds to the 'adapt' option in pmtm and is the default for
computing the multitaper estimate.

Discrete Prolate Spheroidal (Slepian) Sequences

The derivation of the Slepian sequences proceeds from the discrete-time/continuous-frequency
concentration problem. For all ℓ2 sequences index-limited to 0, 1, …, N – 1, the problem seeks the
sequence having the maximal concentration of its energy in a frequency band [–W, W] with |W| <
1/2Δt.

This amounts to finding the eigenvalues and corresponding eigenvectors of an N-by-N self-adjoint
positive semidefinite operator. Therefore, the eigenvalues are real and nonnegative and eigenvectors
corresponding to distinct eigenvalues are mutually orthogonal. In this particular problem, the
eigenvalues are bounded by 1 and the eigenvalue is the measure of the sequence’s energy
concentration in the frequency interval [–W, W].

The eigenvalue problem is given by

∑
m = 0

N − 1 sin 2πW n−m
π n−m gk m = λk N, W gk n , n, k = 0, 1, 2, …, N − 1.

The zeroth-order DPSS sequence, g0, is the eigenvector corresponding to the largest eigenvalue. The
first-order DPSS sequence, g1, is the eigenvector corresponding to the next largest eigenvalue and is
orthogonal to the zeroth-order sequence. The second-order DPSS sequence, g2, is the eigenvector
corresponding to the third-largest eigenvalue and is orthogonal to the two lower-order DPSS
sequences. Because the operator is N-by-N, there are N eigenvectors. However, for a given sequence
length N and a specified bandwidth [–W, W], there are approximately 2NW – 1 DPSS sequences with
eigenvalues very close to unity. Use nw to specify NW.

Sine Tapers

Sine tapers, an alternative to Slepian sequences proposed in [3], are defined by

gk(n) = 2
N + 1sin πkn

N + 1, n, k = 1, 2, …, N .

Unlike Slepian sequences, sine tapers can be computed directly, with no need to set up and solve an
eigenvalue equation. This makes sine tapers much faster to compute. Sine tapers have a spectral
concentration close to that of Slepian sequences but do not need additional parameters to specify the
spectral bandwidth. The bandwidth of the PSD estimate computed using sine tapers can be adjusted
locally by changing the number of tapers using m.

Compare Slepian and Sine Tapers

Generate the first five Slepian tapers corresponding to a time-halfbandwidth product of 3. Specify a
taper length of 1000.

N = 1000;
nw = 3;
ns = 2*(nw)-1;

tprs = dpss(N,nw,ns);
lbs = "Slepian";

 pmtm

1-1653

Generate the first five sine tapers.

n = 1:N;
k = 1:ns;

tprs(:,:,2) = sqrt(2/(N+1))*sin(pi*n'*k/(N+1));
lbs(2) = "Sine";

Plot the two sets of tapers.

for kj = 1:2
 subplot(2,1,kj)
 plot(tprs(:,:,kj))
 title(lbs(kj))
 legend(append('k = ',string(k+kj-2)), ...
 'Orientation','horizontal','Location','south')
 legend('boxoff')
 ylim([-0.09 0.07])
end

References
[1] McCoy, Emma J., Andrew T. Walden, and Donald B. Percival. "Multitaper Spectral Estimation of

Power Law Processes." IEEE Transactions on Signal Processing 46, no. 3 (March 1998): 655–
68. https://doi.org/10.1109/78.661333.

1 Functions

1-1654

https://doi.org/10.1109/78.661333

[2] Percival, Donald B., and Andrew T. Walden. Spectral Analysis for Physical Applications: Multitaper
and Conventional Univariate Techniques. Cambridge; New York, NY, USA: Cambridge
University Press, 1993.

[3] Riedel, Kurt S., and Alexander Sidorenko. “Minimum Bias Multiple Taper Spectral Estimation.”
IEEE Transactions on Signal Processing 43, no. 1 (January 1995): 188–95. https://doi.org/
10.1109/78.365298.

[4] Thomson, David J. "Spectrum estimation and harmonic analysis." Proceedings of the IEEE 70, no.
9 (1982): 1055–96. https://doi.org/10.1109/PROC.1982.12433.

See Also
dpss | periodogram | pwelch

Topics
“Bias and Variability in the Periodogram”

Introduced before R2006a

 pmtm

1-1655

https://doi.org/10.1109/78.365298
https://doi.org/10.1109/78.365298
https://doi.org/10.1109/PROC.1982.12433

pmusic
Pseudospectrum using MUSIC algorithm

Syntax
[S,wo] = pmusic(x,p)
[S,wo] = pmusic(x,p,wi)
[S,wo] = pmusic(___ ,nfft)
[S,wo] = pmusic(___ ,'corr')

[S,fo] = pmusic(x,p,nfft,fs)
[S,fo] = pmusic(x,p,fi,fs)
[S,fo] = pmusic(x,p,nfft,fs,nwin,noverlap)

[___] = pmusic(___ ,freqrange)
[___ ,v,e] = pmusic(___)
pmusic(___)

Description
[S,wo] = pmusic(x,p) implements the multiple signal classification (MUSIC) algorithm and
returns S, the pseudospectrum estimate of the input signal x, and a vector wo of normalized
frequencies (in rad/sample) at which the pseudospectrum is evaluated. You can specify the signal
subspace dimension using the input argument p.

[S,wo] = pmusic(x,p,wi) returns the pseudospectrum computed at the normalized frequencies
specified in vector wi. The vector wi must have two or more elements, because otherwise the
function interprets it as nfft.

[S,wo] = pmusic(___ ,nfft) specifies the integer length of the FFT, nfft, used to estimate the
pseudospectrum. This syntax can include any combination of input arguments from previous
syntaxes.

[S,wo] = pmusic(___ ,'corr') forces the input argument x to be interpreted as a correlation
matrix rather than matrix of signal data. For this syntax, x must be a square matrix, and all of its
eigenvalues must be nonnegative.

[S,fo] = pmusic(x,p,nfft,fs) returns the pseudospectrum computed at the frequencies
specified in vector fo (in Hz). Supply the sample rate fs in Hz.

[S,fo] = pmusic(x,p,fi,fs) returns the pseudospectrum computed at the frequencies specified
in the vector fi. The vector fi must have two or more elements, because otherwise the function
interprets it as nfft.

[S,fo] = pmusic(x,p,nfft,fs,nwin,noverlap) returns the pseudospectrum S by segmenting
the input data x using the window nwin and overlap length noverlap.

[___] = pmusic(___ ,freqrange) specifies the range of frequency values to include in fo or
wo.

1 Functions

1-1656

[___ ,v,e] = pmusic(___) returns the matrix v of noise eigenvectors along with the associated
eigenvalues in the vector e.

pmusic(___) with no output arguments plots the pseudospectrum in the current figure window.

Examples

pmusic with No Sampling Specified

This example analyzes a signal vector, x, assuming that two real sinusoidal components are present in
the signal subspace. In this case, the dimension of the signal subspace is 4, because each real
sinusoid is the sum of two complex exponentials.

n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
pmusic(x,4) % Set p to 4 because there are two real inputs

Specifying Sampling Frequency and Subspace Dimensions

This example analyzes the same signal vector, x, with an eigenvalue cutoff of 10% above the
minimum. Setting p(1) = Inf forces the signal/noise subspace decision to be based on the
threshold parameter, p(2). Specify the eigenvectors of length 7 using the nwin argument, and set
the sampling frequency, fs, to 8 kHz:

 pmusic

1-1657

rng default
n = 0:199;
x = cos(0.257*pi*n) + sin(0.2*pi*n) + 0.01*randn(size(n));
[P,f] = pmusic(x,[Inf,1.1],[],8000,7); % Window length = 7
plot(f,20*log10(abs(P)))
xlabel 'Frequency (Hz)', ylabel 'Power (dB)'
title 'Pseudospectrum Estimate via MUSIC', grid on

Entering a Correlation Matrix

Supply a positive definite correlation matrix, R, for estimating the spectral density. Use the default
256 samples.

R = toeplitz(cos(0.1*pi*(0:6))) + 0.1*eye(7);
pmusic(R,4,'corr')

1 Functions

1-1658

Enter Signal Data Matrix Generated by corrmtx

Enter a signal data matrix, Xm, generated from data using corrmtx.

n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
Xm = corrmtx(x,7,'modified');
pmusic(Xm,2)

 pmusic

1-1659

Using Windowing to Create the Effect of a Signal Data Matrix

Use the same signal, but let pmusic form the 100-by-7 data matrix using its windowing input
arguments. In addition, specify an FFT of length 512.

n = 0:699;
x = cos(0.257*pi*(n)) + 0.1*randn(size(n));
[PP,ff] = pmusic(x,2,512,[],7,0);
pmusic(x,2,512,[],7,0)

1 Functions

1-1660

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then it is treated as one observation of
the signal. If x is a matrix, each row of x represents a separate observation of the signal. For
example, each row is one output of an array of sensors, as in array processing, such that x'*x is an
estimate of the correlation matrix.

Note You can use the output of corrmtx to generate x.

p — Subspace dimension
real positive integer | two-element vector

Subspace dimension, specified as a real positive integer or a two-element vector. If p is a real positive
integer, then it is treated as the subspace dimension. If p is a two-element vector, the second element
of p represents a threshold that is multiplied by λmin, the smallest estimated eigenvalue of the signal's
correlation matrix. Eigenvalues below the threshold λmin*p(2) are assigned to the noise subspace. In
this case, p(1) specifies the maximum dimension of the signal subspace. The extra threshold
parameter in the second entry in p provides you more flexibility and control in assigning the noise
and signal subspaces.

 pmusic

1-1661

Note If the inputs to peig are real sinusoids, set the value of p to double the number of sinusoids. If
the inputs are complex sinusoids, set p equal to the number of sinusoids.

wi — Input normalized frequencies
vector

Input normalized frequencies, specified as a vector.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. If nfft is specified as empty, the default nfft
is used.

fs — Sample rate
1 (default) | positive scalar | []

Sample rate, specified as a positive scalar in Hz. in Hz. If you specify fs with the empty vector [], the
sample rate defaults to 1 Hz.

fi — Input frequency
vector

Input frequencies, specified as a vector. The pseudospectrum is computed at the frequencies specified
in the vector.

nwin — Length of rectangular window
2*p(1) (default) | nonnegative integer

Length of rectangular window, specified as a nonnegative integer.

noverlap — Number of overlapped samples
nwin-1 (default) | nonnegative integer

Number of overlapped samples, specified as a nonnegative integer smaller than the length of window.

Note The arguments nwin and noverlap are ignored when you include 'corr' in the syntax.

freqrange — Frequency range of pseudospectrum estimates
'half' | 'whole' | 'centered'

Frequency range of pseudospectrum estimates,specified as one of 'half', whole, or 'centered'.

• 'half' — Returns half the spectrum for a real input signal x. If nfft is even, then S has length
nfft/2 + 1 and is computed over the interval [0, π]. If nfft is odd, the length of S is (nfft + 1)/2
and the frequency interval is [0,π). When your specify fs, the intervals are [0, fs/2) and [0, fs/2]
for even and odd nfft, respectively.

• 'whole' — Returns the whole spectrum for either real or complex input x. In this case, S has
length nfft and is computed over the interval [0, 2π). When you specify fs, the frequency
interval is [0, fs).

1 Functions

1-1662

• 'centered' — Returns the centered whole spectrum for either real or complex input x. In this
case, S has length nfft and is computed over the interval (–π, π] for even nfft and (–π, π) for
odd nfft. When you specify fs, the frequency intervals are (–fs/2, fs/2] and (–fs/2, fs/2) for
even and odd nfft, respectively.

Note You can put the arguments freqrange or 'corr' anywhere in the input argument list after p.

Output Arguments
S — Pseudospectrum estimate
vector

Pseudospectrum estimate, returned as a vector. The pseudospectrum is calculated using estimates of
the eigenvectors of a correlation matrix associated with the input data x.

wo — Output normalized frequencies
vector

Output normalized frequencies, specified as a vector. S and wo have the same length. In general, the
length of the FFT and the values of the input x determine the length of the computed S and the range
of the corresponding normalized frequencies. The table indicates the length of S (and wo) and the
range of the corresponding normalized frequencies for the first syntax.

S Characteristics for an FFT Length of 256 (Default)

Input Data Type Length of S and w0 Range of the Corresponding
Normalized Frequencies

Real 129 [0, π]
Complex 256 [0, 2π)

If nfft is specified, the following table indicates the length of S and wo and the frequency range for
wo.

S and Frequency Vector Characteristics

Input Data Type nfft Even or Odd Length of S and w Range of w
Real Even (nfft/2)+ 1 [0, π]
Real Odd (nfft + 1)/2 [0, π)
Complex Even or odd nfft [0, 2π)

fo — Output frequency
vector

Output frequency, returned as a vector. The frequency range for fo depends on nfft, fs, and the
values of the input x. The length of S (and fo) is the same as in the S and Frequency Vector
Characteristics above. The following table indicates the frequency range for fo if nfft and fs are
specified.

 pmusic

1-1663

S and Frequency Vector Characteristics with fs Specified

Input Data Type nfft Even/Odd Range of f
Real Even [0, fs/2]
Real Odd [0, fs/2)
Complex Even or odd [0, fs)

Additionally, if nwin and noverlap are also specified, the input data x is segmented and windowed
before the matrix used to estimate the correlation matrix eigenvalues is formulated. The
segmentation of the data depends on nwin, noverlap, and the form of x. Comments on the resulting
windowed segments are described in the following table.

Windowed Data Depending on x and nwin

form of x Form of nwin Windowed Data
Data vector Scalar Length is nwin.
Data vector Vector of coefficients Length is length(nwin).
Data matrix Scalar Data is not windowed.
Data matrix Vector of coefficients length(nwin) must be the same as the

column length of x, and noverlap is not
used.

See the Eigenvector Length Depending on Input Data and Syntax for related information on this
syntax.

v — Noise eigenvector
matrix

Noise eigenvectors, returned as a matrix. The columns of v span the noise subspace of dimension
size(v,2). The dimension of the signal subspace is size(v,1)-size(v,2).

e — Estimated eigenvalues
vector

Estimated eigenvalues of the correlation matrix, returned as a vector.

Tips
In the process of estimating the pseudospectrum, pmusic computes the noise and signal subspaces
from the estimated eigenvectors vj and eigenvalues λj of the signal's correlation matrix. The smallest
of these eigenvalues is used in conjunction with the threshold parameter p(2) to affect the
dimension of the noise subspace in some cases.

The length n of the eigenvectors computed by pmusic is the sum of the dimensions of the signal and
noise subspaces. This eigenvector length depends on your input (signal data or correlation matrix)
and the syntax you use.

The following table summarizes the dependency of the eigenvector length on the input argument.

1 Functions

1-1664

Eigenvector Length Depending on Input Data and Syntax
Form of Input Data x Comments on the Syntax Length n of Eigenvectors
Row or column vector nwin is specified as a scalar

integer.
nwin

Row or column vector nwin is specified as a vector. length(nwin)
Row or column vector nwin is not specified. 2 × p(1)
l-by-m matrix If nwin is specified as a scalar,

it is not used. If nwin is
specified as a vector,
length(nwin) must equal m.

m

m-by-m nonnegative definite
matrix

'corr' is specified and nwin is
not used.

m

You should specify nwin > p(1) or length(nwin) > p(1) if you want p(2) > 1 to have any effect.

Algorithms
The multiple signal classification (MUSIC) algorithm estimates the pseudospectrum from a signal or a
correlation matrix using Schmidt's eigenspace analysis method [1]. The algorithm performs
eigenspace analysis of the signal's correlation matrix to estimate the signal's frequency content. This
algorithm is particularly suitable for signals that are the sum of sinusoids with additive white
Gaussian noise. The eigenvalues and eigenvectors of the signal's correlation matrix are estimated if
you do not supply the correlation matrix.

The MUSIC pseudospectrum estimate is given by

PMUSIC(f) = 1

eH(f) ∑
k = p + 1

N
vkvk

H e(f)
= 1

∑
k = p + 1

N
vk

He(f) 2

where N is the dimension of the eigenvectors and vk is the kth eigenvector of the correlation matrix.
The integer p is the dimension of the signal subspace, so the eigenvectors vk used in the sum
correspond to the smallest eigenvalues and also span the noise subspace. The vector e(f) consists of
complex exponentials, so the inner product

vk
He(f)

amounts to a Fourier transform. This is used for computation of the pseudospectrum estimate. The
FFT is computed for each vk and then the squared magnitudes are summed.

References
[1] Marple, S. Lawrence. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1987, pp. 373–

378.

[2] Schmidt, R. O. “Multiple Emitter Location and Signal Parameter Estimation.” IEEE Transactions
on Antennas and Propagation. Vol. AP-34, March, 1986, pp. 276–280.

[3] Stoica, Petre, and Randolph L. Moses. Spectral Analysis of Signals. Upper Saddle River, NJ:
Prentice Hall, 2005.

 pmusic

1-1665

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If nfft or nwin is variable-size during code generation, then it must not reduce to a scalar or an
empty array at runtime.

See Also
corrmtx | pburg | peig | periodogram | pmtm | prony | pwelch | rooteig | rootmusic

Introduced before R2006a

1 Functions

1-1666

poctave
Generate octave spectrum

Syntax
p = poctave(x,fs)
p = poctave(xt)

p = poctave(pxx,fs,f)

p = poctave(___ ,type)

p = poctave(___ ,Name,Value)

[p,cf] = poctave(___)

[p,cf,t] = poctave(___)

poctave(___)

Description
p = poctave(x,fs) returns the octave spectrum of a signal x sampled at a rate fs. The octave
spectrum is the average power over octave bands as defined by the ANSI S1.11 standard [2]. If x is a
matrix, then the function estimates the octave spectrum independently for each column and returns
the result in the corresponding column of p.

p = poctave(xt) returns the octave spectrum of a signal stored in the MATLAB timetable xt.

p = poctave(pxx,fs,f) performs octave smoothing by converting a power spectral density, pxx,
to a 1/b octave power spectrum, where b is the number of subbands in the octave band. The
frequencies in f correspond to the PSD estimates in pxx.

p = poctave(___ ,type) specifies the kind of spectral analysis performed by the function. Specify
type as 'power' or 'spectrogram'.

p = poctave(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value arguments.

[p,cf] = poctave(___) also returns the center frequencies of the octave bands over which the
octave spectrum is computed.

[p,cf,t] = poctave(___) additionally returns a time vector, t, corresponding to the center
times of the segments used to compute the power spectrum estimates when type is
'spectrogram'.

poctave(___) with no output arguments plots the octave spectrum or spectrogram in the current
figure. If type is specified as 'spectrogram', then this function is supported only for single-channel
input.

 poctave

1-1667

Examples

Octave Spectra of White and Pink Noise

Generate 105 samples of white Gaussian noise. Create a signal of pseudopink noise by filtering the
white noise with a filter whose zeros and poles are all on the positive x-axis. Visualize the zeros and
poles.

N = 1e5;
wn = randn(N,1);

z = [0.982231570015379 0.832656605953720 0.107980893771348]';
p = [0.995168968915815 0.943841773712820 0.555945259371364]';

[b,a] = zp2tf(z,p,1);
pn = filter(b,a,wn);

zplane(z,p)

Create a two-channel signal consisting of white and pink noise. Compute the octave spectrum.
Assume a sample rate of 44.1 kHz. Set the frequency band from 30 Hz to the Nyquist frequency.

sg = [wn pn];

fs = 44100;

1 Functions

1-1668

poctave(sg,fs,'FrequencyLimits',[30 fs/2])
legend('White noise','Pink noise','Location','SouthEast')

The white noise has an octave spectrum that increases with frequency. The octave spectrum of the
pink noise is approximately constant throughout the frequency range. The octave spectrum of a
signal illustrates how the human ear perceives the signal.

Octave Smoothing of White and Pink Noise

Generate 105 samples of white Gaussian noise sampled at 44.1 kHz. Create a signal of pink noise by
filtering the white noise with a filter whose zeros and poles are all on the positive x-axis.

N = 1e5;
fs = 44.1e3;
wn = randn(N,1);

z = [0.982231570015379 0.832656605953720 0.107980893771348]';
p = [0.995168968915815 0.943841773712820 0.555945259371364]';
[b,a] = zp2tf(z,p,1);

pn = filter(b,a,wn);

Compute the Welch estimate of the power spectral density for both signals. Divide the signals into
2048-sample segments, specify 50% overlap between adjoining segments, window each segment with
a Hamming window, and use 4096 DFT points.

 poctave

1-1669

[pxx,f] = pwelch([wn pn],hamming(2048),1024,4096,fs);

Display the spectral densities over a frequency band ranging from 200 Hz to the Nyquist frequency.
Use a logarithmic scale for the frequency axis.

pwelch([wn pn],hamming(2048),1024,4096,fs)
ax = gca;
ax.XScale = 'log';
xlim([200 fs/2]/1000)
legend('White','Pink')

Compute and display the octave spectra of the signals. Use the same frequency range as in the
previous plot. Specify six bands per octave and compute the spectra using 8th-order filters.

poctave(pxx,fs,f,'BandsPerOctave',6,'FilterOrder',8,'FrequencyLimits',[200 fs/2],'psd')
legend('White','Pink')

1 Functions

1-1670

Octave Spectrogram of Audio Signal

Read an audio recording of an electronic toothbrush into MATLAB®. The toothbrush turns on at
about 1.75 seconds and stays on for approximately 2 seconds.

[y,fs] = audioread('toothbrush.m4a');

Compute the octave spectrogram of the audio signal. Specify 48 bands per octave and 82% overlap.
Restrict the total frequency range from 100 Hz to fs/2 Hz and use C-weighting.

poctave(y,fs,'spectrogram','BandsPerOctave',48,'OverlapPercent',82,'FrequencyLimits',[100 fs/2],'Weighting','C')

 poctave

1-1671

Octave Spectrum Weighting

Generate 105 samples of white Gaussian noise sampled at 44.1 kHz. Create a signal of pink noise by
filtering the white noise with a filter whose zeros and poles are all on the positive x-axis.

N = 1e5;
fs = 44.1e3;
wn = randn(N,1);

z = [0.982231570015379 0.832656605953720 0.107980893771348]';
p = [0.995168968915815 0.943841773712820 0.555945259371364]';
[b,a] = zp2tf(z,p,1);

pn = filter(b,a,wn);

Compute the octave spectrum of the signal. Specify three bands per octave and restrict the total
frequency range from 200 Hz to 20 kHz. Store the name-value pairs in a cell array for later use.
Display the spectrum.

flims = [200 20e3];
bpo = 3;
opts = {'FrequencyLimits',flims,'BandsPerOctave',bpo};

poctave(pn,fs,opts{:});

1 Functions

1-1672

Compute the octave spectrum of the signal with the same settings, but use C-weighting. The C-
weighted spectrum falls off at frequencies above 6 kHz.

hold on
poctave(pn,fs,opts{:},'Weighting','C')

 poctave

1-1673

Compute the octave spectrum again, but now use A-weighting. The A-weighted spectrum peaks at
about 3 kHz and falls off above 6 kHz and at the lower end of the frequency band.

poctave(pn,fs,opts{:},'Weighting','A')
hold off
legend('Pink noise','C-weighted','A-weighted','Location','SouthWest')

1 Functions

1-1674

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then poctave treats it as a single
channel. If x is a matrix, then poctave computes the octave spectrum or spectrogram independently
for each column and returns the result in the corresponding column of p. If type is set to
'spectrogram', the function concatenates the spectrograms along the third dimension of p.
Example: sin(2*pi*(0:127)/16)+randn(1,128)/100 specifies a noisy sinusoid.
Example: [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in hertz. The sample rate cannot be lower than 7
Hz.

xt — Input timetable
timetable

 poctave

1-1675

Input timetable. xt must contain increasing, finite, uniformly spaced row times. If xt represents a
multichannel signal, then it must have either a single variable containing a matrix or multiple
variables consisting of vectors.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1)) specifies a random process sampled at 1 Hz
for 4 seconds.

pxx — Power spectral density
vector | matrix

Power spectral density (PSD), specified as a vector or matrix with real nonnegative elements. The
power spectral density must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values. If type is 'spectrogram', then each column in pxx is considered to be the
PSD for a particular time window or sample.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.

f — PSD frequencies
vector

PSD frequencies, specified as a vector. f must be finite, strictly increasing, and uniformly spaced in
the linear scale.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.

type — Type of spectrum to compute
'power' (default) | 'spectrogram'

Type of spectrum to compute, specified as 'power' or 'spectrogram'.

• 'power' — Compute the octave power spectrum of the input.
• 'spectrogram' — Compute the octave spectrogram of the input. The function divides the input

into segments and returns the short-time octave power spectrum of each segment.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Weighting','A','FilterOrder',8 computes the octave spectrum using A-weighting
and 8th-order filters.

BandsPerOctave — Number of subbands in octave band
1 (default) | 3/2 | 2 | 3 | 6 | 12 | 24 | 48 | 96

Number of subbands in the octave band, specified as 1, 3/2, 2, 3, 6, 12, 24, 48, or 96. This
parameter dictates the width of a fractional-octave band. In such a frequency band, the upper edge
frequency is the lower edge frequency times 21/b, where b is the number of subbands.

1 Functions

1-1676

Data Types: single | double

FilterOrder — Order of bandpass filters
6 (default) | positive even integer

Order of bandpass filters, specified as a positive even integer.
Data Types: single | double

FrequencyLimits — Frequency band
[max(3,3*fs/48e3) fs/2] (default) | two-element vector

Frequency band, specified as an increasing two-element vector expressed in hertz. The lower value of
the vector must be at least 3 Hz. The upper value of the vector must be smaller than or equal to the
Nyquist frequency. If the vector does not contain an octave center, poctave may return a center
frequency outside the specified limits. To ensure a stable filter design, the actual minimum achievable
frequency limit increases to 3*fs/48e3 if the sample rate exceeds 48 kHz. If this argument is not
specified, poctave uses the interval [max(3,3*fs/48e3) fs/2].
Data Types: single | double

Weighting — Frequency weighting
'none' (default) | 'A' | 'C' | vector | matrix | 1-by-2 cell array | digitalFilter object

Frequency weighting, specified as one of these:

• 'none' — poctave does not perform any frequency weighting on the input.
• 'A' — poctave performs A-weighting on the input. The ANSI S1.42 standard defines the A-

weighting curve. The IEC 61672-1 standard defines the minimum and maximum attenuation limits
for an A-weighting filter. The ANSI S1.42.2001 standard defines the weighting curve by specifying
analog poles and zeros.

• 'C' — poctave performs C-weighting on the input. The ANSI S1.42 standard defines the C-
weighting curve. The IEC 61672-1 standard defines the minimum and maximum attenuation limits
for a C-weighting filter. The ANSI S1.42.2001 standard defines the weighting curve by specifying
analog poles and zeros.

• Vector — poctave treats the input as a vector of coefficients that specify a finite impulse response
(FIR) filter.

• Matrix — poctave treats the input as a matrix of second-order section coefficients that specify an
infinite impulse response (IIR) filter. The matrix must have at least two rows and exactly six
columns.

• 1-by-2 cell array — poctave treats the input as the numerator and denominator coefficients, in
that order, that specify the transfer function of an IIR filter.

• digitalFilter object — poctave treats the input as a filter that was designed using
designfilt.

This argument is supported only when the input is a signal. Octave smoothing does not support
frequency weighting.
Example: 'Weighting',fir1(30,0.5) specifies a 30th-order FIR filter with a normalized cutoff
frequency of 0.5π rad/sample.
Example: 'Weighting',[2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter
with a normalized 3-dB frequency of 0.5π rad/sample.

 poctave

1-1677

Example: 'Weighting',{[1 3 3 1]/6 [3 0 1]/3} specifies a third-order Butterworth filter with
a normalized 3-dB frequency of 0.5π rad/sample.
Example:
'Weighting',designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with a normalized 3-dB frequency of 0.5π rad/sample.
Data Types: single | double | char | string | cell

MinThreshold — Lower bound for nonzero values
-Inf (default) | real scalar

Lower bound for nonzero values, specified as a real scalar. The function sets those elements of p such
that 10 log10(p) ≤ 'MinThreshold' to zero. Specify 'MinThreshold' in decibels.
Data Types: single | double

WindowLength — Length of data segments
nonnegative integer

Length of data segments, specified as a nonnegative integer. 'WindowLength' must be less than or
equal to the length of the input signal. If not specified, the length of data segments is calculated
based on the size of the input signal. This input is valid only when type is 'spectrogram'.
Data Types: single | double

OverlapPercent — Overlap percent between adjoining segments
real scalar in the interval [0, 100)

Overlap percent between adjoining segments, specified as a real scalar in the interval [0, 100). If not
specified, 'OverlapPercent' is zero. This input is valid only when type is 'spectrogram'.
Data Types: single | double

Output Arguments
p — Octave spectrum or spectrogram
vector | matrix | 3-D array

Octave spectrum or spectrogram, returned as a vector, matrix, or 3-D array. The third dimension, if
present, corresponds to the input channels.

cf — Center frequencies
vector

Center frequencies, returned as a vector. cf contains a list of center frequencies of the octave bands
over which poctave estimated the octave spectrum. cf has units of hertz.

t — Center times
vector

Center times, returned as a vector. If the input is a PSD, then t represents the sample indices
corresponding to the columns of pxx. This argument applies only when type is 'spectrogram'.

1 Functions

1-1678

Algorithms
Octave analysis is used to identify sound or vibration levels across a broad frequency range in a
process that resembles how a human ear perceives sound. The signal spectrum is split into octave or
fractional-octave bands. The frequency limit of each band is twice the lower frequency limit, thus the
bandwidth increases at higher frequencies.

Using Octave Filters

To perform octave analysis, the poctave function creates a filter bank of parallel bandpass filters.
Each digital bandpass filter is mapped to an equivalent Butterworth lowpass analog filter [3]. The
analog filter is mapped back to a digital bandpass filter using a bandpass version of the bilinear
transformation, and the result is returned as a cascade of fourth-order sections.

The lower and upper edge frequencies of each octave band are given by

f l = cf ⋅ (G−1/2b)

fu = cf ⋅ (G1/2b)

where fc is the center frequency of each band defined by the ANSI S1.11-2004 standard [2] and
returned in cf, G is a conversion constant (103/10), and b is the number of bands per octave.

For more information on the design and implementation of octave filters, see “Digital Filter Design”
(Audio Toolbox).

Using Octave Smoothing

The poctave function calculates the average power over each octave band by integrating the power
spectral density (PSD) of the signal within the band using the rectangle method. The average power
of an octave band represents the signal level at the band center frequency.

• When a band edge falls within a bin, the function assigns to the band only the fraction of power
corresponding to the percentage of the frequency bin that the band occupies. For example, this
diagram shows an octave band whose edges fall within two different frequency bins, represented
by orange and blue dashed rectangles. The power within the shaded regions is computed for the
given octave band.

• When a band edge falls at 0 or at the Nyquist frequency, fNyquist, the function assigns to the band
two times the fraction of power corresponding to the percentage of the frequency bin that the
band occupies. This duplication accounts for the half bin power that is present in the range [–w/2,
0] and [fNyquist, fNyquist + w/2], where w is the bin width. For example, this diagram shows an octave
band whose right edge falls at the Nyquist frequency. The power within the shaded region is
computed for the given octave band.

 poctave

1-1679

References
[1] Smith, Julius Orion, III. "Example: Synthesis of 1/F Noise (Pink Noise)." In Spectral Audio Signal

Processing. https://ccrma.stanford.edu/~jos/sasp/.

[2] Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters. ANSI
Standard S1.11-2004. Melville, NY: Acoustical Society of America, 2004.

[3] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If input weighting is specified as a variable-sized matrix during code generation, then it must not
reduce to a vector at runtime.

See Also
pspectrum

Introduced in R2018a

1 Functions

1-1680

https://ccrma.stanford.edu/%7Ejos/sasp/

poly2ac
Convert prediction filter polynomial to autocorrelation sequence

Syntax
r = poly2ac(a,efinal)

Description
r = poly2ac(a,efinal) returns the autocorrelation vector, r, corresponding to the
autoregressive prediction filter polynomial, a, and the final prediction error, efinal. r is
approximately equal to the autocorrelation of the output of a prediction filter with coefficients a. If
a(1) is not equal to 1, poly2ac normalizes the prediction filter polynomial by a(1). a(1) cannot be
0.

Examples

Autocorrelation Sequence from Prediction Filter

Given a prediction filter polynomial, a, and a final prediction error, efinal, find the autocorrelation
sequence.

a = [1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077];
efinal = 0.2;
r = poly2ac(a,efinal)

r = 6×1

 5.5917
 -1.7277
 -4.4231
 4.3985
 1.6426
 -5.3126

Tips
You can apply this function to both real and complex polynomials.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

 poly2ac

1-1681

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
ac2poly | poly2rc | rc2ac

Introduced before R2006a

1 Functions

1-1682

poly2lsf
Convert prediction filter coefficients to line spectral frequencies

Syntax
lsf = poly2lsf(a)

Description
lsf = poly2lsf(a) returns a vector, lsf, of line spectral frequencies from a vector, a, of
prediction filter coefficients.

Examples

Generate Line Spectral Frequencies

Given a vector, a, of prediction filter coefficients, generate the corresponding line spectral
frequencies.

a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
lsf = poly2lsf(a)

lsf = 5×1

 0.7842
 1.5605
 1.8776
 1.8984
 2.3593

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

[2] Rabiner, Lawrence R., and Ronald W. Schafer. Digital Processing of Speech Signals. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

 poly2lsf

1-1683

• Poorly conditioned prediction polynomials generate line spectral frequencies that do not always
match MATLAB.

See Also
lsf2poly

Introduced before R2006a

1 Functions

1-1684

poly2rc
Convert prediction filter polynomial to reflection coefficients

Syntax
k = poly2rc(a)
[k,r0] = poly2rc(a,efinal)

Description
k = poly2rc(a) converts the prediction filter polynomial a to the reflection coefficients of the
corresponding lattice structure. a can be real or complex, and a(1) cannot be 0. If a(1) is not equal
to 1, poly2rc normalizes the prediction filter polynomial by a(1). k is a row vector of size
length(a)-1.

[k,r0] = poly2rc(a,efinal) returns the zero-lag autocorrelation, r0, based on the final
prediction error, efinal.

Examples

Find Reflection Coefficients from Prediction Filter Polynomial

Given a prediction filter polynomial, a, and a final prediction error, efinal, determine the reflection
coefficients of the corresponding lattice structure and the zero-lag autocorrelation.

a = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];
efinal = 0.2;
[k,r0] = poly2rc(a,efinal)

k = 5×1

 0.3090
 0.9801
 0.0031
 0.0081
 -0.0082

r0 = 5.6032

Limitations
If abs(k(i)) == 1 for any i, finding the reflection coefficients is an ill-conditioned problem.
poly2rc returns some NaNs and provides a warning message in those cases.

 poly2rc

1-1685

Tips
A simple, fast way to check if a has all of its roots inside the unit circle is to check if each of the
elements of k has magnitude less than 1.

stable = all(abs(poly2rc(a))<1)

Algorithms
poly2rc implements this recursive relationship:

k(n) = an(n)

an− 1(m) =
an(m) − k(n)an(n−m)

1 − k(n)2
, m = 1, 2,⋯, n− 1

This relationship is based on Levinson’s recursion [1]. To implement it, poly2rc loops through a in
reverse order after discarding its first element. For each loop iteration i, the function:

1 Sets k(i) equal to a(i)
2 Applies the second relationship above to elements 1 through i of the vector a.

a = (a-k(i)*fliplr(a))/(1-k(i)^2);

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
ac2rc | latc2tf | latcfilt | poly2ac | rc2poly | tf2latc

Introduced before R2006a

1 Functions

1-1686

polyscale
Scale roots of polynomial

Syntax
b = polyscale(a,alpha)

Description
b = polyscale(a,alpha) scales the roots of a polynomial in the z-plane, where a is a vector
containing the polynomial coefficients and alpha is the scaling factor.

If alpha is a real value in the range [0 1], then the roots of a are radially scaled toward the origin
in the z-plane. Complex values for alpha allow arbitrary changes to the root locations.

Examples

Roots of Unity

Express the solutions to the equation x7 = 1 as the roots of a polynomial. Plot the roots in the
complex plane.

pp = [1 0 0 0 0 0 0 -1];
zplane(pp,1)

 polyscale

1-1687

Scale the roots of p in and out of the unit circle. Plot the results.

hold on

for sc = [1:-0.2:0.2 1.2 1.4];
 b = polyscale(pp,sc);
 plot(roots(b),'o')
end

axis([-1 1 -1 1]*1.5)

hold off

1 Functions

1-1688

Bandwidth Expansion of LPC Speech Spectrum

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb

Model a 100-sample section of the signal using a 12th-order autoregressive polynomial. Perform
bandwidth expansion of the signal by scaling the roots of the autoregressive polynomial by 0.85.

Ao = lpc(mtlb(1000:1100),12);
Ax = polyscale(Ao,0.85);

Plot the zeros, poles, and frequency responses of the models.

subplot(2,2,1)
zplane(1,Ao)
title('Original')

subplot(2,2,3)
zplane(1,Ax)
title('Flattened')

subplot(1,2,2)
[ho,w] = freqz(1,Ao);

 polyscale

1-1689

[hx,w] = freqz(1,Ax);
plot(w/pi,abs([ho hx]))
legend('Original','Flattened')

Tips
By reducing the radius of the roots in an autoregressive polynomial, the bandwidth of the spectral
peaks in the frequency response is expanded (flattened). This operation is often referred to as
bandwidth expansion.

See Also
polystab | roots

Introduced before R2006a

1 Functions

1-1690

polystab
Stabilize polynomial

Syntax
b = polystab(a)

Description
polystab stabilizes a polynomial with respect to the unit circle; it reflects roots with magnitudes
greater than 1 inside the unit circle.

b = polystab(a) returns a row vector b containing the stabilized polynomial. a is a vector of
polynomial coefficients, normally in the z-domain:

A(z) = a(1) + a(2)z−1 + … + a(m + 1)z−m .

Examples

Convert Linear-Phase Filter to Minimum-Phase

Use the window method to design a 25th-oder FIR filter with normalized cutoff frequency 0 . 4π rad/
sample. Verify that it has linear phase but not minimum phase.

h = fir1(25,0.4);

h_linphase = islinphase(h)

h_linphase = logical
 1

h_minphase = isminphase(h)

h_minphase = logical
 0

Use polystab to convert the linear-phase filter into a minimum-phase filter. Plot the phase responses
of the filters.

hmin = polystab(h)*norm(h)/norm(polystab(h));

hmin_linphase = islinphase(hmin)

hmin_linphase = logical
 0

hmin_minphase = isminphase(hmin)

 polystab

1-1691

hmin_minphase = logical
 1

hfvt = fvtool(h,1,hmin,1,'Analysis','phase');
legend(hfvt,'h','hmin')

Verify that the two filters have identical magnitude responses.

hfvt = fvtool(h,1,hmin,1);
legend(hfvt,'h','hmin')

1 Functions

1-1692

Algorithms
polystab finds the roots of the polynomial and maps those roots found outside the unit circle to the
inside of the unit circle:

v = roots(a);
vs = 0.5*(sign(abs(v)-1)+1);
v = (1-vs).*v + vs./conj(v);
b = a(1)*poly(v);

See Also
roots

Introduced before R2006a

 polystab

1-1693

pow2db
Convert power to decibels

Syntax
ydb = pow2db(y)

Description
ydb = pow2db(y) expresses in decibels (dB) the power measurements specified in y. The
relationship between power and decibels is ydb = 10 log10(y).

Examples

Power Spectrum of a Noisy Sinusoid

Generate 1024 samples of a noisy sinusoid having a normalized frequency of 2π/3 rad/sample.
Estimate the power spectrum of the signal using pwelch. Express the estimate in decibels and plot it.

n = 0:1024-1;
x = cos(2*pi*n/3) + randn(size(n));

[pxx,w] = pwelch(x,'power');

dB = pow2db(pxx);

plot(w/pi,dB)
xlabel('\omega / \pi')
ylabel('Power (dB)')

1 Functions

1-1694

Repeat the computation using pwelch without output arguments.

pwelch(x,'power')

 pow2db

1-1695

Input Arguments
y — Input array
scalar | vector | matrix | N-D array

Input array, specified as a scalar, vector, matrix, or N-D array. When y is nonscalar, pow2db is an
element-wise operation.
Data Types: single | double

Output Arguments
ydb — Power measurements in decibels
scalar | vector | matrix | N-D array

Power measurements in decibels, returned as a scalar, vector, matrix, or N-D array of the same size
as y.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-1696

See Also
db | db2mag | db2pow | mag2db

Introduced in R2007b

 pow2db

1-1697

powerbw
Power bandwidth

Syntax
bw = powerbw(x)
bw = powerbw(x,fs)

bw = powerbw(pxx,f)
bw = powerbw(sxx,f,rbw)

bw = powerbw(___ ,freqrange,r)

[bw,flo,fhi,power] = powerbw(___)

powerbw(___)

Description
bw = powerbw(x) returns the 3-dB (half-power) bandwidth, bw, of the input signal, x.

bw = powerbw(x,fs) returns the 3-dB bandwidth in terms of the sample rate, fs.

bw = powerbw(pxx,f) returns the 3-dB bandwidth of the power spectral density (PSD) estimate,
pxx. The frequencies, f, correspond to the estimates in pxx.

bw = powerbw(sxx,f,rbw) computes the 3-dB bandwidth of the power spectrum estimate, sxx.
The frequencies, f, correspond to the estimates in sxx. rbw is the resolution bandwidth used to
integrate each power estimate.

bw = powerbw(___ ,freqrange,r) specifies the frequency interval over which to compute the
reference level. This syntax can include any combination of input arguments from previous syntaxes,
as long as the second input argument is either fs or f. If the second input is passed as empty,
normalized frequency will be assumed. freqrange must lie within the target band.

If you also specify r, the function computes the difference in frequency between the points where the
spectrum drops below the reference level by r dB or reaches an endpoint.

[bw,flo,fhi,power] = powerbw(___) also returns the lower and upper bounds of the power
bandwidth and the power within those bounds.

powerbw(___) with no output arguments plots the PSD or power spectrum in the current figure
window and annotates the bandwidth.

Examples

1 Functions

1-1698

3-dB Bandwidth of Chirps

Generate 1024 samples of a chirp sampled at 1024 kHz. The chirp has an initial frequency of 50 kHz
and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such that the signal-to-
noise ratio is 40 dB.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x + randn(size(x))*std(x)/db2mag(SNR);

Estimate the 3-dB bandwidth of the signal and annotate it on a plot of the power spectral density
(PSD).

powerbw(x,Fs)

ans = 4.4386e+04

Generate another chirp. Specify an initial frequency of 200 kHz, a final frequency of 300 kHz, and an
amplitude that is twice that of the first signal. Add white Gaussian noise.

x2 = 2*chirp(t,200e3,nSamp/Fs,300e3);
x2 = x2 + randn(size(x2))*std(x2)/db2mag(SNR);

 powerbw

1-1699

Concatenate the chirps to produce a two-channel signal. Estimate the 3-dB bandwidth of each
channel.

y = powerbw([x x2],Fs)

y = 1×2
104 ×

 4.4386 9.2208

Annotate the 3-dB bandwidths of the two channels on a plot of the PSDs.

powerbw([x x2],Fs);

Add the two channels to form a new signal. Plot the PSD and annotate the 3-dB bandwidth.

powerbw(x+x2,Fs)

1 Functions

1-1700

ans = 9.2243e+04

3-dB Bandwidth of Sinusoids

Generate 1024 samples of a 100.123 kHz sinusoid sampled at 1024 kHz. Add white Gaussian noise
such that the signal-to-noise ratio is 40 dB. Reset the random number generator for reproducible
results.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;
rng default

t = (0:nSamp-1)'/Fs;

x = sin(2*pi*t*100.123e3);
x = x + randn(size(x))*std(x)/db2mag(SNR);

Use the periodogram function to compute the power spectral density (PSD) of the signal. Specify a
Kaiser window with the same length as the signal and a shape factor of 38. Estimate the 3-dB
bandwidth of the signal and annotate it on a plot of the PSD.

[Pxx,f] = periodogram(x,kaiser(nSamp,38),[],Fs);

powerbw(Pxx,f);

 powerbw

1-1701

Generate another sinusoid, this one with a frequency of 257.321 kHz and an amplitude that is twice
that of the first sinusoid. Add white Gaussian noise.

x2 = 2*sin(2*pi*t*257.321e3);
x2 = x2 + randn(size(x2))*std(x2)/db2mag(SNR);

Concatenate the sinusoids to produce a two-channel signal. Estimate the PSD of each channel and
use the result to determine the 3-dB bandwidth.

[Pyy,f] = periodogram([x x2],kaiser(nSamp,38),[],Fs);

y = powerbw(Pyy,f)

y = 1×2
103 ×

 3.1753 3.3015

Annotate the 3-dB bandwidths of the two channels on a plot of the PSDs.

powerbw(Pyy,f);

1 Functions

1-1702

Add the two channels to form a new signal. Estimate the PSD and annotate the 3-dB bandwidth.

[Pzz,f] = periodogram(x+x2,kaiser(nSamp,38),[],Fs);

powerbw(Pzz,f);

 powerbw

1-1703

Bandwidth of Bandlimited Signals

Generate a signal whose PSD resembles the frequency response of an 88th-order bandpass FIR filter
with normalized cutoff frequencies 0 . 25π rad/sample and 0 . 45π rad/sample.

d = fir1(88,[0.25 0.45]);

Compute the 3-dB occupied bandwidth of the signal. Specify as a reference level the average power
in the band between 0 . 2π rad/sample and 0 . 6π rad/sample. Plot the PSD and annotate the
bandwidth.

powerbw(d,[],[0.2 0.6]*pi,3);

1 Functions

1-1704

Output the bandwidth, its lower and upper bounds, and the band power. Specifying a sample rate of
2π is equivalent to leaving the rate unset.

[bw,flo,fhi,power] = powerbw(d,2*pi,[0.2 0.6]*pi);

fprintf('bw = %.3f*pi, flo = %.3f*pi, fhi = %.3f*pi \n', ...
 [bw flo fhi]/pi)

bw = 0.200*pi, flo = 0.250*pi, fhi = 0.450*pi

fprintf('power = %.1f%% of total',power/bandpower(d)*100)

power = 96.9% of total

Add a second channel with normalized cutoff frequencies 0 . 5π rad/sample and 0 . 8π rad/sample and
an amplitude that is one-tenth that of the first channel.

d = [d;fir1(88,[0.5 0.8])/10]';

Compute the 6-dB bandwidth of the two-channel signal. Specify as a reference level the maximum
power level of the spectrum.

powerbw(d,[],[],6);

 powerbw

1-1705

Output the 6-dB bandwidth of each channel and the lower and upper bounds.

[bw,flo,fhi] = powerbw(d,[],[],6);
bds = [bw;flo;fhi];

fprintf('One: bw = %.3f*pi, flo = %.3f*pi, fhi = %.3f*pi \n',bds(:,1)/pi)

One: bw = 0.198*pi, flo = 0.252*pi, fhi = 0.450*pi

fprintf('Two: bw = %.3f*pi, flo = %.3f*pi, fhi = %.3f*pi \n',bds(:,2)/pi)

Two: bw = 0.294*pi, flo = 0.503*pi, fhi = 0.797*pi

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it is treated as a single channel. If x is a
matrix, then powerbw computes the power bandwidth independently for each column. x must be
finite-valued.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double

1 Functions

1-1706

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar. The sample rate is the number of samples per unit
time. If the time is measured in seconds, then the sample rate is in hertz.
Data Types: single | double

pxx — Power spectral density
vector | matrix

Power spectral density (PSD) estimate, specified as a vector or matrix. If pxx is a one-sided estimate,
then it must correspond to a real signal. If pxx is a matrix, then powerbw computes the bandwidth of
each column of pxx independently.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Frequencies
vector

Frequencies, specified as a vector. If the first element of f is 0, then powerbw assumes that the
spectrum is a one-sided spectrum of a real signal. In other words, the function doubles the power
value in the zero-frequency bin as it seeks the 3-dB point.
Data Types: single | double

sxx — Power spectrum estimate
vector | matrix

Power spectrum estimate, specified as a vector or matrix. If sxx is a matrix, then obw computes the
bandwidth of each column of sxx independently.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: single | double

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of two
values: the frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth
of the window used to compute the PSD.
Data Types: single | double

 powerbw

1-1707

freqrange — Frequency range
two-element vector

Frequency range, specified as a two-element vector of real values. If you specify freqrange, then
the reference level is the average power level in the reference band. If you do not specify
freqrange, then the reference level is the maximum power level of the spectrum.
Data Types: single | double

r — Power level drop
10 log102 (default) | positive real scalar

Power level drop, specified as a positive real scalar expressed in dB.
Data Types: single | double

Output Arguments
bw — Power bandwidth
scalar | vector

Power bandwidth, returned as a scalar or vector.

• If you specify a sample rate, then bw has the same units as fs.
• If you do not specify a sample rate, then bw has units of rad/sample.

flo, fhi — Bandwidth frequency bounds
scalars | vectors

Bandwidth frequency bounds, returned as scalars.

power — Power stored in bandwidth
scalar | vector

Power stored in bandwidth, returned as a scalar or vector.

Algorithms
To determine the 3-dB bandwidth, powerbw computes a periodogram power spectrum estimate using
a rectangular window and takes the maximum of the estimate as a reference level. The bandwidth is
the difference in frequency between the points where the spectrum drops at least 3 dB below the
reference level. If the signal reaches one of its endpoints before dropping by 3 dB, then powerbw
uses the endpoint to compute the difference.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bandpower | obw | periodogram | plomb | pwelch

1 Functions

1-1708

Introduced in R2015a

 powerbw

1-1709

prony
Prony method for filter design

Syntax
[b,a] = prony(h,bord,aord)

Description
[b,a] = prony(h,bord,aord) returns the numerator and denominator coefficients for a causal
rational transfer function with impulse response h, numerator order bord, and denominator order
aord.

Examples

Filter Responses Using the Prony Method

Fit a 4th-order IIR model to the impulse response of a lowpass filter. Plot the original and Prony-
designed impulse responses.

d = designfilt('lowpassiir','NumeratorOrder',4,'DenominatorOrder',4, ...
 'HalfPowerFrequency',0.2,'DesignMethod','butter');

h = filter(d,[1 zeros(1,31)]);
bord = 4;
aord = 4;
[b,a] = prony(h,bord,aord);

subplot(2,1,1)
stem(impz(b,a,length(h)))
title 'Impulse Response with Prony Design'

subplot(2,1,2)
stem(h)
title 'Input Impulse Response'

1 Functions

1-1710

Fit a 10th-order FIR model to the impulse response of a highpass filter. Plot the original and Prony-
designed frequency responses. The responses match to high precision.

d = designfilt('highpassfir','FilterOrder',10,'CutoffFrequency',0.8);

h = filter(d,[1 zeros(1,31)]);
bord = 10;
aord = 0;
[b,a] = prony(h,bord,aord);

fvt = fvtool(b,a,d);
legend(fvt,'Prony','Original')

 prony

1-1711

Input Arguments
h — Impulse response
vector

Impulse response, specified as a vector.
Example: impz(fir1(20,0.5)) specifies the impulse response of a 20th-order FIR filter with
normalized cutoff frequency π/2 rad/sample.
Data Types: single | double
Complex Number Support: Yes

bord, aord — Numerator and denominator orders
positive integer scalars

Numerator and denominator orders, specified as positive integer scalars. If the length of h is less
than max(bord,aord), the function pads the impulse response with zeros.

• If you want an all-pole transfer function, specify bord as 0.
• If you want an all-zero transfer function, specify aord as 0.

Data Types: single | double

1 Functions

1-1712

Output Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, returned as vectors. b has length bord + 1 and a has length aord + 1.

More About
Transfer Function

The transfer function is the Z-transform of the impulse response h[n]:

H(z) = ∑
n = −∞

∞
h n z−n .

A rational transfer function is a ratio of polynomials in z–1. This equation describes a causal rational
transfer function of numerator order q and denominator order p:

H(z) = B z
A z =

∑
k = 0

q
b k z−k

1 + ∑
l = 1

p
a l z−l

,

where a[0] = 1.

References
[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York, NY, USA: Wiley-

Interscience, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designfilt | impz | levinson | lpc

Topics
“Parametric Modeling”

Introduced before R2006a

 prony

1-1713

pspectrum
Analyze signals in the frequency and time-frequency domains

Syntax
p = pspectrum(x)
p = pspectrum(x,fs)
p = pspectrum(x,t)

p = pspectrum(___ ,type)

p = pspectrum(___ ,Name,Value)

[p,f] = pspectrum(___)

[p,f,t] = pspectrum(___ ,'spectrogram')
[p,f,pwr] = pspectrum(___ ,'persistence')

pspectrum(___)

Description
p = pspectrum(x) returns the power spectrum of x.

• If x is a vector or a timetable with a vector of data, then it is treated as a single channel.
• If x is a matrix, a timetable with a matrix variable, or a timetable with multiple vector variables,

then the spectrum is computed independently for each channel and stored in a separate column of
p.

p = pspectrum(x,fs) returns the power spectrum of a vector or matrix signal sampled at a rate
fs.

p = pspectrum(x,t) returns the power spectrum of a vector or matrix signal sampled at the time
instants specified in t.

p = pspectrum(___ ,type) specifies the kind of spectral analysis performed by the function.
Specify type as 'power', 'spectrogram', or 'persistence'. This syntax can include any
combination of input arguments from previous syntaxes.

p = pspectrum(___ ,Name,Value) specifies additional options using name-value pair arguments.
Options include the frequency resolution bandwidth and the percent overlap between adjoining
segments.

[p,f] = pspectrum(___) returns the frequencies corresponding to the spectral estimates
contained in p.

[p,f,t] = pspectrum(___ ,'spectrogram') also returns a vector of time instants
corresponding to the centers of the windowed segments used to compute short-time power spectrum
estimates.

1 Functions

1-1714

[p,f,pwr] = pspectrum(___ ,'persistence') also returns a vector of power values
corresponding to the estimates contained in a persistence spectrum.

pspectrum(___) with no output arguments plots the spectral estimate in the current figure
window. For the plot, the function converts p to dB using 10 log10(p).

Examples

Power Spectra of Sinusoids

Generate 128 samples of a two-channel complex sinusoid.

• The first channel has unit amplitude and a normalized sinusoid frequency of π/4 rad/sample
• The second channel has an amplitude of 1/ 2 and a normalized frequency of π/2 rad/sample.

Compute the power spectrum of each channel and plot its absolute value. Zoom in on the frequency
range from 0 . 15π rad/sample to 0 . 6π rad/sample. pspectrum scales the spectrum so that, if the
frequency content of a signal falls exactly within a bin, its amplitude in that bin is the true average
power of the signal. For a complex exponential, the average power is the square of the amplitude.
Verify by computing the discrete Fourier transform of the signal. For more details, see “Measure
Power of Deterministic Periodic Signals”.

N = 128;
x = [1 1/sqrt(2)].*exp(1j*pi./[4;2]*(0:N-1)).';

[p,f] = pspectrum(x);

plot(f/pi,abs(p))
hold on
stem(0:2/N:2-1/N,abs(fft(x)/N).^2)
hold off
axis([0.15 0.6 0 1.1])
legend("Channel 1, pspectrum","Channel 2, pspectrum", ...
 "Channel 1, fft","Channel 2, fft")
grid

 pspectrum

1-1715

Generate a sinusoidal signal sampled at 1 kHz for 296 milliseconds and embedded in white Gaussian
noise. Specify a sinusoid frequency of 200 Hz and a noise variance of 0.1². Store the signal and its
time information in a MATLAB® timetable.

Fs = 1000;
t = (0:1/Fs:0.296)';
x = cos(2*pi*t*200)+0.1*randn(size(t));
xTable = timetable(seconds(t),x);

Compute the power spectrum of the signal. Express the spectrum in decibels and plot it.

[pxx,f] = pspectrum(xTable);

plot(f,pow2db(pxx))
grid on
xlabel('Frequency (Hz)')
ylabel('Power Spectrum (dB)')
title('Default Frequency Resolution')

1 Functions

1-1716

Recompute the power spectrum of the sinusoid, but now use a coarser frequency resolution of 25 Hz.
Plot the spectrum using the pspectrum function with no output arguments.

pspectrum(xTable,'FrequencyResolution',25)

 pspectrum

1-1717

Two-Sided Spectra

Generate a signal sampled at 3 kHz for 1 second. The signal is a convex quadratic chirp whose
frequency increases from 300 Hz to 1300 Hz during the measurement. The chirp is embedded in
white Gaussian noise.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = chirp(t,300,t(end),1300,'quadratic',0,'convex') + ...
 randn(size(t))/100;

Compute and plot the two-sided power spectrum of the signal using a rectangular window. For real
signals, pspectrum plots a one-sided spectrum by default. To plot a two-sided spectrum, set
TwoSided to true.

pspectrum(x1,fs,'Leakage',1,'TwoSided',true)

1 Functions

1-1718

Generate a complex-valued signal with the same duration and sample rate. The signal is a chirp with
sinusoidally varying frequency content and embedded in white noise. Compute the spectrogram of
the signal and display it as a waterfall plot. For complex-valued signals, the spectrogram is two-sided
by default.

x2 = exp(2j*pi*100*cos(2*pi*2*t)) + randn(size(t))/100;

[p,f,t] = pspectrum(x2,fs,'spectrogram');

waterfall(f,t,p')
xlabel('Frequency (Hz)')
ylabel('Time (seconds)')
wtf = gca;
wtf.XDir = 'reverse';
view([30 45])

 pspectrum

1-1719

Window Leakage and Tone Resolution

Generate a two-channel signal sampled at 100 Hz for 2 seconds.

1 The first channel consists of a 20 Hz tone and a 21 Hz tone. Both tones have unit amplitude.
2 The second channel also has two tones. One tone has unit amplitude and a frequency of 20 Hz.

The other tone has an amplitude of 1/100 and a frequency of 30 Hz.

fs = 100;
t = (0:1/fs:2-1/fs)';

x = sin(2*pi*[20 20].*t) + [1 1/100].*sin(2*pi*[21 30].*t);

Embed the signal in white noise. Specify a signal-to-noise ratio of 40 dB. Plot the signals.

x = x + randn(size(x)).*std(x)/db2mag(40);

plot(t,x)

1 Functions

1-1720

Compute the spectra of the two channels and display them.

pspectrum(x,t)

 pspectrum

1-1721

The default value for the spectral leakage, 0.5, corresponds to a resolution bandwidth of about 1.29
Hz. The two tones in the first channel are not resolved. The 30 Hz tone in the second channel is
visible, despite being much weaker than the other one.

Increase the leakage to 0.85, equivalent to a resolution of about 0.74 Hz. The weak tone in the second
channel is clearly visible.

pspectrum(x,t,'Leakage',0.85)

1 Functions

1-1722

Increase the leakage to the maximum value. The resolution bandwidth is approximately 0.5 Hz. The
two tones in the first channel are resolved. The weak tone in the second channel is masked by the
large window sidelobes.

pspectrum(x,t,'Leakage',1)

 pspectrum

1-1723

Persistence Spectrum of Transient Signal

Visualize an interference narrowband signal embedded within a broadband signal.

Generate a chirp sampled at 1 kHz for 500 seconds. The frequency of the chirp increases from 180
Hz to 220 Hz during the measurement.

fs = 1000;
t = (0:1/fs:500)';

x = chirp(t,180,t(end),220) + 0.15*randn(size(t));

The signal also contains a 210 Hz sinusoid. The sinusoid has an amplitude of 0.05 and is present only
for 1/6 of the total signal duration.

idx = floor(length(x)/6);
x(1:idx) = x(1:idx) + 0.05*cos(2*pi*t(1:idx)*210);

Compute the spectrogram of the signal. Restrict the frequency range from 100 Hz to 290 Hz. Specify
a time resolution of 1 second. Both signal components are visible.

pspectrum(x,fs,'spectrogram', ...
 'FrequencyLimits',[100 290],'TimeResolution',1)

1 Functions

1-1724

Compute the power spectrum of the signal. The weak sinusoid is obscured by the chirp.

pspectrum(x,fs,'FrequencyLimits',[100 290])

 pspectrum

1-1725

Compute the persistence spectrum of the signal. Now both signal components are clearly visible.

pspectrum(x,fs,'persistence', ...
 'FrequencyLimits',[100 290],'TimeResolution',1)

1 Functions

1-1726

Spectrogram and Reassigned Spectrogram of Chirp

Generate a quadratic chirp sampled at 1 kHz for 2 seconds. The chirp has an initial frequency of 100
Hz that increases to 200 Hz at t = 1 second. Compute the spectrogram using the default settings of
the pspectrum function.

fs = 1e3;
t = 0:1/fs:2;
y = chirp(t,100,1,200,'quadratic');

[sp,fp,tp] = pspectrum(y,fs,'spectrogram');

mesh(tp,fp,sp)
view(-15,60)
xlabel('Time (s)')
ylabel('Frequency (Hz)')

 pspectrum

1-1727

Compute the reassigned spectrogram. Specify a frequency resolution of 10 Hz. Visualize the result
using the pspectrum function with no output arguments.

pspectrum(y,fs,'spectrogram','FrequencyResolution',10,'Reassign',true)

1 Functions

1-1728

Recompute the spectrogram using a time resolution of 0.2 second.

pspectrum(y,fs,'spectrogram','TimeResolution',0.2)

 pspectrum

1-1729

Compute the reassigned spectrogram using the same time resolution.

pspectrum(y,fs,'spectrogram','TimeResolution',0.2,'Reassign',true)

1 Functions

1-1730

Spectrogram of Dial Tone Signal

Create a signal, sampled at 4 kHz, that resembles pressing all the keys of a digital telephone. Save
the signal as a MATLAB® timetable.

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

ver = [697 770 852 941];
hor = [1209 1336 1477];

tones = [];

for k = 1:length(ver)
 for l = 1:length(hor)
 tone = sum(sin(2*pi*[ver(k);hor(l)].*t))';
 tones = [tones;tone;zeros(size(tone))];
 end
end

% To hear, type soundsc(tones,fs)

S = timetable(seconds(0:length(tones)-1)'/fs,tones);

 pspectrum

1-1731

Compute the spectrogram of the signal. Specify a time resolution of 0.5 second and zero overlap
between adjoining segments. Specify the leakage as 0.85, which is approximately equivalent to
windowing the data with a Hann window.

pspectrum(S,'spectrogram', ...
 'TimeResolution',0.5,'OverlapPercent',0,'Leakage',0.85)

The spectrogram shows that each key is pressed for half a second, with half-second silent pauses
between keys. The first tone has a frequency content concentrated around 697 Hz and 1209 Hz,
corresponding to the digit '1' in the DTMF standard.

Input Arguments
x — Input signal
vector | matrix | timetable

Input signal, specified as a vector, a matrix, or a MATLAB timetable.

• If x is a timetable, then it must contain increasing finite row times.

Note If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean
Timetable with Missing, Duplicate, or Nonuniform Times”.

• If x is a timetable representing a multichannel signal, then it must have either a single variable
containing a matrix or multiple variables consisting of vectors.

1 Functions

1-1732

If x is nonuniformly sampled, then pspectrum interpolates the signal to a uniform grid to compute
spectral estimates. The function uses linear interpolation and assumes a sample time equal to the
median of the differences between adjacent time points. For a nonuniformly sampled signal to be
supported, the median time interval and the mean time interval must obey

1
100 < Median time interval

Mean time interval < 100.

Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal consisting of
sinusoids embedded in white noise.
Example: timetable(seconds(0:4)',rand(5,2)) specifies a two-channel random variable
sampled at 1 Hz for 4 seconds.
Example: timetable(seconds(0:4)',rand(5,1),rand(5,1)) specifies a two-channel random
variable sampled at 1 Hz for 4 seconds.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
2π (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.

t — Time values
vector | datetime array | duration array | duration scalar

Time values, specified as a vector, a datetime or duration array, or a duration scalar
representing the time interval between samples.
Example: seconds(0:1/100:1) is a duration array representing 1 second of sampling at 100 Hz.
Example: seconds(1) is a duration scalar representing a 1-second time difference between
consecutive signal samples.

type — Type of spectrum to compute
'power' (default) | 'spectrogram' | 'persistence'

Type of spectrum to compute, specified as 'power', 'spectrogram', or 'persistence':

• 'power' — Compute the power spectrum of the input. Use this option to analyze the frequency
content of a stationary signal. For more information, “Spectrum Computation” on page 1-1737.

• 'spectrogram' — Compute the spectrogram of the input. Use this option to analyze how the
frequency content of a signal changes over time. For more information, see “Spectrogram
Computation” on page 1-1739.

• 'persistence' — Compute the persistence power spectrum of the input. Use this option to
visualize the fraction of time that a particular frequency component is present in a signal. For
more information, see “Persistence Spectrum Computation” on page 1-1741.

Note The 'spectrogram' and 'persistence' options do not support multichannel input.

 pspectrum

1-1733

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Leakage',1,'Reassign',true,'MinThreshold',-35 windows the data using a
rectangular window, computes a reassigned spectrum estimate, and sets all values smaller than –35
dB to zero.

FrequencyLimits — Frequency band limits
[0 fs/2] (default) | two-element numeric vector

Frequency band limits, specified as the comma-separated pair consisting of 'FrequencyLimits'
and a two-element numeric vector:

• If the input contains time information, then the frequency band is expressed in Hz.
• If the input does not contain time information, then the frequency band is expressed in normalized

units of rad/sample.

By default, pspectrum computes the spectrum over the whole Nyquist range:

• If the specified frequency band contains a region that falls outside the Nyquist range, then
pspectrum truncates the frequency band.

• If the specified frequency band lies completely outside of the Nyquist range, then pspectrum
throws an error.

See “Spectrum Computation” on page 1-1737 for more information about the Nyquist range.

If x is nonuniformly sampled, then pspectrum linearly interpolates the signal to a uniform grid and
defines an effective sample rate equal to the inverse of the median of the differences between
adjacent time points. Express 'FrequencyLimits' in terms of the effective sample rate.
Example: [0.2*pi 0.7*pi] computes the spectrum of a signal with no time information from 0.2π
to 0.7π rad/sample.

FrequencyResolution — Frequency resolution bandwidth
real numeric scalar

Frequency resolution bandwidth, specified as the comma-separated pair consisting of
'FrequencyResolution' and a real numeric scalar, expressed in Hz if the input contains time
information, or in normalized units of rad/sample if not. This argument cannot be specified
simultaneously with 'TimeResolution'. The default value of this argument depends on the size of
the input data. See “Spectrogram Computation” on page 1-1739 for details.
Example: pi/100 computes the spectrum of a signal with no time information with a frequency
resolution of π/100 rad/sample.

Leakage — Spectral leakage
0.5 (default) | real numeric scalar between 0 and 1

Spectral leakage, specified as the comma-separated pair consisting of 'Leakage' and a real numeric
scalar between 0 and 1. 'Leakage' controls the Kaiser window sidelobe attenuation relative to the
mainlobe width, compromising between improving resolution and decreasing leakage:

1 Functions

1-1734

• A large leakage value resolves closely spaced tones, but masks nearby weak tones.
• A small leakage value finds small tones in the vicinity of larger tones, but smears close

frequencies together.

Example: 'Leakage',0 reduces leakage to a minimum at the expense of spectral resolution.
Example: 'Leakage',0.85 approximates windowing the data with a Hann window.
Example: 'Leakage',1 is equivalent to windowing the data with a rectangular window, maximizing
leakage but improving spectral resolution.

MinThreshold — Lower bound for nonzero values
-Inf (default) | real scalar

Lower bound for nonzero values, specified as the comma-separated pair consisting of
'MinThreshold' and a real scalar. pspectrum implements 'MinThreshold' differently based on
the value of the type argument:

• 'power' or 'spectrogram' — pspectrum sets those elements of p such that 10 log10(p) ≤
'MinThreshold' to zero. Specify 'MinThreshold' in decibels.

• 'persistence' — pspectrum sets those elements of p smaller than 'MinThreshold' to zero.
Specify 'MinThreshold' between 0 and 100%.

NumPowerBins — Number of power bins for persistence spectrum
256 (default) | integer between 20 and 1024

Number of power bins for persistence spectrum, specified as the comma-separated pair consisting of
'NumPowerBins' and an integer between 20 and 1024.

OverlapPercent — Overlap between adjoining segments
real scalar in the interval [0, 100)

Overlap between adjoining segments for spectrogram or persistence spectrum, specified as the
comma-separated pair consisting of 'OverlapPercent' and a real scalar in the interval [0, 100).
The default value of this argument depends on the spectral window. See “Spectrogram Computation”
on page 1-1739 for details.

Reassign — Reassignment option
false (default) | true

Reassignment option, specified as the comma-separated pair consisting of 'Reassign' and a logical
value. If this option is set to true, then pspectrum sharpens the localization of spectral estimates by
performing time and frequency reassignment. The reassignment technique produces periodograms
and spectrograms that are easier to read and interpret. This technique reassigns each spectral
estimate to the center of energy of its bin instead of the bin's geometric center. The technique
provides exact localization for chirps and impulses.

TimeResolution — Time resolution of spectrogram or persistence spectrum
real scalar

Time resolution of spectrogram or persistence spectrum, specified as the comma-separated pair
consisting of 'TimeResolution' and a real scalar, expressed in seconds if the input contains time
information, or as an integer number of samples if not. This argument controls the duration of the
segments used to compute the short-time power spectra that form spectrogram or persistence
spectrum estimates. 'TimeResolution' cannot be specified simultaneously with

 pspectrum

1-1735

'FrequencyResolution'. The default value of this argument depends on the size of the input data
and, if it was specified, the frequency resolution. See “Spectrogram Computation” on page 1-1739 for
details.

TwoSided — Two-sided spectral estimate
false | true

Two-sided spectral estimate, specified as the comma-separated pair consisting of 'TwoSided' and a
logical value.

• If this option is true, the function computes centered, two-sided spectrum estimates over [–π, π].
If the input has time information, the estimates are computed over [–fs/2, fs/2], where fs is the
effective sample rate.

• If this option is false, the function computes one-sided spectrum estimates over the Nyquist
range [0, π]. If the input has time information, the estimates are computed over [0, fs/2], where fs
is the effective sample rate. To conserve the total power, the function multiples the power by 2 at
all frequencies except 0 and the Nyquist frequency. This option is valid only for real signals.

If not specified, 'TwoSided' defaults to false for real input signals and to true for complex input
signals.

Output Arguments
p — Spectrum
vector | matrix

Spectrum, returned as a vector or a matrix. The type and size of the spectrum depends on the value
of the type argument:

• 'power' — p contains the power spectrum estimate of each channel of x. In this case, p is of size
Nf × Nch, where Nf is the length of f and Nch is the number of channels of x. pspectrum scales
the spectrum so that, if the frequency content of a signal falls exactly within a bin, its amplitude in
that bin is the true average power of the signal. For example, the average power of a sinusoid is
one-half the square of the sinusoid amplitude. For more details, see “Measure Power of
Deterministic Periodic Signals”.

• 'spectrogram' — p contains an estimate of the short-term, time-localized power spectrum of x.
In this case, p is of size Nf × Nt, where Nf is the length of f and Nt is the length of t.

• 'persistence' — p contains, expressed as percentages, the probabilities that the signal has
components of a given power level at a given time and frequency location. In this case, p is of size
Npwr × Nf, where Npwr is the length of pwr and Nf is the length of f.

f — Spectrum frequencies
vector

Spectrum frequencies, returned as a vector. If the input signal contains time information, then f
contains frequencies expressed in Hz. If the input signal does not contain time information, then the
frequencies are in normalized units of rad/sample.

t — Time values of spectrogram
vector | datetime array | duration array

Time values of spectrogram, returned as a vector of time values in seconds or a duration array. If
the input does not have time information, then t contains sample numbers. t contains the time values

1 Functions

1-1736

corresponding to the centers of the data segments used to compute short-time power spectrum
estimates.

• If the input to pspectrum is a timetable, then t has the same format as the time values of the
input timetable.

• If the input to pspectrum is a numeric vector sampled at a set of time instants specified by a
numeric, duration, or datetime array, then t has the same type and format as the input time
values.

• If the input to pspectrum is a numeric vector with a specified time difference between
consecutive samples, then t is a duration array.

pwr — Power values of persistence spectrum
vector

Power values of persistence spectrum, returned as a vector.

More About
Spectrum Computation

To compute signal spectra, pspectrum finds a compromise between the spectral resolution
achievable with the entire length of the signal and the performance limitations that result from
computing large FFTs:

• If possible, the function computes a single modified periodogram of the whole signal using a
Kaiser window.

• If it is not possible to compute a single modified periodogram in a reasonable amount of time, the
function computes a Welch periodogram: It divides the signal into overlapping segments, windows
each segment using a Kaiser window, and averages the periodograms of the segments.

Spectral Windowing

Any real-world signal is measurable only for a finite length of time. This fact introduces nonnegligible
effects into Fourier analysis, which assumes that signals are either periodic or infinitely long.
Spectral windowing, which assigns different weights to different signal samples, deals systematically
with finite-size effects.

The simplest way to window a signal is to assume that it is identically zero outside of the
measurement interval and that all samples are equally significant. This "rectangular window" has
discontinuous jumps at both ends that result in spectral ringing. All other spectral windows taper at
both ends to lessen this effect by assigning smaller weights to samples close to the signal edges.

The windowing process always involves a compromise between conflicting aims: improving resolution
and decreasing leakage:

• Resolution is the ability to know precisely how the signal energy is distributed in the frequency
space. A spectrum analyzer with ideal resolution can distinguish two different tones (pure
sinusoids) present in the signal, no matter how close in frequency. Quantitatively, this ability
relates to the mainlobe width of the transform of the window.

• Leakage is the fact that, in a finite signal, every frequency component projects energy content
throughout the complete frequency span. The amount of leakage in a spectrum can be measured
by the ability to detect a weak tone from noise in the presence of a neighboring strong tone.
Quantitatively, this ability relates to the sidelobe level of the frequency transform of the window.

 pspectrum

1-1737

• The spectrum is normalized so that a pure tone within that bandwidth, if perfectly centered, has
the correct amplitude.

The better the resolution, the higher the leakage, and vice versa. At one end of the range, a
rectangular window has the narrowest possible mainlobe and the highest sidelobes. This window can
resolve closely spaced tones if they have similar energy content, but it fails to find the weaker one if
they do not. At the other end, a window with high sidelobe suppression has a wide mainlobe in which
close frequencies are smeared together.

pspectrum uses Kaiser windows to carry out windowing. For Kaiser windows, the fraction of the
signal energy captured by the mainlobe depends most importantly on an adjustable shape factor, β.
pspectrum uses shape factors ranging from β = 0, which corresponds to a rectangular window, to β
= 40, where a wide mainlobe captures essentially all the spectral energy representable in double
precision. An intermediate value of β ≈ 6 approximates a Hann window quite closely. To control β, use
the 'Leakage' name-value pair. If you set 'Leakage' to ℓ, then ℓ and β are related by β = 40(1 – ℓ).
See kaiser for more details.

Parameter and Algorithm Selection

To compute signal spectra, pspectrum initially determines the resolution bandwidth, which
measures how close two tones can be and still be resolved. The resolution bandwidth has a
theoretical value of

RBWtheory = ENBW
tmax− tmin

.

• tmax – tmin, the record length, is the time-domain duration of the selected signal region.
• ENBW is the equivalent noise bandwidth of the spectral window. See enbw for more details.

Use the 'Leakage' name-value pair to control the ENBW. The minimum value of the argument
corresponds to a Kaiser window with β = 40. The maximum value corresponds to a Kaiser window
with β = 0.

In practice, however, pspectrum might lower the resolution. Lowering the resolution makes it
possible to compute the spectrum in a reasonable amount of time and to display it with a finite
number of pixels. For these practical reasons, the lowest resolution bandwidth pspectrum can use is

RBWperformance = 4 ×
fspan

4096 − 1,

where fspan is the width of the frequency band specified using 'FrequencyLimits'. If
'FrequencyLimits' is not specified, then pspectrum uses the sample rate as fspan. RBWperformance
cannot be adjusted.

To compute the spectrum of a signal, the function chooses the larger of the two values, called the
target resolution bandwidth:

RBW = max(RBWtheory, RBWperformance) .

• If the resolution bandwidth is RBWtheory, then pspectrum computes a single modified periodogram
for the whole signal. The function uses a Kaiser window with shape factor controlled by the
'Leakage' name-value pair. See periodogram for more details.

• If the resolution bandwidth is RBWperformance, then pspectrum computes a Welch periodogram for
the signal. The function:

1 Functions

1-1738

1 Divides the signals into overlapping segments.
2 Windows each segment separately using a Kaiser window with the specified shape factor.
3 Averages the periodograms of all the segments.

Welch’s procedure is designed to reduce the variance of the spectrum estimate by averaging
different “realizations” of the signals, given by the overlapping sections, and using the window to
remove redundant data. See pwelch for more details.

• The length of each segment (or, equivalently, of the window) is computed using

Segment length =
fNyquist × ENBW

RBW ,

where fNyquist is the Nyquist frequency. (If there is no aliasing, the Nyquist frequency is one-half
the effective sample rate, defined as the inverse of the median of the differences between
adjacent time points. The Nyquist range is [0, fNyquist] for real signals and [–fNyquist, fNyquist] for
complex signals.)

• The stride length is found by adjusting an initial estimate,

Stride length ≡ Segment length − Overlap = Segment length
2 × ENBW− 1 ,

so that the first window starts exactly on the first sample of the first segment and the last
window ends exactly on the last sample of the last segment.

Spectrogram Computation

To compute the time-dependent spectrum of a nonstationary signal, pspectrum divides the signal
into overlapping segments, windows each segment with a Kaiser window, computes the short-time
Fourier transform, and then concatenates the transforms to form a matrix.

A nonstationary signal is a signal whose frequency content changes with time. The spectrogram of a
nonstationary signal is an estimate of the time evolution of its frequency content. To construct the
spectrogram of a nonstationary signal, pspectrum follows these steps:

1 Divide the signal into equal-length segments. The segments must be short enough that the
frequency content of the signal does not change appreciably within a segment. The segments
may or may not overlap.

2 Window each segment and compute its spectrum to get the short-time Fourier transform.
3 Use the segment spectra to construct the spectrogram:

• If called with output arguments, concatenate the spectra to form a matrix.
• If called with no output arguments, display the power of each spectrum in decibels segment

by segment. Depict the magnitudes side-by-side as an image with magnitude-dependent
colormap.

The function can compute the spectrogram only for single-channel signals.

Divide Signal into Segments

To construct a spectrogram, first divide the signal into possibly overlapping segments. With the
pspectrum function, you can control the length of the segments and the amount of overlap between
adjoining segments using the 'TimeResolution' and 'OverlapPercent' name-value pair

 pspectrum

1-1739

arguments. If you do not specify the length and overlap, the function chooses a length based on the
entire length of the signal and an overlap percentage given by

1 − 1
2 × ENBW− 1 × 100,

where ENBW is the equivalent noise bandwidth of the spectral window. See enbw and “Spectrum
Computation” on page 1-1737 for more information.

Specified Time Resolution

• If the signal does not have time information, specify the time resolution (segment length) in
samples. The time resolution must be an integer greater than or equal to 1 and smaller than or
equal to the signal length.

If the signal has time information, specify the time resolution in seconds. The function converts
the result into a number of samples and rounds it to the nearest integer that is less than or equal
to the number but not smaller than 1. The time resolution must be smaller than or equal to the
signal duration.

• Specify the overlap as a percentage of the segment length. The function converts the result into a
number of samples and rounds it to the nearest integer that is less than or equal to the number.

Default Time Resolution

If you do not specify a time resolution, then pspectrum uses the length of the entire signal to choose
the length of the segments. The function sets the time resolution as ⌈N/d⌉ samples, where the ⌈⌉
symbols denote the ceiling function, N is the length of the signal, and d is a divisor that depends on
N:

Signal Length (N) Divisor (d) Segment Length
2 samples – 63 samples 2 1 sample – 32 samples
64 samples – 255 samples 8 8 samples – 32 samples
256 samples – 2047 samples 8 32 samples – 256 samples
2048 samples – 4095 samples 16 128 samples – 256 samples
4096 samples – 8191 samples 32 128 samples – 256 samples
8192 samples – 16383 samples 64 128 samples – 256 samples
16384 samples – N samples 128 128 samples – ⌈N / 128⌉ samples

You can still specify the overlap between adjoining segments. Specifying the overlap changes the
number of segments. Segments that extend beyond the signal endpoint are zero-padded.

Consider the seven-sample signal [s0 s1 s2 s3 s4 s5 s6]. Because ⌈7/2⌉ = ⌈3.5⌉ = 4, the
function divides the signal into two segments of length four when there is no overlap. The number of
segments changes as the overlap increases.

Number of Overlapping Samples Resulting Segments
0 s0 s1 s2 s3

 s4 s5 s6 0

1 s0 s1 s2 s3
 s3 s4 s5 s6

1 Functions

1-1740

Number of Overlapping Samples Resulting Segments
2 s0 s1 s2 s3

 s2 s3 s4 s5
 s4 s5 s6 0

3 s0 s1 s2 s3
 s1 s2 s3 s4
 s2 s3 s4 s5
 s3 s4 s5 s6

pspectrum zero-pads the signal if the last segment extends beyond the signal endpoint. The function
returns t, a vector of time instants corresponding to the centers of the segments.

Window the Segments and Compute Spectra

After pspectrum divides the signal into overlapping segments, the function windows each segment
with a Kaiser window. The shape factor β of the window, and therefore the leakage, can be adjusted
using the 'Leakage' name-value pair. The function then computes the spectrum of each segment
and concatenates the spectra to form the spectrogram matrix. To compute the segment spectra,
pspectrum follows the procedure described in “Spectrum Computation” on page 1-1737, except that
the lower limit of the resolution bandwidth is

RBWperformance = 4 ×
fspan

1024 − 1 .

Display Spectrum Power

If called with no output arguments, the function displays the power of the short-time Fourier
transform in decibels, using a color bar with the default MATLAB colormap. The color bar comprises
the full power range of the spectrogram.

Persistence Spectrum Computation

The persistence spectrum of a signal is a time-frequency view that shows the percentage of the time
that a given frequency is present in a signal. The persistence spectrum is a histogram in power-
frequency space. The longer a particular frequency persists in a signal as the signal evolves, the
higher its time percentage and thus the brighter or "hotter" its color in the display. Use the
persistence spectrum to identify signals hidden in other signals.

To compute the persistence spectrum, pspectrum performs these steps:

1 Compute the spectrogram using the specified leakage, time resolution, and overlap. See
“Spectrogram Computation” on page 1-1739 for more details.

2 Partition the power and frequency values into 2-D bins. (Use the 'NumPowerBins' name-value
pair to specify the number of power bins.)

3 For each time value, compute a bivariate histogram of the logarithm of the power spectrum. For
every power-frequency bin where there is signal energy at that instant, increase the
corresponding matrix element by 1. Sum the histograms for all the time values.

4 Plot the accumulated histogram against the power and the frequency, with the color proportional
to the logarithm of the histogram counts expressed as normalized percentages. To represent zero
values, use one-half of the smallest possible magnitude.

Power Spectra

 pspectrum

1-1741

Histograms

Accumulated Histogram

References
[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier

Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

[2] Welch, Peter D. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on
Audio and Electroacoustics. Vol. 15, June 1967, pp. 70–73.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Persistence spectrum is not supported.
• Reassigned spectrum or spectrogram is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

1 Functions

1-1742

See Also
Apps
Signal Analyzer

Functions
periodogram | pwelch | spectrogram

Topics
“Time-Frequency Gallery”

Introduced in R2017b

 pspectrum

1-1743

pulseperiod
Period of bilevel pulse

Syntax
P = pulseperiod(X)
P = pulseperiod(X,FS)
P = pulseperiod(X,T)
[P,INITCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS] = pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulseperiod(...)
[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulseperiod(...,Name,Value)
pulseperiod(...)

Description
P = pulseperiod(X) returns a vector, P, containing the difference between the mid-reference level
instants of the initial transition of each positive-polarity pulse and the next positive-going transition in
the bilevel waveform, X. If pulseperiod does not find two positive-polarity transitions, P is empty. To
determine the transitions for each pulse, pulseperiod estimates the state levels of the input
waveform by a histogram method and identifies all regions which cross the upper-state boundary of
the low state and the lower-state boundary of the high state. The low-state and high-state boundaries
are expressed as the state level plus or minus a multiple of the difference between the state levels.
See “State-Level Tolerances” on page 1-1749. Because pulseperiod uses interpolation to determine
the mid-reference level instants, P may contain values that do not correspond to sampling instants of
the bilevel waveform, X.

P = pulseperiod(X,FS) specifies the sample rate in hertz as a positive scalar. The first sample
instant in X corresponds to t=0. Because pulseperiod uses interpolation to determine the mid-
reference level instants, P may contain values that do not correspond to sampling instants of the
bilevel waveform, X.

P = pulseperiod(X,T) specifies the sampling instants in a vector equal in length to X. Because
pulseperiod uses interpolation to determine the mid-reference level instants, P may contain values
that do not correspond to sampling instants of the bilevel waveform, X.

[P,INITCROSS] = pulseperiod(...) returns the mid-reference level instants of the first
transition of each pulse.

[P,INITCROSS,FINALCROSS] = pulseperiod(...) returns the mid-reference level instants of
the final transition of each pulse.

[P,INITCROSS,FINALCROSS,NEXTCROSS] = pulseperiod(...) returns the mid-reference level
instants of next detected transition after each pulse.

[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulseperiod(...) returns the mid-
reference level,MIDLEV.

1 Functions

1-1744

[P,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulseperiod(...,Name,Value) returns
the pulse periods with additional options specified by one or more Name,Value pair arguments.

pulseperiod(...) plots the signal and darkens every other identified pulse. It marks the location
of the mid crossings, and their associated reference level. The state levels and their associated lower
and upper boundaries (adjustable by the Name,Value pair with name 'Tolerance') are also
plotted.

Input Arguments
X

Bilevel waveform. If the waveform, X, does not contain at least two transitions, pulseperiod outputs
an empty matrix.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform, X.

Name-Value Pair Arguments

MidPercentReferenceLevel

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

Polarity

Pulse polarity. Specify the polarity as 'positive' or 'negative'. If you specify 'positive',
pulseperiod looks for pulses whose initial transition is positive-going (positive polarity). If you
specify 'negative', pulseperiod looks for pulses whose initial transition is negative-going
(negative polarity).

Default: 'positive'

StateLevels

Low- and high-state levels. StateLevels is a 1-by-2 real-valued vector. The first element is the low-
state level. The second element is the high-state level. If you do not specify low and high-state levels,
pulseperiod estimates the state levels from the input waveform using the histogram method.

Tolerance

Tolerance levels (lower and upper state boundaries) expressed as a percentage. See “State-Level
Tolerances” on page 1-1749.

Default: 2

 pulseperiod

1-1745

Output Arguments
P

Pulse period in seconds. The pulse period is defined as the time between the mid-reference level
instants of two consecutive transitions.

INITCROSS

Mid-reference level instant of initial transition.

FINALCROSS

Mid-reference level instant of final transition.

NEXTCROSS

Mid-reference level instant of the first pulse transition after the final transition of the preceding
pulse.

MIDLEV

Waveform value that corresponds to the mid-reference level.

Examples

Pulse Period of Bilevel Waveform

Compute the pulse period of a bilevel waveform with two positive-polarity transitions. The sample
rate is 4 MHz.

load('pulseex.mat','x','t')

p = pulseperiod(x,t)

p = 5.0030e-06

Annotate the pulse period on a plot of the waveform.

pulseperiod(x,t);

1 Functions

1-1746

Mid-Reference Level Instants of Pulse Period

Determine the mid-reference level instants that define the pulse period for a bilevel waveform.

load('pulseex.mat','x','t')
[~,initcross,~,nextcross] = pulseperiod(x,t)

initcross = 3.1240e-06

nextcross = 8.1270e-06

Output the pulse period. Mark the mid-reference level instants on a plot of the data.

pulseperiod(x,t)

 pulseperiod

1-1747

ans = 5.0030e-06

More About
Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S1, and high- state level, S2, is

S1 + 1
2(S2− S1)

Mid-Reference Level Instant

Let y50% denote the mid-reference level.

Let t50%-
 and t50%+

 denote the two consecutive sampling instants corresponding to the waveform
values nearest in value to y50%.

Let y50%-
 and y50%+

 denote the waveform values at t50%-
 and t50%+

.

The mid-reference level instant is

t50% = t50% + (
t50%+− t50%−
y50%+− y50%−

)(y50%+− y50%−)

1 Functions

1-1748

Pulse Polarity

If the initial transition of a pulse is positive-going, the pulse has positive polarity. The following figure
shows a positive-polarity pulse.

Equivalently, a positive-polarity (positive-going) pulse has a terminating state more positive than the
originating state.

If the initial transition of a pulse is negative-going, the pulse has negative polarity. The following
figure shows a negative-polarity pulse.

Equivalently, a negative-polarity (negative-going) pulse has a originating state more positive than the
terminating state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

 pulseperiod

1-1749

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

See Also
dutycycle | pulsesep | pulsewidth | statelevels

Introduced in R2012a

1 Functions

1-1750

pulsesep
Separation between bilevel waveform pulses

Syntax
S = pulsesep(X)
S = pulsesep(X,FS)
S = pulsesep(X,T)
[S,INITCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...)
[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...,Name,Value)
pulsesep(...)

Description
S = pulsesep(X) returns the differences, S, between the mid-reference level instants of the final
negative-going transitions of every positive-polarity pulse and the next positive-going transition. X is a
bilevel waveform. To determine the transitions that compose each pulse, pulsesep estimates the
state levels of X by a histogram method. pulsesep identifies all regions that cross the upper-state
boundary of the low state and the lower-state boundary of the high state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-1756. Because pulsesep uses interpolation to
determine the mid-reference level instants, S may contain values that do not correspond to sampling
instants of the bilevel waveform, X.

S = pulsesep(X,FS) specifies the sample rate, FS, in Hz as a positive scalar. The first time instant
corresponds to t=0. Because pulsesep uses interpolation to determine the mid-reference level
instants, S may contain values that do not correspond to sampling instants of the bilevel waveform, X.

S = pulsesep(X,T) specifies the sampling instants, T, in a vector equal in length to X. Because
pulsesep uses interpolation to determine the mid-reference level instants, S may contain values that
do not correspond to sampling instants of the bilevel waveform, X.

[S,INITCROSS] = pulsesep(...) returns the mid-reference level instants, INITCROSS, of the
first positive-polarity transitions.

[S,INITCROSS,FINALCROSS] = pulsesep(...) returns the mid-reference level instants,
FINALCROSS, of the final transition of each pulse.

[S,INITCROSS,FINALCROSS,NEXTCROSS] = pulsesep(...) returns the mid-reference level
instants, NEXTCROSS, of the next detected transition after each pulse.

[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...) returns the mid-reference
level, MIDLEV.

[S,INITCROSS,FINALCROSS,NEXTCROSS,MIDLEV] = pulsesep(...,Name,Value) returns the
pulse separations with additional options specified by one or more Name,Value pair arguments.

 pulsesep

1-1751

pulsesep(...) plots the signal and darkens the regions between each pulse where pulse separation
is computed. It marks the location of the mid crossings, and their associated reference level. The
state levels and their associated lower and upper boundaries (adjustable by the Name,Value pair
with name 'Tolerance') are also plotted.

Input Arguments
X

Bilevel waveform. If the waveform, X, does not contain at least two transitions, pulsesep outputs an
empty matrix.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform, X.

Name-Value Pair Arguments

MidPercentReferenceLevel

Mid-reference level as a percentage of the waveform amplitude.

Default: 50

Polarity

Pulse polarity. Specify the polarity as 'positive' or 'negative'. If you specify 'positive',
pulsesep looks for pulses with positive-going (positive polarity) initial transitions. If you specify
'negative', pulsesep looks for pulses with negative-going (negative polarity) initial transitions.
See “Pulse Polarity” on page 1-1756.

Default: 'positive'

StateLevels

Low- and high-state levels. StateLevels is a 1-by-2 real-valued vector. The first element is the low-
state level. The second element is the high-state level. If you do not specify low- and high-state levels,
pulsesep estimates the state levels from the input waveform using the histogram method.

Tolerance

Tolerance levels (lower- and upper-state boundaries) expressed as a percentage. See “State-Level
Tolerances” on page 1-1756.

Default: 2

1 Functions

1-1752

Output Arguments
S

Pulse separations in seconds. The pulse separation is defined as the time between the mid-reference
level instants of the final transition of one pulse and the initial transition of the next pulse. See “Pulse
Separation” on page 1-1757.

INITCROSS

Mid-reference level instants of initial transition.

FINALCROSS

Mid-reference level instants of final transition.

NEXTCROSS

Mid-reference level instants of the initial transition after the final transition of the preceding pulse.

MIDLEV

Waveform value that corresponds to the mid-reference level.

Examples

Pulse Separation in Bilevel Waveform

Compute the pulse separation in a bilevel waveform with two positive-polarity transitions. The sample
rate is 4 MHz.

load('pulseex.mat','x','t')

s = pulsesep(x,t)

s = 3.5014e-06

Plot the waveform and annotate the pulse separation.

pulsesep(x,t);

 pulsesep

1-1753

Mid-Reference Level Instants Defining Pulse Separation

Determine the mid-reference level instants that define the pulse separation for a bilevel waveform.

load('pulseex.mat','x','t')

[~,~,finalcross,nextcross] = pulsesep(x,t)

finalcross = 4.6256e-06

nextcross = 8.1270e-06

Return the pulse separation. Annotate the mid-reference level instants on a plot of the data.

pulsesep(x,t)

1 Functions

1-1754

ans = 3.5014e-06

More About
Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S1, and high-state level, S2, is

S1 + 1
2(S2− S1)

Mid-Reference Level Instant

Let y50% denote the mid-reference level.

Let t50%-
 and t50%+

 denote the two consecutive sampling instants corresponding to the waveform
values nearest in value to y50%.

Let y50%-
 and y50%+

 denote the waveform values at t50%-
 and t50%+

.

The mid-reference level instant is

t50% = t50% + (
t50%+− t50%−
y50%+− y50%−

)(y50%+− y50%−)

 pulsesep

1-1755

Pulse Polarity

If the pulse has an initial positive-going transition, the pulse has positive polarity. The following figure
shows a positive-polarity pulse.

Equivalently, a positive-polarity (positive-going) pulse has a terminating state more positive than the
originating state.

If the pulse has an initial negative-going transition, the pulse has negative polarity. The following
figure shows a negative-polarity pulse.

Equivalently, a negative-polarity (negative-going) pulse has a originating state more positive than the
terminating state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

1 Functions

1-1756

Pulse Separation

Pulse separation is the time difference between the mid-reference level instant of the final transition
of one pulse and the mid-reference level instant of the initial transition of the next pulse. The
following figure illustrates pulse separation.

 pulsesep

1-1757

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

See Also
dutycycle | pulseperiod | pulsewidth | statelevels

Introduced in R2012a

1 Functions

1-1758

pulsewidth
Bilevel waveform pulse width

Syntax
w = pulsewidth(x)
w = pulsewidth(x,fs)
w = pulsewidth(x,t)
[w,initcross] = pulsewidth(___)
[w,initcross,finalcross] = pulsewidth(___)
[w,initcross,finalcross,midlev] = pulsewidth(___)
W = pulsewidth(___ ,Name,Value)
pulsewidth(___)

Description
w = pulsewidth(x) returns the time differences between the midreference level instants of the
initial and final transitions of each positive-polarity pulse in the input bilevel waveform.

w = pulsewidth(x,fs) specifies the sample rate fs in hertz. The first sample in the waveform
corresponds to t = 0.

w = pulsewidth(x,t) specifies the sample instants t.

[w,initcross] = pulsewidth(___) returns initcross, the midreference level instants of the
initial transition of each pulse. You can specify an input combination from any of the previous
syntaxes.

[w,initcross,finalcross] = pulsewidth(___) returns finalcross, the midreference level
instants of the final transition of each pulse.

[w,initcross,finalcross,midlev] = pulsewidth(___) returns the waveform value midlev
that corresponds to the midreference level.

W = pulsewidth(___ ,Name,Value) specifies additional options using one or more Name,Value
arguments.

pulsewidth(___) plots the signal and darkens the regions of each pulse where the function
computes the pulse width. The function marks the location of the midcrossings and their associated
reference level. The function also plots the state levels and their associated lower and upper
boundaries.

Examples

Pulse Width of Bilevel Waveform

Compute the pulse width of a bilevel waveform sampled at 4 MHz.

 pulsewidth

1-1759

load('pulseex.mat','x','t')
w = pulsewidth(x,t)

w = 1.5016e-06

Plot the waveform and annotate the pulse width.

pulsewidth(x,t);

Compute First and Second Transition Times for Bilevel Waveform

Compute the initial and final transition occurrences for a bilevel waveform sampled at 4 MHz.

load('pulseex.mat','x','t');
fs = 4e6;

[w,initcross,finalcross] = pulsewidth(x,fs);

Plot the result, annotated with the transition occurrences.

pulsewidth(x,fs);
ax = gca;
ax.XTick = [initcross finalcross];

1 Functions

1-1760

Specify State Levels for Bilevel Waveform

Specify the state levels for the bilevel waveform instead of estimating the levels from the data.
Specify the low-state level as 0 and the high-state level as 5.

load('pulseex.mat','x','t')
fs = 4e6;
[w,initcross,finalcross] = pulsewidth(x,fs,'StateLevels',[0 5]);

Plot the result annotated with the transition occurrences.

pulsewidth(x,fs,'StateLevels',[0 5]);
ax = gca;
ax.XTick = [initcross finalcross];

 pulsewidth

1-1761

Input Arguments
x — Bilevel waveform
real-valued vector

Bilevel waveform, specified as a real-valued vector.

fs — Sample rate
real positive scalar

Sample rate in hertz, specified as a real positive scalar.

t — Sample instants
vector

Sample instants, specified as a vector. The length of T must equal the length of the bilevel waveform
x.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'StateLevels',[0 5] specifies a low-state level of 0 and a high-state level of 5.

1 Functions

1-1762

MidPercentReferenceLevel — Midreference level
50 (default) | real-valued scalar

Midreference level as a percentage of the waveform amplitude, specified as a real-valued scalar. For
more information, see “Midreference Level” on page 1-1764.

Polarity — Pulse polarity
'positive' (default) | 'negative'

Pulse polarity, specified as 'positive' or 'negative'. If you specify 'positive', the function
looks for pulses with positive-going (positive polarity) initial transitions. If you specify 'negative',
the pulsewidth function looks for pulses with negative-going (negative polarity) initial transitions.
For more information, see “Pulse Polarity” on page 1-1764.

StateLevels — Low- and high-state levels
1-by-2 real-valued vector

Low- and high-state levels, specified as a 1-by-2 real-valued vector. The first element is the low-state
level, and the second element is the high-state level. If you do not specify low- and high-state levels,
the pulsewidth function estimates the state levels from the input waveform using the histogram
method. For a detailed description of the histogram method, see “State-Level Estimation” on page 1-
1764.

Tolerance — Tolerance levels
2 (default) | real-valued scalar

Tolerance levels (lower- and upper-state boundaries) expressed as a percentage, specified as a real-
valued scalar. For more information, see “State-Level Tolerances” on page 1-1765.

Output Arguments
w — Pulse widths
vector

Pulse widths in seconds, returned as a vector. The pulse width is the time difference between the
initial and final transitions of a pulse. The times of the initial and final transitions are referred to as
transition occurrence instants in [1] on page 1-1766.

Note Because the pulsewidth function uses interpolation to determine the midreference level
instants, w might contain values that do not correspond to sampling instants of the bilevel waveform
x.

initcross — Midreference level instants of initial transition
column vector

Midreference level instants of the initial transition of each pulse, returned as a column vector.

finalcross — Midreference level instants of final transition
column vector

Midreference level instants of the final transition of each pulse, returned as a column vector.

 pulsewidth

1-1763

midlev — Waveform value
scalar

Waveform value corresponding to the midreference level, returned as a scalar.

More About
State-Level Estimation

To determine the transitions, the pulsewidth function estimates the low- and high-state levels of
input x by using a histogram method with these steps.

1 Determine the minimum and maximum amplitudes of the data.
2 For the specified number of histogram bins, determine the bin width, which is the ratio of the

amplitude range to the number of bins.
3 Sort the data values into the histogram bins.
4 Identify the lowest and highest indexed histogram bins with nonzero counts.
5 Divide the histogram into two subhistograms.
6 Compute the state levels by determining the mode or mean of the upper and lower histograms.

The function identifies all regions that cross the upper-state boundary of the low state and the lower-
state boundary of the high state. The low-state and high-state boundaries are expressed as the state
level plus or minus a multiple of the difference between the state levels.

Midreference Level

The midreference level in a bilevel waveform with low-state level, S1, and high-state level, S2, is

S1 + 1
2(S2− S1)

Midreference Level Instant

The midreference level instant is

t50% = t50% + (
t50%+− t50%−
y50%+− y50%−

)(y50%+− y50%−)

where:

• y50% denotes the midreference level.
• t50%-

 and t50%+
 denote the two consecutive sampling instants corresponding to the waveform values

that are nearest in value to y50%.
• y50%-

 and y50%+
 denote the waveform values at t50%-

 and t50%+
.

Pulse Polarity

If the pulse has a positive-going initial transition, the pulse has positive polarity. Equivalently, a
positive-polarity (positive-going) pulse has a terminating state that is more positive than the
originating state. This figure shows a positive-polarity pulse.

1 Functions

1-1764

If the pulse has a negative-going initial transition, the pulse has negative polarity. Equivalently, a
negative-polarity (negative-going) pulse has an originating state that is more positive than the
terminating state. This figure shows a negative-polarity pulse.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

 pulsewidth

1-1765

References
[1] IEEE Standard 181. IEEE Standard on Transitions, Pulses, and Related Waveforms (2003).

See Also
dutycycle | pulseperiod | pulsesep | statelevels

Introduced in R2012a

1 Functions

1-1766

pulstran
Pulse train

Syntax
y = pulstran(t,d,func)
y = pulstran(t,d,func,fs)
y = pulstran(t,d,p)
y = pulstran(___ ,intfunc)

Description
y = pulstran(t,d,func) generates a pulse train based on samples of a continuous function,
func.

y = pulstran(t,d,func,fs) uses a sample rate of fs.

y = pulstran(t,d,p) generates a pulse train that is the sum of multiple delayed interpolations of
the prototype pulse in vector p.

y = pulstran(___ ,intfunc) specifies alternative interpolation methods. See interp1 for a list
of available methods. You can use this parameter with any of the previous input syntaxes.

Examples

Periodic Rectangular Pulse

This example generates a pulse train using the default rectangular pulse of unit width. The repetition
frequency is 0.5 Hz, the signal length is 60 s, and the sample rate is 1 kHz. The gain factor is a
sinusoid of frequency 0.05 Hz.

t = 0:1/1e3:60;
d = [0:2:60;sin(2*pi*0.05*(0:2:60))]';
x = @rectpuls;
y = pulstran(t,d,x);

plot(t,y)
hold off
xlabel('Time (s)')
ylabel('Waveform')

 pulstran

1-1767

Asymmetric Sawtooth Waveform

This example generates an asymmetric sawtooth waveform with a repetition frequency of 3 Hz. The
sawtooth has width 0.2 s and skew factor –1. The signal length is 1 s, and the sample rate is 1 kHz.
Plot the pulse train.

fs = 1e3;
t = 0:1/1e3:1;
d = 0:1/3:1;
x = tripuls(t,0.2,-1);
y = pulstran(t,d,x,fs);

plot(t,y)
hold off
xlabel('Time (s)')
ylabel('Waveform')

1 Functions

1-1768

Periodic Gaussian Pulse

Plot a 10 kHz Gaussian RF pulse with 50% bandwidth, sampled at a rate of 10 MHz. Truncate the
pulse where the envelope falls 40 dB below the peak.

fs = 1e7;
tc = gauspuls('cutoff',10e3,0.5,[],-40);
t = -tc:1/fs:tc;
x = gauspuls(t,10e3,0.5);

plot(t,x)
xlabel('Time (s)')
ylabel('Waveform')

 pulstran

1-1769

The pulse repetition frequency is 1 kHz, the sample rate is 50 kHz, and the pulse train length is 25
ms. The gain factor is a sinusoid of frequency 0.1 Hz.

ts = 0:1/50e3:0.025;
d = [0:1/1e3:0.025;sin(2*pi*0.1*(0:25))]';
y = pulstran(ts,d,x,fs);

Plot the periodic Gaussian pulse train.

plot(ts,y)
xlim([0 0.01])
xlabel('Time (s)')
ylabel('Waveform')

1 Functions

1-1770

Custom Pulse Trains

Write a function that generates custom pulses consisting of a sinusoid damped by an exponential. The
pulse is an odd function of time. The generating function has a second input argument that specifies a
single value for the sinusoid frequency and the damping factor. Display a generated pulse, sampled at
1 kHz for 1 second, with a frequency and damping value, both equal to 30.

fnx = @(x,fn) sin(2*pi*fn*x).*exp(-fn*abs(x));

ffs = 1000;
tp = 0:1/ffs:1;

pp = fnx(tp,30);

plot(tp,pp)
xlabel('Time (s)')
ylabel('Waveform')

 pulstran

1-1771

Use the pulstran function to generate a train of custom pulses. The train is sampled at 2 kHz for 1.2
seconds. The pulses occur every third of a second and have exponentially decreasing amplitudes.

Initially specify the generated pulse as a prototype. Include the prototype sample rate in the function
call. In this case, pulstran replicates the pulses at the specified locations.

fs = 2e3;
t = 0:1/fs:1.2;

d = 0:1/3:1;
dd = [d;4.^-d]';

z = pulstran(t,dd,pp,ffs);

plot(t,z)
xlabel('Time (s)')
ylabel('Waveform')

1 Functions

1-1772

Generate the pulse train again, but now use the generating function as an input argument. Include
the frequency and damping parameter in the function call. In this case, pulstran generates the
pulse so that it is centered about zero.

y = pulstran(t,dd,fnx,30);

plot(t,y)
xlabel('Time (s)')
ylabel('Waveform')

 pulstran

1-1773

Change Interpolation Method with Custom Pulse

Write a function that generates a custom exponentially decaying sawtooth waveform of frequency
0.25 Hz. The generating function has a second input argument that specifies a single value for the
sawtooth frequency and the damping factor. Display a generated pulse, sampled at 0.1 kHz for 1
second, with a frequency and damping value equal to 50.

fnx = @(x,fn) sawtooth(2*pi*fn*0.25*x).*exp(-2*fn*x.^2);

fs = 100;
t = 0:1/fs:1;

pp = fnx(t,50);

plot(t,pp)

1 Functions

1-1774

Use the pulstran function to generate a train of custom pulses. The train is sampled at 0.1 kHz for
125 seconds. The pulses occur every 25 seconds and have exponentially decreasing amplitudes.

Specify the generated pulse as a prototype. Generate three pulse trains using the default linear
interpolation method, nearest neighbor interpolation and piecewise cubic interpolation. Compare the
pulse trains on a single plot.

d = [0:25:125; exp(-0.015*(0:25:125))]';
ffs = 100;
tp = 0:1/ffs:125;

r = pulstran(tp,d,pp);
y = pulstran(tp,d,pp,'nearest');
q = pulstran(tp,d,pp,'pchip');

plot(tp,r)
hold on
plot(tp,y)
plot(tp,q)
xlim([0 125])
legend('Linear interpolation','Nearest neighbor interpolation','Piecewise cubic interpolation')
hold off

 pulstran

1-1775

Input Arguments
t — Time values
vector

Time values at which func is evaluated, specified as a vector.

d — Offset
row vector | two-column matrix

Offset removed from the values of the array t, specified as a real vector. You can apply an optional
gain factor to each delayed evaluation by specifying d as a two-column matrix, with offset defined in
column 1 and associated gain in column 2. If you specify d as a row vector, the values are interpreted
as delays only.

func — Continuous function
'rectpuls' | 'gauspuls' | 'tripuls' | function handle

Continuous function used to generate a pulse train based on its samples, specified as 'rectpuls',
'gauspuls', 'tripuls', or a function handle.

If you use func as a function handle, you can pass the function parameters as follows:

y = pulstran(t,d,'gauspuls',10e3,0.5);

1 Functions

1-1776

This creates a pulse train using a 10 kHz Gaussian pulse with 50% bandwidth.

p — Prototype pulse
vector

Prototype function, specified as a vector. The interval of p is given by [0,(length(p)-1)/fs], and
its samples are identically zero outside this interval. By default, linear interpolation is used for
generating delays.

fs — Sample rate
1 (default) | real scalar

Sample rate in Hz, specified as a real scalar.

intfunc — Interpolation method
'linear' (default) | 'nearest' | 'next' | 'previous' | 'pchip' | 'cubic' | 'v5cubic' |
'makima' | 'spline'

Interpolation method, specified as one of the options in this table.

Method Description Continuity Comments
'linear' Linear interpolation. The

interpolated value at a query
point is based on linear
interpolation of the values at
neighboring grid points in each
respective dimension. This is
the default interpolation
method.

C0 • Requires at least 2 points
• Requires more memory and

computation time than
nearest neighbor

'nearest' Nearest neighbor interpolation.
The interpolated value at a
query point is the value at the
nearest sample grid point.

Discontinuous • Requires at least 2 points
• Modest memory

requirements
• Fastest computation time

'next' Next neighbor interpolation.
The interpolated value at a
query point is the value at the
next sample grid point.

Discontinuous • Requires at least 2 points
• Similar memory

requirements and
computation time as
'nearest'

'previous' Previous neighbor interpolation.
The interpolated value at a
query point is the value at the
previous sample grid point.

Discontinuous • Requires at least 2 points
• Similar memory

requirements and
computation time as
'nearest'

 pulstran

1-1777

Method Description Continuity Comments
'pchip' or
'cubic'

Shape-preserving piecewise
cubic interpolation. The
interpolated value at a query
point is based on a shape-
preserving piecewise cubic
interpolation of the values at
neighboring grid points.

C1 • Requires at least 4 points
• Requires more memory and

computation time than
'linear'

'v5cubic' Cubic convolution used in
MATLAB 5.

C1 Points must be uniformly
spaced.

'makima' Modified Akima cubic Hermite
interpolation. The interpolated
value at a query point is based
on a piecewise function of
polynomials with a degree of at
most three. The Akima formula
is modified to avoid overshoots.

C1 • Requires at least 2 points
• Produces fewer undulations

than 'spline', but does not
flatten as aggressively as
'pchip'

• Computation is more
expensive than 'pchip', but
typically less than 'spline'

• Memory requirements are
similar to those of 'spline'

'spline' Spline interpolation using not-a-
knot end conditions. The
interpolated value at a query
point is based on a cubic
interpolation of the values at
neighboring grid points in each
respective dimension.

C2 • Requires at least 4 points
• Requires more memory and

computation time than
'pchip'

Output Arguments
y — Pulse train
vector

Pulse train generated by the function, returned as a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The pulse function can only be tripuls, rectpuls, or gauspuls.
• If you specify a custom pulse instead of a pulse function, then the limitations for interp1 apply.

See Also
chirp | cos | diric | gauspuls | rectpuls | sawtooth | sin | sinc | square | tripuls

1 Functions

1-1778

Introduced before R2006a

 pulstran

1-1779

pwelch
Welch’s power spectral density estimate

Syntax
pxx = pwelch(x)
pxx = pwelch(x,window)
pxx = pwelch(x,window,noverlap)
pxx = pwelch(x,window,noverlap,nfft)

[pxx,w] = pwelch(___)
[pxx,f] = pwelch(___ ,fs)

[pxx,w] = pwelch(x,window,noverlap,w)
[pxx,f] = pwelch(x,window,noverlap,f,fs)

[___] = pwelch(x,window, ___ ,freqrange)
[___] = pwelch(x,window, ___ ,trace)

[___ ,pxxc] = pwelch(___ ,'ConfidenceLevel',probability)

[___] = pwelch(___ ,spectrumtype)

pwelch(___)

Description
pxx = pwelch(x) returns the power spectral density (PSD) estimate, pxx, of the input signal, x,
found using Welch's overlapped segment averaging estimator. When x is a vector, it is treated as a
single channel. When x is a matrix, the PSD is computed independently for each column and stored in
the corresponding column of pxx. If x is real-valued, pxx is a one-sided PSD estimate. If x is complex-
valued, pxx is a two-sided PSD estimate. By default, x is divided into the longest possible segments to
obtain as close to but not exceed 8 segments with 50% overlap. Each segment is windowed with a
Hamming window. The modified periodograms are averaged to obtain the PSD estimate. If you cannot
divide the length of x exactly into an integer number of segments with 50% overlap, x is truncated
accordingly.

pxx = pwelch(x,window) uses the input vector or integer, window, to divide the signal into
segments. If window is a vector, pwelch divides the signal into segments equal in length to the
length of window. The modified periodograms are computed using the signal segments multiplied by
the vector, window. If window is an integer, the signal is divided into segments of length window. The
modified periodograms are computed using a Hamming window of length window.

pxx = pwelch(x,window,noverlap) uses noverlap samples of overlap from segment to
segment. noverlap must be a positive integer smaller than window if window is an integer.
noverlap must be a positive integer less than the length of window if window is a vector. If you do
not specify noverlap, or specify noverlap as empty, the default number of overlapped samples is
50% of the window length.

1 Functions

1-1780

pxx = pwelch(x,window,noverlap,nfft) specifies the number of discrete Fourier transform
(DFT) points to use in the PSD estimate. The default nfft is the greater of 256 or the next power of 2
greater than the length of the segments.

[pxx,w] = pwelch(___) returns the normalized frequency vector, w. If pxx is a one-sided PSD
estimate, w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD
estimate, w spans the interval [0,2π).

[pxx,f] = pwelch(___ ,fs) returns a frequency vector, f, in cycles per unit time. The sample
rate, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in cycles/sec
(Hz). For real–valued signals, f spans the interval [0,fs/2] when nfft is even and [0,fs/2) when
nfft is odd. For complex-valued signals, f spans the interval [0,fs). fs must be the fifth input to
pwelch. To input a sample rate and still use the default values of the preceding optional arguments,
specify these arguments as empty, [].

[pxx,w] = pwelch(x,window,noverlap,w) returns the two-sided Welch PSD estimates at the
normalized frequencies specified in the vector, w. The vector w must contain at least two elements,
because otherwise the function interprets it as nfft.

[pxx,f] = pwelch(x,window,noverlap,f,fs) returns the two-sided Welch PSD estimates at
the frequencies specified in the vector, f. The vector f must contain at least two elements, because
otherwise the function interprets it as nfft. The frequencies in f are in cycles per unit time. The
sample rate, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in
cycles/sec (Hz).

[___] = pwelch(x,window, ___ ,freqrange) returns the Welch PSD estimate over the
frequency range specified by freqrange. Valid options for freqrange are: 'onesided',
'twosided', or 'centered'.

[___] = pwelch(x,window, ___ ,trace) returns the maximum-hold spectrum estimate if trace
is specified as 'maxhold' and returns the minimum-hold spectrum estimate if trace is specified as
'minhold'.

[___ ,pxxc] = pwelch(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

[___] = pwelch(___ ,spectrumtype) returns the PSD estimate if spectrumtype is specified
as 'psd' and returns the power spectrum if spectrumtype is specified as 'power'.

pwelch(___) with no output arguments plots the Welch PSD estimate in the current figure window.

Examples

Welch Estimate Using Default Inputs

Obtain the Welch PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 rad/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0, 1) white noise.
Reset the random number generator for reproducible results. The signal has a length Nx = 320
samples.

rng default

 pwelch

1-1781

n = 0:319;
x = cos(pi/4*n)+randn(size(n));

Obtain the Welch PSD estimate using the default Hamming window and DFT length. The default
segment length is 71 samples and the DFT length is the 256 points yielding a frequency resolution of
2π/256 rad/sample. Because the signal is real-valued, the periodogram is one-sided and there are
256/2+1 points. Plot the Welch PSD estimate.

pxx = pwelch(x);

pwelch(x)

Repeat the computation.

• Divide the signal into sections of length nsc = ⌊Nx/4 . 5⌋. This action is equivalent to dividing the
signal into the longest possible segments to obtain as close to but not exceed 8 segments with
50% overlap.

• Window the sections using a Hamming window.
• Specify 50% overlap between contiguous sections
• To compute the FFT, use max(256, 2p) points, where p = ⌈log2nsc⌉.

Verify that the two approaches give identical results.

Nx = length(x);
nsc = floor(Nx/4.5);

1 Functions

1-1782

nov = floor(nsc/2);
nff = max(256,2^nextpow2(nsc));

t = pwelch(x,hamming(nsc),nov,nff);

maxerr = max(abs(abs(t(:))-abs(pxx(:))))

maxerr = 0

Divide the signal into 8 sections of equal length, with 50% overlap between sections. Specify the
same FFT length as in the preceding step. Compute the Welch PSD estimate and verify that it gives
the same result as the previous two procedures.

ns = 8;
ov = 0.5;
lsc = floor(Nx/(ns-(ns-1)*ov));

t = pwelch(x,lsc,floor(ov*lsc),nff);

maxerr = max(abs(abs(t(:))-abs(pxx(:))))

maxerr = 0

Welch Estimate Using Specified Segment Length

Obtain the Welch PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/3 rad/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/3 rad/sample with additive N(0, 1) white noise.
Reset the random number generator for reproducible results. The signal has 512 samples.

rng default

n = 0:511;
x = cos(pi/3*n)+randn(size(n));

Obtain the Welch PSD estimate dividing the signal into segments 132 samples in length. The signal
segments are multiplied by a Hamming window 132 samples in length. The number of overlapped
samples is not specified, so it is set to 132/2 = 66. The DFT length is 256 points, yielding a frequency
resolution of 2π/256 rad/sample. Because the signal is real-valued, the PSD estimate is one-sided and
there are 256/2+1 = 129 points. Plot the PSD as a function of normalized frequency.

segmentLength = 132;
[pxx,w] = pwelch(x,segmentLength);

plot(w/pi,10*log10(pxx))
xlabel('\omega / \pi')

 pwelch

1-1783

Welch Estimate Specifying Segment Overlap

Obtain the Welch PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 rad/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0, 1) white noise.
Reset the random number generator for reproducible results. The signal is 320 samples in length.

rng default

n = 0:319;
x = cos(pi/4*n)+randn(size(n));

Obtain the Welch PSD estimate dividing the signal into segments 100 samples in length. The signal
segments are multiplied by a Hamming window 100 samples in length. The number of overlapped
samples is 25. The DFT length is 256 points yielding a frequency resolution of 2π/256 rad/sample.
Because the signal is real-valued, the PSD estimate is one-sided and there are 256/2+1 points.

segmentLength = 100;
noverlap = 25;
pxx = pwelch(x,segmentLength,noverlap);

plot(10*log10(pxx))

1 Functions

1-1784

Welch Estimate Using Specified DFT Length

Obtain the Welch PSD estimate of an input signal consisting of a discrete-time sinusoid with an
angular frequency of π/4 rad/sample with additive N(0, 1) white noise.

Create a sine wave with an angular frequency of π/4 rad/sample with additive N(0, 1) white noise.
Reset the random number generator for reproducible results. The signal is 320 samples in length.

rng default

n = 0:319;
x = cos(pi/4*n) + randn(size(n));

Obtain the Welch PSD estimate dividing the signal into segments 100 samples in length. Use the
default overlap of 50%. Specify the DFT length to be 640 points so that the frequency of π/4 rad/
sample corresponds to a DFT bin (bin 81). Because the signal is real-valued, the PSD estimate is one-
sided and there are 640/2+1 points.

segmentLength = 100;
nfft = 640;
pxx = pwelch(x,segmentLength,[],nfft);

plot(10*log10(pxx))
xlabel('rad/sample')
ylabel('dB / (rad/sample)')

 pwelch

1-1785

Welch PSD Estimate of Signal with Frequency in Hertz

Create a signal consisting of a 100 Hz sinusoid in additive N(0,1) white noise. Reset the random
number generator for reproducible results. The sample rate is 1 kHz and the signal is 5 seconds in
duration.

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));

Obtain Welch's overlapped segment averaging PSD estimate of the preceding signal. Use a segment
length of 500 samples with 300 overlapped samples. Use 500 DFT points so that 100 Hz falls directly
on a DFT bin. Input the sample rate to output a vector of frequencies in Hz. Plot the result.

[pxx,f] = pwelch(x,500,300,500,fs);

plot(f,10*log10(pxx))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

1 Functions

1-1786

Maximum-Hold and Minimum-Hold Spectra

Create a signal consisting of three noisy sinusoids and a chirp, sampled at 200 kHz for 0.1 second.
The frequencies of the sinusoids are 1 kHz, 10 kHz, and 20 kHz. The sinusoids have different
amplitudes and noise levels. The noiseless chirp has a frequency that starts at 20 kHz and increases
linearly to 30 kHz during the sampling.

Fs = 200e3;
Fc = [1 10 20]'*1e3;
Ns = 0.1*Fs;

t = (0:Ns-1)/Fs;
x = [1 1/10 10]*sin(2*pi*Fc*t)+[1/200 1/2000 1/20]*randn(3,Ns);
x = x+chirp(t,20e3,t(end),30e3);

Compute the Welch PSD estimate and the maximum-hold and minimum-hold spectra of the signal.
Plot the results.

[pxx,f] = pwelch(x,[],[],[],Fs);
pmax = pwelch(x,[],[],[],Fs,'maxhold');
pmin = pwelch(x,[],[],[],Fs,'minhold');

plot(f,pow2db(pxx))
hold on

 pwelch

1-1787

plot(f,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
legend('pwelch','maxhold','minhold')

Repeat the procedure, this time computing centered power spectrum estimates.

[pxx,f] = pwelch(x,[],[],[],Fs,'centered','power');
pmax = pwelch(x,[],[],[],Fs,'maxhold','centered','power');
pmin = pwelch(x,[],[],[],Fs,'minhold','centered','power');

plot(f,pow2db(pxx))
hold on
plot(f,pow2db([pmax pmin]),':')
hold off
xlabel('Frequency (Hz)')
ylabel('Power (dB)')
legend('pwelch','maxhold','minhold')

1 Functions

1-1788

Upper and Lower 95%-Confidence Bounds

This example illustrates the use of confidence bounds with Welch's overlapped segment averaging
(WOSA) PSD estimate. While not a necessary condition for statistical significance, frequencies in
Welch's estimate where the lower confidence bound exceeds the upper confidence bound for
surrounding PSD estimates clearly indicate significant oscillations in the time series.

Create a signal consisting of the superposition of 100 Hz and 150 Hz sine waves in additive white
N(0,1) noise. The amplitude of the two sine waves is 1. The sample rate is 1 kHz. Reset the random
number generator for reproducible results.

rng default
fs = 1000;
t = 0:1/fs:1-1/fs;
x = cos(2*pi*100*t)+sin(2*pi*150*t)+randn(size(t));

Obtain the WOSA estimate with 95%-confidence bounds. Set the segment length equal to 200 and
overlap the segments by 50% (100 samples). Plot the WOSA PSD estimate along with the confidence
interval and zoom in on the frequency region of interest near 100 and 150 Hz.

L = 200;
noverlap = 100;
[pxx,f,pxxc] = pwelch(x,hamming(L),noverlap,200,fs,...
 'ConfidenceLevel',0.95);

 pwelch

1-1789

plot(f,10*log10(pxx))
hold on
plot(f,10*log10(pxxc),'-.')
hold off

xlim([25 250])
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
title('Welch Estimate with 95%-Confidence Bounds')

The lower confidence bound in the immediate vicinity of 100 and 150 Hz is significantly above the
upper confidence bound outside the vicinity of 100 and 150 Hz.

DC-Centered Power Spectrum

Create a signal consisting of a 100 Hz sinusoid in additive N(0, 1/4) white noise. Reset the random
number generator for reproducible results. The sample rate is 1 kHz and the signal is 5 seconds in
duration.

rng default

fs = 1000;
t = 0:1/fs:5-1/fs;

1 Functions

1-1790

noisevar = 1/4;
x = cos(2*pi*100*t)+sqrt(noisevar)*randn(size(t));

Obtain the DC-centered power spectrum using Welch's method. Use a segment length of 500 samples
with 300 overlapped samples and a DFT length of 500 points. Plot the result.

[pxx,f] = pwelch(x,500,300,500,fs,'centered','power');

plot(f,10*log10(pxx))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid

You see that the power at -100 and 100 Hz is close to the expected power of 1/4 for a real-valued sine
wave with an amplitude of 1. The deviation from 1/4 is due to the effect of the additive noise.

Welch PSD Estimate of a Multichannel Signal

Generate 1024 samples of a multichannel signal consisting of three sinusoids in additive N(0, 1) white
Gaussian noise. The sinusoids' frequencies are π/2, π/3, and π/4 rad/sample. Estimate the PSD of the
signal using Welch's method and plot it.

N = 1024;
n = 0:N-1;

 pwelch

1-1791

w = pi./[2;3;4];
x = cos(w*n)' + randn(length(n),3);

pwelch(x)

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as a row or column vector or an integer. If window is a vector, pwelch divides x
into overlapping segments of length equal to the length of window, and then multiplies each signal
segment with the vector specified in window. If window is an integer, pwelch is divided into

1 Functions

1-1792

segments of length equal to the integer value, and a Hamming window of equal length is used. If the
length of x cannot be divided exactly into an integer number of segments with noverlap number of
overlapping samples, x is truncated accordingly. If you specify window as empty, the default
Hamming window is used to obtain eight segments of x with noverlap overlapping samples.
Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer smaller than the length of window. If
you omit noverlap or specify noverlap as empty, a value is used to obtain 50% overlap between
segments.

nfft — Number of DFT points
max(256,2^nextpow2(length(window))) (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2 + 1) if nfft is even, and (nfft + 1)/2 if nfft is odd. For a
complex-valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as
empty, the default nfft is used.

If nfft is greater than the segment length, the data is zero-padded. If nfft is less than the segment
length, the segment is wrapped using datawrap to make the length equal to nfft.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

 pwelch

1-1793

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

spectrumtype — Power spectrum scaling
'psd' (default) | 'power'

Power spectrum scaling, specified as one of 'psd' or 'power'. Omitting the spectrumtype, or
specifying 'psd', returns the power spectral density. Specifying 'power' scales each estimate of the
PSD by the equivalent noise bandwidth of the window. Use the 'power' option to obtain an estimate
of the power at each frequency.

trace — Trace mode
'mean' (default) | 'maxhold' | 'minhold'

Trace mode, specified as one of 'mean', 'maxhold', or 'minhold'. The default is 'mean'.

• 'mean' — returns the Welch spectrum estimate of each input channel. pwelch computes the
Welch spectrum estimate at each frequency bin by averaging the power spectrum estimates of all
the segments.

• 'maxhold' — returns the maximum-hold spectrum of each input channel. pwelch computes the
maximum-hold spectrum at each frequency bin by keeping the maximum value among the power
spectrum estimates of all the segments.

• 'minhold' — returns the minimum-hold spectrum of each input channel. pwelch computes the
minimum-hold spectrum at each frequency bin by keeping the minimum value among the power
spectrum estimates of all the segments.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

1 Functions

1-1794

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

More About
Welch’s Overlapped Segment Averaging Spectral Estimation

The periodogram is not a consistent estimator of the true power spectral density of a wide-sense
stationary process. Welch’s technique to reduce the variance of the periodogram breaks the time
series into segments, usually overlapping.

Welch’s method computes a modified periodogram for each segment and then averages these
estimates to produce the estimate of the power spectral density. Because the process is wide-sense
stationary and Welch’s method uses PSD estimates of different segments of the time series, the
modified periodograms represent approximately uncorrelated estimates of the true PSD and
averaging reduces the variability.

 pwelch

1-1795

The segments are typically multiplied by a window function, such as a Hamming window, so that
Welch’s method amounts to averaging modified periodograms. Because the segments usually overlap,
data values at the beginning and end of the segment tapered by the window in one segment, occur
away from the ends of adjacent segments. This guards against the loss of information caused by
windowing.

References
[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York: John Wiley &

Sons, 1996.

[2] Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice
Hall, 2005.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• The input x must not be a tall row vector
• The window argument must always be specified.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Analyzer

Functions
periodogram | pmtm | pspectrum

1 Functions

1-1796

Topics
“Bias and Variability in the Periodogram”
“Spectral Analysis”

Introduced before R2006a

 pwelch

1-1797

pyulear
Autoregressive power spectral density estimate — Yule-Walker method

Syntax
pxx = pyulear(x,order)
pxx = pyulear(x,order,nfft)

[pxx,w] = pyulear(___)
[pxx,f] = pyulear(___ ,fs)

[pxx,w] = pyulear(x,order,w)
[pxx,f] = pyulear(x,order,f,fs)

[___] = pyulear(x,order, ___ ,freqrange)

[___ ,pxxc] = pyulear(___ ,'ConfidenceLevel',probability)

pyulear(___)

Description
pxx = pyulear(x,order) returns the power spectral density estimate, pxx, of a discrete-time
signal, x, found using the Yule-Walker method. When x is a vector, it is treated as a single channel.
When x is a matrix, the PSD is computed independently for each column and stored in the
corresponding column of pxx. pxx is the distribution of power per unit frequency. The frequency is
expressed in units of rad/sample. order is the order of the autoregressive (AR) model used to
produce the PSD estimate.

pxx = pyulear(x,order,nfft) uses nfft points in the discrete Fourier transform (DFT). For
real x, pxx has length (nfft/2 + 1) if nfft is even, and (nfft + 1)/2 if nfft is odd. For complex-
valued x, pxx always has length nfft. If you omit nfft, or specify it as empty, then pyulear uses a
default DFT length of 256.

[pxx,w] = pyulear(___) returns the vector of normalized angular frequencies, w, at which the
PSD is estimated. w has units of rad/sample. For real-valued signals, w spans the interval [0,π] when
nfft is even and [0,π) when nfft is odd. For complex-valued signals, w always spans the interval
[0,2π).

[pxx,f] = pyulear(___ ,fs) returns a frequency vector, f, in cycles per unit time. The sample
rate, fs, is the number of samples per unit time. If the unit of time is seconds, then f is in cycles/
second (Hz). For real–valued signals, f spans the interval [0,fs/2] when nfft is even and [0,fs/2)
when nfft is odd. For complex-valued signals, f spans the interval [0,fs).

[pxx,w] = pyulear(x,order,w) returns the two-sided AR PSD estimates at the normalized
frequencies specified in the vector, w. The vector, w, must contain at least two elements, because
otherwise the function interprets it as nfft.

[pxx,f] = pyulear(x,order,f,fs) returns the two-sided AR PSD estimates at the frequencies
specified in the vector, f. The vector, f, must contain at least two elements, because otherwise the

1 Functions

1-1798

function interprets it as nfft. The frequencies in f are in cycles per unit time. The sample rate, fs, is
the number of samples per unit time. If the unit of time is seconds, then f is in cycles/second (Hz).

[___] = pyulear(x,order, ___ ,freqrange) returns the AR PSD estimate over the frequency
range specified by freqrange. Valid options for freqrange are: 'onesided', 'twosided', or
'centered'.

[___ ,pxxc] = pyulear(___ ,'ConfidenceLevel',probability) returns the
probability × 100% confidence intervals for the PSD estimate in pxxc.

pyulear(___) with no output arguments plots the AR PSD estimate in dB per unit frequency in the
current figure window.

Examples

Yule-Walker PSD Estimate of an AR(4) Process

Create a realization of an AR(4) wide-sense stationary random process. Estimate the PSD using the
Yule-Walker method. Compare the PSD estimate based on a single realization to the true PSD of the
random process.

Create an AR(4) system function. Obtain the frequency response and plot the PSD of the system.

A = [1 -2.7607 3.8106 -2.6535 0.9238];
[H,F] = freqz(1,A,[],1);
plot(F,20*log10(abs(H)))

xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')

 pyulear

1-1799

Create a realization of the AR(4) random process. Set the random number generator to the default
settings for reproducible results. The realization is 1000 samples in length. Assume a sampling
frequency of 1 Hz. Use pyulear to estimate the PSD for a 4th-order process. Compare the PSD
estimate with the true PSD.

rng default

x = randn(1000,1);
y = filter(1,A,x);
[Pxx,F] = pyulear(y,4,1024,1);

hold on
plot(F,10*log10(Pxx))
legend('True Power Spectral Density','pyulear PSD Estimate')

1 Functions

1-1800

Yule-Walker PSD Estimate of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0, 1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

f = [100;200;300];

x = cos(2*pi*f*t)'+randn(length(t),3);

Estimate the PSD of the signal using the Yule-Walker method with a 12th-order autoregressive model.
Use the default DFT length. Plot the estimate.

morder = 12;

pyulear(x,morder,[],Fs)

 pyulear

1-1801

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a row or column vector, or as a matrix. If x is a matrix, then its columns are
treated as independent channels.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

order — Order of autoregressive model
positive integer

Order of the autoregressive model, specified as a positive integer.
Data Types: double

nfft — Number of DFT points
256 (default) | integer | []

Number of DFT points, specified as a positive integer. For a real-valued input signal, x, the PSD
estimate, pxx has length (nfft/2+1) if nfft is even, and (nfft+1)/2 if nfft is odd. For a complex-

1 Functions

1-1802

valued input signal,x, the PSD estimate always has length nfft. If nfft is specified as empty, the
default nfft is used.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as a one of 'onesided', 'twosided', or
'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals. The frequency ranges corresponding to each option are

• 'onesided' — returns the one-sided PSD estimate of a real-valued input signal, x. If nfft is
even, pxx has length nfft/2 + 1 and is computed over the interval [0,π] rad/sample. If nfft is
odd, the length of pxx is (nfft + 1)/2 and the interval is [0,π) rad/sample. When fs is optionally
specified, the corresponding intervals are [0,fs/2] cycles/unit time and [0,fs/2) cycles/unit time
for even and odd length nfft respectively.

• 'twosided' — returns the two-sided PSD estimate for either the real-valued or complex-valued
input, x. In this case, pxx has length nfft and is computed over the interval [0,2π) rad/sample.
When fs is optionally specified, the interval is [0,fs) cycles/unit time.

• 'centered' — returns the centered two-sided PSD estimate for either the real-valued or
complex-valued input, x. In this case, pxx has length nfft and is computed over the interval (–
π,π] rad/sample for even length nfft and (–π,π) rad/sample for odd length nfft. When fs is
optionally specified, the corresponding intervals are (–fs/2, fs/2] cycles/unit time and (–fs/2,
fs/2) cycles/unit time for even and odd length nfft respectively.

probability — Confidence interval for PSD estimate
0.95 (default) | scalar in the range (0,1)

 pyulear

1-1803

Coverage probability for the true PSD, specified as a scalar in the range (0,1). The output, pxxc,
contains the lower and upper bounds of the probability × 100% interval estimate for the true PSD.

Output Arguments
pxx — PSD estimate
vector | matrix

PSD estimate, returned as a real-valued, nonnegative column vector or matrix. Each column of pxx is
the PSD estimate of the corresponding column of x. The units of the PSD estimate are in squared
magnitude units of the time series data per unit frequency. For example, if the input data is in volts,
the PSD estimate is in units of squared volts per unit frequency. For a time series in volts, if you
assume a resistance of 1 Ω and specify the sample rate in hertz, the PSD estimate is in watts per
hertz.
Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector. If pxx is a one-sided PSD estimate,
w spans the interval [0,π] if nfft is even and [0,π) if nfft is odd. If pxx is a two-sided PSD estimate,
w spans the interval [0,2π). For a DC-centered PSD estimate, w spans the interval (–π,π] for even nfft
and (–π,π) for odd nfft.
Data Types: double

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a real-valued column vector. For a one-sided PSD estimate, f spans
the interval [0,fs/2] when nfft is even and [0,fs/2) when nfft is odd. For a two-sided PSD
estimate, f spans the interval [0,fs). For a DC-centered PSD estimate, f spans the interval (–fs/2,
fs/2] cycles/unit time for even length nfft and (–fs/2, fs/2) cycles/unit time for odd length nfft.
Data Types: double | single

pxxc — Confidence bounds
matrix

Confidence bounds, returned as a matrix with real-valued elements. The row size of the matrix is
equal to the length of the PSD estimate, pxx. pxxc has twice as many columns as pxx. Odd-
numbered columns contain the lower bounds of the confidence intervals, and even-numbered
columns contain the upper bounds. Thus, pxxc(m,2*n-1) is the lower confidence bound and
pxxc(m,2*n) is the upper confidence bound corresponding to the estimate pxx(m,n). The coverage
probability of the confidence intervals is determined by the value of the probability input.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-1804

If the nfft argument is variable-size at compile time, then it must not become a scalar or an empty
array at runtime.

See Also
pburg | pcov | pmcov

Introduced before R2006a

 pyulear

1-1805

rainflow
Rainflow counts for fatigue analysis

Syntax
c = rainflow(x)
c = rainflow(x,fs)
c = rainflow(x,t)
c = rainflow(xt)

c = rainflow(___ ,'ext')

[c,rm,rmr,rmm] = rainflow(___)
[c,rm,rmr,rmm,idx] = rainflow(___)

rainflow(___)

Description
c = rainflow(x) returns cycle counts for the load time history, x, according to the ASTM E 1049
standard. See “Algorithms” on page 1-1816 for more information.

c = rainflow(x,fs) returns cycle counts for x sampled at a rate fs.

c = rainflow(x,t) returns cycle counts for x sampled at the time values stored in t.

c = rainflow(xt) returns cycle counts for the time history stored in the MATLAB timetable xt.

c = rainflow(___ ,'ext') specifies the time history as a vector of identified reversals (peaks and
valleys). 'ext' can be used with any of the previous syntaxes.

[c,rm,rmr,rmm] = rainflow(___) outputs a rainflow matrix, rm, and two vectors, rmr and rmm,
containing histogram bin edges for the rows and columns of rm, respectively.

[c,rm,rmr,rmm,idx] = rainflow(___) also returns the linear indices of the reversals
identified in the input.

rainflow(___) with no output arguments plots load reversals and a rainflow matrix histogram in
the current figure.

Examples

Cycle Counts with Known Sample Rate

Generate a signal that resembles a load history, consisting of sinusoid half-periods connecting known,
equispaced reversals. The signal is sampled at 512 Hz for 8 seconds. Plot the extrema and the signal.

fs = 512;

X = [-2 1 -3 5 -1 3 -4 4 -2];

1 Functions

1-1806

lX = length(X)-1;

Y = -diff(X)/2.*cos(pi*(0:1/fs:1-1/fs)') + (X(1:lX)+X(2:lX+1))/2;
Y = [Y(:);X(end)];

plot(0:lX,X,'o',0:1/fs:lX,Y)

Compute cycle counts for the data. Display the matrix of cycle counts.

[c,hist,edges,rmm,idx] = rainflow(Y,fs);

T = array2table(c,'VariableNames',{'Count','Range','Mean','Start','End'})

T=7×5 table
 Count Range Mean Start End
 _____ _____ ____ _____ ___

 0.5 3 -0.5 0 1
 0.5 4 -1 1 2
 1 4 1 4 5
 0.5 8 1 2 3
 0.5 9 0.5 3 6
 0.5 8 0 6 7
 0.5 6 1 7 8

Display a histogram of cycle counts as a function of stress range.

 rainflow

1-1807

histogram('BinEdges',edges','BinCounts',sum(hist,2))
xlabel('Stress Range')
ylabel('Cycle Counts')

Use rainflow without output arguments to display a histogram of cycles as a function of cycle
average and cycle range.

rainflow(Y,fs)

1 Functions

1-1808

Cycle Counts with Known Time Values

Generate a signal that resembles a load history, consisting of sinusoid half-periods connecting known,
unevenly spaced reversals. The signal is sampled at 10 Hz for 15 seconds. Plot the extrema and the
signal.

fs = 10;

X = [0 1 3 4 5 6 8 10 13 15];
Y = [-2 1 -3 5 -1 3 -4 4 -2 6];

Z = [];
for k = 1:length(Y)-1
 x = X(k+1)-X(k);
 z = -(Y(k+1)-Y(k))*cos(pi*(0:1/fs:x-1/fs)/x)+Y(k+1)+Y(k);
 Z = [Z z/2];
end
Z = [Z Y(end)];

t = linspace(X(1),X(end),length(Z));
plot(X,Y,'o',t,Z)

 rainflow

1-1809

Compute cycle counts for the data. Display the matrix of cycle counts.

[c,hist,edges,rmm,idx] = rainflow(Z,t);

TT = array2table(c,'VariableNames',{'Count','Range','Mean','Start','End'})

TT=7×5 table
 Count Range Mean Start End
 _____ _____ ____ _____ ___

 0.5 3 -0.5 0 1
 0.5 4 -1 1 3
 1 4 1 5 6
 0.5 8 1 3 4
 1 6 1 10 13
 0.5 9 0.5 4 8
 0.5 10 1 8 15

Use rainflow without output arguments to display a histogram of cycles as a function of cycle
average and cycle range.

rainflow(Z,t)

1 Functions

1-1810

Cycle Counts of Timetable

Generate a random signal sampled at 100 Hz for 100 seconds. Store the signal and its time
information in a timetable.

fs = 100;
t = seconds(0:1/fs:100-1/fs)';

x = randn(size(t));
TT = timetable(t,x);

Display the reversals and the rainflow matrix of the signal.

rainflow(TT)

 rainflow

1-1811

Cycle Counts of Identified Reversals

Generate a set of extrema resembling load reversals. Plot the data.

X = [-2 1 -3 5 -1 3 -4 4 -2]';

plot(X)
xlabel('Sample Index')
ylabel('Stress')

1 Functions

1-1812

Compute cycle counts for the data. Specify that the input consists of already identified extrema.

[C,hist,edges] = rainflow(X,'ext');

Display a histogram of cycle counts as a function of stress range.

histogram('BinEdges',edges','BinCounts',sum(hist,2))
xlabel('Stress Range')
ylabel('Cycle Counts')

 rainflow

1-1813

Use rainflow without output arguments to display a histogram of cycles as a function of cycle
average and cycle range.

rainflow(X,'ext')

1 Functions

1-1814

Input Arguments
x — Load time history
vector

Load time history, specified as a vector. x must have finite values.
Data Types: single | double

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.
Data Types: single | double

t — Time values
vector | duration array | duration scalar

Time values, specified as a vector, a duration array, or a duration scalar representing the time
interval between samples.
Example: seconds(0:1/100:1) is a duration array representing 1 second of sampling at 100 Hz.
Data Types: single | double | duration

 rainflow

1-1815

xt — Load time history
timetable

Load time history, specified as a timetable. xt must contain increasing, finite row times. The
timetable must contain only one numeric data vector with finite load values.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',rand(5,1)) specifies a random variable sampled at 1 Hz
for 4 seconds.
Data Types: single | double

Output Arguments
c — Cycle counts
matrix

Cycle counts, returned as a matrix. c contains cycle information in its columns in this order: counts,
ranges, mean values, initial sample indices, and final sample indices. See “Algorithms” on page 1-
1816 for an example. If you specify a sample rate, a time interval, or a vector of time values, then the
last two columns of c contain initial and final cycle times. If you call rainflow with a timetable as
input, then the last two columns express the initial and final cycle times in seconds.

rm — Rainflow matrix
matrix

Rainflow matrix. The rows of rm correspond to cycle range, and the columns correspond to cycle
mean.

rmr, rmm — Histogram bin edges
vectors

Histogram bin edges, returned as vectors. rmr and rmm contain the bin edges of the rows and
columns of rm, respectively.

idx — Linear indices of reversals
vector

Linear indices of reversals, returned as a vector.

Algorithms
Fatigue analysis studies how damage accumulates in an object subjected to cyclical changes in stress.
The number of cycles necessary to break the object depends on the cycle amplitude. Broadband input
excitation contains cycles of diverse amplitude, and the presence of hysteresis in the object has the
effect of nesting some cycles within others, either completely or partially. Rainflow counting
estimates the number of load change cycles as a function of cycle amplitude.

Initially, rainflow turns the load history into a sequence of reversals. Reversals are the local minima
and maxima where the load changes sign. The function counts cycles by considering a moving
reference point of the sequence, Z, and a moving ordered three-point subset with these
characteristics:

1 Functions

1-1816

1 The first and second points are collectively called Y.
2 The second and third points are collectively called X.
3 In both X and Y, the points are sorted from earlier to later in time, but are not necessarily

consecutive in the reversal sequence.
4 The range of X, denoted by r(X), is the absolute value of the difference between the amplitude of

the first point and the amplitude of the second point. The definition of r(Y) is analogous.

The rainflow algorithm is as follows:

 rainflow

1-1817

At the end, the function collects the different cycles and half-cycles and tabulates their ranges, their
means, and the points at which they start and end. This information can then be used to produce a
histogram of cycles.

Consider this reversal sequence:

1 Functions

1-1818

St
ep

Z Reversals Three
Rever
sals?

Y r(
Y)

X r(
X)

r(X) <
r(Y)?

Z in
Y?

Actions

1 A A, B, C Yes AB 3 BC 4 No Yes 1 Count AB as ½
cycle.

2 Discard A.
3 Set Z to B.

2 B B, C No — — — — — — Read D.
3 B B, C, D Yes BC 4 CD 8 No Yes 1 Count BC as ½

cycle.
2 Discard B.
3 Set Z to C.

4 C C, D No — — — — — — Read E.
5 C C, D, E Yes CD 8 DE 6 Yes — Read F.
6 C C, D, E, F Yes DE 6 EF 4 Yes — Read G.
7 C C, D, E, F, G Yes EF 4 FG 7 No No 1 Count EF as 1

cycle.
2 Discard E and F.

8 C C, D, G Yes CD 8 DG 9 No Yes 1 Count CD as ½
cycle.

2 Discard C.
3 Set Z to D.

9 D D, G No — — — — — — Read H.
10 D D, G, H Yes DG 9 GH 8 Yes — Read J.

 rainflow

1-1819

St
ep

Z Reversals Three
Rever
sals?

Y r(
Y)

X r(
X)

r(X) <
r(Y)?

Z in
Y?

Actions

11 D D, G, H, J Yes GH 8 HJ 7 Yes — Read K.
12 D D, G, H, J, K Yes HJ 7 JK 4 Yes — Read L.
13 D D, G, H, J, K, L Yes JK 4 KL 3 Yes — Read M.
14 D D, G, H, J, K, L,

M
Yes KL 3 LM 5 No No 1 Count KL as 1

cycle.
2 Discard K and L.

15 D D, G, H, J, M Yes HJ 7 JM 5 Yes — Read N.
16 D D, G, H, J, M, N Yes JM 5 MN 1 Yes — Read P.
17 D D, G, H, J, M,

N, P
Yes MN 1 NP 4 No No 1 Count MN as 1

cycle.
2 Discard M and N.

18 D D, G, H, J, P Yes HJ 7 JP 9 No No 1 Count HJ as 1
cycle.

2 Discard H and J.
19 D D, G, P Yes DG 9 GP 10 No Yes 1 Count DG as ½

cycle.
2 Discard D.
3 Set Z to G.

20 G G, P Out of
data

— — — — — — Count GP as ½ cycle.

Now collect the results.

Cycle Count Range Mean Start End
½ 3 –0.5 A B
½ 4 –1 B C
1 4 1 E F
½ 8 1 C D
1 3 –0.5 K L
1 1 2.5 M N
1 7 0.5 H J
½ 9 0.5 D G
½ 10 1 G P

Compare this to the result of running rainflow on the sequence:

q = rainflow([-2 1 -3 5 -1 3 -4 4 -3 1 -2 3 2 6])

q =

 0.5000 3.0000 -0.5000 1.0000 2.0000

1 Functions

1-1820

 0.5000 4.0000 -1.0000 2.0000 3.0000
 1.0000 4.0000 1.0000 5.0000 6.0000
 0.5000 8.0000 1.0000 3.0000 4.0000
 1.0000 3.0000 -0.5000 10.0000 11.0000
 1.0000 1.0000 2.5000 12.0000 13.0000
 1.0000 7.0000 0.5000 8.0000 9.0000
 0.5000 9.0000 0.5000 4.0000 7.0000
 0.5000 10.0000 1.0000 7.0000 14.0000

References
[1] ASTM E1049-85(2017), "Standard Practices for Cycle Counting in Fatigue Analysis." West

Conshohocken, PA: ASTM International, 2011, https://www.astm.org/cgi-bin/resolver.cgi?
E1049.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
findpeaks | histcounts | histcounts2

Introduced in R2017b

 rainflow

1-1821

https://www.astm.org/cgi-bin/resolver.cgi?E1049
https://www.astm.org/cgi-bin/resolver.cgi?E1049

realizemdl
Simulink subsystem block for filter

Syntax
realizemdl(FiltObject)
realizemdl(FiltObject,Name,Value)

Description
realizemdl(FiltObject) generates a model of the filter object FiltObject in a Simulink
subsystem block using sum, gain, and delay blocks from Simulink. The properties and values of
FiltObject define the resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of quantized filters, use Fixed-Point
Designer.

realizemdl(FiltObject,Name,Value) generates the model forFiltObject with the associated
Name,Value pairs, and any other values you set in FiltObject.

Note Subsystem filter blocks that you use realizemdl to create support sample-based input and
output only. You cannot input or output frame-based signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control more fully the way the
block subsystem model gets built, such as where the block goes, what the name is, or how to optimize
the block structure. Valid properties and values for realizemdl are listed in this table, with the
default value noted and descriptions of what the properties do.

Property Name Property Values Description
Destination 'current' (default), 'new' or

SubsystemName
Specify whether to add the block to
your current Simulink model or
create a new model to contain the
block. If you provide the name of a
current subsystem in
SubsystemName, realizemdl
adds the new block to the specified
subsystem.

Blockname 'filter' (default) Provides the name for the new
subsystem block. By default the
block is named 'filter'. To enter
a name for the block, set
propertyvalue to the name of
your choice, enclosed in single
quotes.

1 Functions

1-1822

Property Name Property Values Description
MapCoeffstoPorts 'off' (default) or 'on' Specify whether to map the

coefficients of the filter to the ports
of the block.

MapStates 'off' (default) or 'on' Specifies whether to apply the
current filter states to the realized
model. This lets you save states
from a filter object you may have
used or configured in a specific way.
The default setting of 'off' means
the states are not transferred to the
model. Setting the property to 'on'
preserves the current filter states in
the realized model.

OverwriteBlock 'off' or 'on' Specify whether to overwrite an
existing block with the same name
or create a new block.

OptimizeZeros 'on' (default) or 'off' Specify whether to remove zero-
gain blocks.

OptimizeOnes 'on' (default) or 'off' Specify whether to replace unity-
gain blocks with direct connections.

OptimizeNegOnes 'on' (default) or 'off' Specify whether to replace negative
unity-gain blocks with a sign change
at the nearest sum block.

OptimizeDelayChains 'on' (default) or 'off' Specify whether to replace
cascaded chains of delay blocks
with a single integer delay block to
provide an equivalent delay.

CoeffNames {'Num'} (default FIR),
{'Num','Den'} (default direct
form IIR),{'Num','Den','g'}
(default IIR SOS), {'K'} (default
form lattice)

Specify the coefficient variable
names as a cell
array.MapCoeffsToPorts must be
set to 'on' for this property to
apply.

InputProcessing 'columnsaschannels' (default),
'elementsaschannels' , or
'inherited'

Specify frame-based
('columnsaschannels') or
sample-based
('elementsaschannels')
processing.

The Inherited (this choice
will be removed - see
release notes) option will be
removed in a future release.

 realizemdl

1-1823

Property Name Property Values Description
RateOption 'enforcesinglerate' (default)

or 'allowmultirate'
Specify how the block adjusts the
rate at the output to accommodate
the reduced number of samples.
This parameter applies only when
InputProcessing is
'columnsaschannels'.

Note OptimizeZeros, OptimizeOnes, and OptimizeNegOnes are 'on' by default. If you want to
map all your coefficients to a port, do one of these:

• Turn off these optimization properties.
• Do not initialize the input filter with zeros, ones, or negative ones.

Examples

Model of Lowpass Butterworth Filter

Create a lowpass Butterworth filter and realize its Simulink® model with coefficients mapped to
ports. Call the filter NewFilter.

[b,a] = butter(4,.25);
d = dfilt.df1(b,a);
realizemdl(d,'MapCoeffsToPorts','on','BlockName','NewFilter')

In this case, the filter is an IIR filter with a direct form II second-order sections structure. Setting
MapCoeffstoPorts to 'on' exports the numerator coefficients, the denominator coefficients, and
the gains to the MATLAB® workspace using the default variable names Num, Den, and g. Each
column of Num and Den represents one second-order section. You can modify the filter coefficients
directly in the MATLAB workspace providing tunability to the realized Simulink model.

See Also
Apps
Filter Designer

Functions
designfilt | fdesign | filt2block

Introduced in R2009b

1 Functions

1-1824

rc2ac
Convert reflection coefficients to autocorrelation sequence

Syntax
r = rc2ac(k,r0)

Description
r = rc2ac(k,r0) finds the autocorrelation coefficients, r, of the output of the discrete-time
prediction error filter from the lattice-form reflection coefficients k and initial zero-lag
autocorrelation r0.

Examples

Compute Autocorrelation Sequence

Determine the autocorrelation sequence that corresponds to a given vector, k, of reflection
coefficients and an initial zero-lag autocorrelation given by r0.

k = [0.3090 0.9800 0.0031 0.0082 -0.0082];
r0 = 0.1;
a = rc2ac(k,r0)

a = 6×1

 0.1000
 -0.0309
 -0.0791
 0.0787
 0.0294
 -0.0950

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

 rc2ac

1-1825

See Also
ac2rc | poly2ac | rc2poly

Introduced before R2006a

1 Functions

1-1826

rc2is
Convert reflection coefficients to inverse sine parameters

Syntax
isin = rc2is(k)

Description
isin = rc2is(k) returns a vector of inverse sine parameters, isin, from a vector of reflection
coefficients, k.

Examples

Compute Inverse Sine Parameters

Define a vector, k, of reflection coefficients and determine the corresponding inverse sine
parameters.

k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
isin = rc2is(k)

isin = 1×5

 0.2000 0.8728 0.0020 0.0052 -0.0052

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

See Also
is2rc

Introduced before R2006a

 rc2is

1-1827

rc2lar
Convert reflection coefficients to log area ratio parameters

Syntax
g = rc2lar(k)

Description
g = rc2lar(k) returns a vector of log area ratio parameters g from a vector of reflection
coefficients k.

Examples

Log Area Ratio Parameters

Define a vector, k, of reflection coefficients and compute the log area ratio parameters.

k = [0.3090 0.9801 0.0031 0.0082 -0.0082];
g = rc2lar(k)

g = 1×5

 0.6389 4.6002 0.0062 0.0164 -0.0164

References

[1] Deller, John R., John G. Proakis, and John H. L. Hansen. Discrete-Time Processing of Speech
Signals. New York: Macmillan, 1993.

See Also
lar2rc

Introduced before R2006a

1 Functions

1-1828

rc2poly
Convert reflection coefficients to prediction filter polynomial

Syntax
a = rc2poly(k)
[a,efinal] = rc2poly(k,r0)

Description
a = rc2poly(k) converts the reflection coefficients k corresponding to the lattice structure to the
prediction filter polynomial a, with a(1) = 1. The output a is row vector of length length(k) + 1.

[a,efinal] = rc2poly(k,r0) returns the final prediction error efinal based on the zero-lag
autocorrelation, r0.

Examples

Equivalent Prediction Filter Representation

Consider a lattice IIR filter given by a set of reflection coefficients. Find its equivalent prediction filter
representation.

k = [0.3090 0.9800 0.0031 0.0082 -0.0082];

a = rc2poly(k)

a = 1×6

 1.0000 0.6148 0.9899 0.0000 0.0032 -0.0082

Algorithms
rc2poly computes output a using Levinson's recursion [1]. The function

1 Sets the output vector a to the first element of k.
2 Loops through the remaining elements of k.

For each loop iteration i, a = [a + a(i-1:-1:1)*k(i) k(i)].
3 Implements a = [1 a].

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

 rc2poly

1-1829

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
ac2poly | latc2tf | latcfilt | poly2rc | rc2ac | rc2is | rc2lar | tf2latc

Introduced before R2006a

1 Functions

1-1830

rceps
Real cepstrum and minimum-phase reconstruction

Syntax
[y,ym] = rceps(x)

Description
[y,ym] = rceps(x) returns both the real cepstrum y and a minimum phase reconstructed version
ym of the input sequence.

Examples

Echo Cancelation Using the Real Cepstrum

A speech recording includes an echo caused by reflection off a wall. Use the real cepstrum to filter it
out.

In the recording, a person says the word MATLAB®. Load the data and the sample rate,
Fs = 7418 Hz.

load mtlb

% To hear, type soundsc(mtlb,Fs)

Model the echo by adding to the recording a copy of the signal delayed by Δ samples and attenuated
by a known factor α: y(n) = x(n) + αx(n− Δ). Specify a time lag of 0.23 s and an attenuation factor of
0.5.

timelag = 0.23;
delta = round(Fs*timelag);
alpha = 0.5;

orig = [mtlb;zeros(delta,1)];
echo = [zeros(delta,1);mtlb]*alpha;

mtEcho = orig + echo;

Plot the original, the echo, and the resulting signal.

t = (0:length(mtEcho)-1)/Fs;

subplot(2,1,1)
plot(t,[orig echo])
legend('Original','Echo')

subplot(2,1,2)
plot(t,mtEcho)
legend('Total')
xlabel('Time (s)')

 rceps

1-1831

% To hear, type soundsc(mtEcho,Fs)

Compute the real cepstrum of the signal. Plot the cepstrum and annotate its maxima. The cepstrum
has a sharp peak at the time at which the echo starts to arrive.

c = rceps(mtEcho);

[px,locs] = findpeaks(c,'Threshold',0.2,'MinPeakDistance',0.2);

clf
plot(t,c,t(locs),px,'o')
xlabel('Time (s)')

1 Functions

1-1832

Cancel the echo by filtering the signal through an IIR system whose output, w, obeys
w(n) + αw(n− Δ) = y(n). Plot the filtered signal and compare it to the original.

dl = locs(2)-1;

mtNew = filter(1,[1 zeros(1,dl-1) alpha],mtEcho);

subplot(2,1,1)
plot(t,orig)
legend('Original')

subplot(2,1,2)
plot(t,mtNew)
legend('Filtered')
xlabel('Time (s)')

 rceps

1-1833

% To hear, type soundsc(mtNew,Fs)

Input Arguments
x — Input signal
real vector

Input signal, specified as a real vector.

Output Arguments
y — Real cepstrum
vector

Real cepstrum, returned as a vector.

ym — Minimum phase real cepstrum
vector

Minimum phase real cepstrum, returned as a vector.

1 Functions

1-1834

Algorithms
The real cepstrum is the inverse Fourier transform of the real logarithm of the magnitude of the
Fourier transform of a sequence.

Note rceps only works on real data.

rceps is an implementation of algorithm 7.2 in [2], that is,

y = real(ifft(log(abs(fft(x)))));

Appropriate windowing in the cepstral domain forms the reconstructed minimum-phase signal:

w = [1;2*ones(n/2-1,1);ones(1-rem(n,2),1);zeros(n/2-1,1)];
ym = real(ifft(exp(fft(w.*y))));

References
[1] Oppenheim, Alan V., and Ronald W. Schafer. Digital Signal Processing, Englewood Cliffs, NJ,

Prentice-Hall, 1975.

[2] Programs for Digital Signal Processing, IEEE Press, New York, 1979.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cceps | fft | hilbert | icceps | unwrap

Introduced before R2006a

 rceps

1-1835

rcosdesign
Raised cosine FIR pulse-shaping filter design

Syntax
b = rcosdesign(beta,span,sps)
b = rcosdesign(beta,span,sps,shape)

Description
b = rcosdesign(beta,span,sps) returns the coefficients, b, that correspond to a square-root
raised cosine FIR filter with rolloff factor specified by beta. The filter is truncated to span symbols,
and each symbol period contains sps samples. The order of the filter, sps*span, must be even. The
filter energy is 1.

b = rcosdesign(beta,span,sps,shape) returns a square-root raised cosine filter when you set
shape to 'sqrt' and a normal raised cosine FIR filter when you set shape to 'normal'.

Examples

Design a Square-Root Raised Cosine Filter

Specify a rolloff factor of 0.25. Truncate the filter to 6 symbols and represent each symbol with 4
samples. Verify that 'sqrt' is the default value of the shape parameter.

h = rcosdesign(0.25,6,4);
mx = max(abs(h-rcosdesign(0.25,6,4,'sqrt')))

mx = 0

fvtool(h,'Analysis','impulse')

1 Functions

1-1836

Impulse Responses of Normal and Square-Root Raised Cosine Filters

Compare a normal raised cosine filter with a square-root cosine filter. An ideal (infinite-length)
normal raised cosine pulse-shaping filter is equivalent to two ideal square-root raised cosine filters in
cascade. Thus, the impulse response of an FIR normal filter should resemble that of a square-root
filter convolved with itself.

Create a normal raised cosine filter with rolloff 0.25. Specify that this filter span 4 symbols with 3
samples per symbol.

rf = 0.25;
span = 4;
sps = 3;

h1 = rcosdesign(rf,span,sps,'normal');
fvtool(h1,'impulse')

 rcosdesign

1-1837

The normal filter has zero crossings at integer multiples of sps. It thus satisfies Nyquist's criterion
for zero intersymbol interference. The square-root filter, however, does not:

h2 = rcosdesign(rf,span,sps,'sqrt');
fvtool(h2,'impulse')

1 Functions

1-1838

Convolve the square-root filter with itself. Truncate the impulse response outward from the maximum
so it has the same length as h1. Normalize the response using the maximum. Then, compare the
convolved square-root filter to the normal filter.

h3 = conv(h2,h2);
p2 = ceil(length(h3)/2);
m2 = ceil(p2-length(h1)/2);
M2 = floor(p2+length(h1)/2);
ct = h3(m2:M2);

stem([h1/max(abs(h1));ct/max(abs(ct))]','filled')
xlabel('Samples')
ylabel('Normalized amplitude')
legend('h1','h2 * h2')

 rcosdesign

1-1839

The convolved response does not coincide with the normal filter because of its finite length. Increase
span to obtain closer agreement between the responses and better compliance with the Nyquist
criterion.

Pass a Signal through a Raised Cosine Filter

This example shows how to pass a signal through a square-root, raised cosine filter.

Specify the filter parameters.

rolloff = 0.25; % Rolloff factor
span = 6; % Filter span in symbols
sps = 4; % Samples per symbol

Generate the square-root, raised cosine filter coefficients.

b = rcosdesign(rolloff, span, sps);

Create a vector of bipolar data.

d = 2*randi([0 1], 100, 1) - 1;

Upsample and filter the data for pulse shaping.

x = upfirdn(d, b, sps);

1 Functions

1-1840

Add noise.

r = x + randn(size(x))*0.01;

Filter and downsample the received signal for matched filtering.

y = upfirdn(r, b, 1, sps);

For information on how to use square-root, raised cosine filters to interpolate and decimate signals,
see “Interpolate and Decimate Using RRC Filter” (Communications Toolbox).

Input Arguments
beta — Rolloff factor
real nonnegative scalar

Rolloff factor, specified as a real nonnegative scalar not greater than 1. The rolloff factor determines
the excess bandwidth of the filter. Zero rolloff corresponds to a brick-wall filter and unit rolloff to a
pure raised cosine.
Data Types: double | single

span — Number of symbols
positive scalar

Number of symbols, specified as a positive integer scalar.
Data Types: double | single

sps — Samples per symbol
positive integer scalar

Number of samples per symbol (oversampling factor), specified as a positive integer scalar.
Data Types: double | single

shape — Shape of the raised cosine window
'sqrt' (default) | 'normal'

Shape of the raised cosine window, specified as either 'normal' or 'sqrt'.

Output Arguments
b — FIR filter coefficients
row vector

Raised cosine filter coefficients, returned as a row vector.
Data Types: double | single

Tips
• If you have a license for Communications Toolbox™ software, you can perform multirate raised

cosine filtering with streaming behavior. To do so, use the System object filters,
comm.RaisedCosineTransmitFilter and comm.RaisedCosineReceiveFilter.

 rcosdesign

1-1841

References
[1] Tranter, William H., K. Sam Shanmugan, Theodore S. Rappaport, and Kurt L. Kosbar. Principles of

Communication Systems Simulation with Wireless Applications. Upper Saddle River, NJ:
Prentice Hall, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constant. Expressions or variables are allowed if their values do not change.

See Also
gaussdesign

Topics
“Interpolate and Decimate Using RRC Filter” (Communications Toolbox)

Introduced in R2013b

1 Functions

1-1842

rectpuls
Sampled aperiodic rectangle

Syntax
y = rectpuls(t)
y = rectpuls(t,w)

Description
y = rectpuls(t) returns a continuous, aperiodic, unit-height rectangular pulse at the sample
times indicated in array t, centered about t = 0.

y = rectpuls(t,w) generates a rectangle of width w.

Examples

Generate and Displace Rectangular Pulse

Generate 200 ms of a rectangular pulse with a sample rate of 10 kHz and a width of 20 ms.

fs = 10e3;
t = -0.1:1/fs:0.1;

w = 20e-3;

x = rectpuls(t,w);

Generate two copies of the same pulse:

• One displaced 45 ms into the past.

tpast = -45e-3;
xpast = rectpuls(t-tpast,w);

• One displaced 60 ms into the future and half as wide.

tfutr = 60e-3;
xfutr = rectpuls(t-tfutr,w/2);

Plot the original pulse and the two copies on the same axes.

plot(t,x,t,xpast,t,xfutr)
ylim([-0.2 1.2])

 rectpuls

1-1843

Input Arguments
t — Sample times
vector

Sample times of unit rectangular pulse, specified as a vector.
Data Types: single | double

w — Rectangle width
1 (default) | positive number

Rectangle width, specified as a positive number.

Output Arguments
y — Rectangular pulse
vector

Rectangular pulse of unit amplitude, returned as a vector.

Note The interval of nonzero amplitude is defined to be open on the right, that is, rectpuls(-0.5)
= 1 while rectpuls(0.5) = 0.

1 Functions

1-1844

Tips
rectpuls can be used in conjunction with the pulse train generating function pulstran.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | cos | diric | gauspuls | pulstran | sawtooth | sin | sinc | square | tripuls

Introduced before R2006a

 rectpuls

1-1845

rectwin
Rectangular window

Syntax
w = rectwin(L)

Description
w = rectwin(L) returns a rectangular window of length L.

Examples

Rectangular Window

Create a 64-point rectangular window. Display the result using wvtool.

L = 64;
wvtool(rectwin(L))

1 Functions

1-1846

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

Output Arguments
w — Rectangular window
column vector

Rectangular window, returned as a column vector.

Algorithms
The output of the rectwin function with input L can also be created using the ones function.

w = ones(L,1);

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
flattopwin | hamming | hann | WVTool | barthannwin | blackmanharris | blackman

Introduced before R2006a

 rectwin

1-1847

resample
Resample uniform or nonuniform data to new fixed rate

Syntax
y = resample(x,p,q)
y = resample(x,p,q,n)
y = resample(x,p,q,n,beta)
y = resample(x,p,q,b)
[y,b] = resample(x,p,q, ___)

[yTT,b] = resample(xTT,p,q, ___)

y = resample(x,tx)
y = resample(x,tx,fs)
y = resample(x,tx,fs,p,q)
y = resample(x,tx, ___ ,method)
[y,ty] = resample(x,tx, ___)
[y,ty,b] = resample(x,tx, ___)

yTT = resample(xTT)
[yTT,b] = resample(xTT, ___)

[___] = resample(___ ,'Dimension',dim)

Description
y = resample(x,p,q) resamples the input sequence, x, at p/q times the original sample rate.
resample applies an FIR “Antialiasing Lowpass Filter” on page 1-1873 to x and compensates for the
delay introduced by the filter. The function operates along the first array dimension with size greater
than 1.

y = resample(x,p,q,n) uses an antialiasing filter of order 2 × n × max(p,q).

y = resample(x,p,q,n,beta) specifies the shape parameter of the Kaiser window used to design
the lowpass filter.

y = resample(x,p,q,b) filters x using the filter coefficients specified in b.

[y,b] = resample(x,p,q, ___) also returns the coefficients of the filter applied to x during the
resampling.

[yTT,b] = resample(xTT,p,q, ___) resamples the uniformly sampled data in the MATLAB
timetable xTT at p/q times the original sample rate and returns a timetable yTT. You can specify
additional arguments n, beta, or b.

y = resample(x,tx) resamples the values, x, of a signal sampled at the instants specified in
vector tx. The function interpolates x linearly onto a vector of uniformly spaced instants with the
same endpoints and number of samples as tx. NaNs are treated as missing data and are ignored.

1 Functions

1-1848

y = resample(x,tx,fs) uses a polyphase antialiasing filter to resample the signal at the uniform
sample rate specified in fs.

y = resample(x,tx,fs,p,q) interpolates the input signal to an intermediate uniform grid with a
sample spacing of (p/q)/fs. The function then filters the result to upsample it by p and downsample it
by q, resulting in a final sample rate of fs. For best results, ensure that fs × q/p is at least twice as
large as the highest frequency component of x.

y = resample(x,tx, ___ ,method) specifies the interpolation method along with any of the
arguments from previous syntaxes in this group. The interpolation method can be 'linear',
'pchip', or 'spline'.

[y,ty] = resample(x,tx, ___) returns in ty the instants that correspond to the resampled
signal.

[y,ty,b] = resample(x,tx, ___) returns in b the coefficients of the antialiasing filter.

yTT = resample(xTT) resamples the nonuniformly sampled data in xTT and returns uniformly
sampled data. yTT has the same endpoints and number of samples as xTT.

[yTT,b] = resample(xTT, ___) resamples the nonuniformly sampled data in xTT and also
returns the coefficients of the antialiasing filter in b. You can specify the same argument options
available for input x,tx.

[___] = resample(___ ,'Dimension',dim) resamples the input along dimension dim.

Examples

Resample Linear Sequence

Resample a simple linear sequence at 3/2 the original rate of 10 Hz. Plot the original and resampled
signals on the same figure.

fs = 10;
t1 = 0:1/fs:1;
x = t1;
y = resample(x,3,2);
t2 = (0:(length(y)-1))*2/(3*fs);

plot(t1,x,'*',t2,y,'o')
xlabel('Time (s)')
ylabel('Signal')
legend('Original','Resampled', ...
 'Location','NorthWest')

 resample

1-1849

When filtering, resample assumes that the input sequence, x, is zero before and after the samples it
is given. Large deviations from zero at the endpoints of x can result in unexpected values for y.

Show these deviations by resampling a triangular sequence and a vertically shifted version of the
sequence with nonzero endpoints.

x = [1:10 9:-1:1;
 10:-1:1 2:10]';
y = resample(x,3,2);

subplot(2,1,1)
plot(1:19,x(:,1),'*',(0:28)*2/3 + 1,y(:,1),'o')
title('Edge Effects Not Noticeable')
legend('Original','Resampled', ...
 'Location','South')

subplot(2,1,2)
plot(1:19,x(:,2),'*',(0:28)*2/3 + 1,y(:,2),'o')
title('Edge Effects Noticeable')
legend('Original','Resampled', ...
 'Location','North')

1 Functions

1-1850

Resample Using Kaiser Window

Construct a sinusoidal signal. Specify a sample rate such that 16 samples correspond to exactly one
signal period. Draw a stem plot of the signal. Overlay a stairstep graph for sample-and-hold
visualization.

fs = 16;
t = 0:1/fs:1-1/fs;

x = 0.75*sin(2*pi*t);

stem(t,x)
hold on
stairs(t,x)
hold off

 resample

1-1851

Use resample to upsample the signal by a factor of four. Use the default settings. Plot the result
alongside the original signal.

ups = 4;
dns = 1;

fu = fs*ups;
tu = 0:1/fu:1-1/fu;

y = resample(x,ups,dns);

stem(tu,y)
hold on
stairs(t,x)
hold off
legend('Resampled','Original')

1 Functions

1-1852

Repeat the calculation. Specify n = 1 so that the antialiasing filter is of order 2 × 1 × 4 = 8. Specify a
shape parameter β = 0 for the Kaiser window. Output the filter as well as the resampled signal.

n = 1;
beta = 0;

[y,b] = resample(x,ups,dns,n,beta);

fo = filtord(b)

fo = 8

stem(tu,y)
hold on
stairs(t,x,'--')
hold off
legend('n = 1, \beta = 0')

 resample

1-1853

The resampled signal shows aliasing effects that result from the relatively wide mainlobe and low
sidelobe attenuation of the window.

Increase n to 5 and leave β = 0. Verify that the filter is of order 40. Plot the resampled signal.

n = 5;

[y,b] = resample(x,ups,dns,n,beta);

fo = filtord(b)

fo = 40

stem(tu,y)
hold on
stairs(t,x,'--')
hold off
legend('n = 5, \beta = 0')

1 Functions

1-1854

The longer window has a narrower mainlobe and attenuates aliasing effects better. It also attenuates
the signal.

Leave the filter order at 2 × 5 × 4 = 40 and increase the shape parameter to β = 20.

beta = 20;

y = resample(x,ups,dns,n,beta);

stem(tu,y)
hold on
stairs(t,x,'--')
hold off
legend('n = 5, \beta = 20')

 resample

1-1855

The high sidelobe attenuation results in good resampling.

Decrease the filter order back to 2 × 1 × 4 = 8 and leave β = 20.

n = 1;

[y,b] = resample(x,ups,dns,n,beta);

stem(tu,y)
hold on
stairs(t,x,'--')
hold off
legend('n = 1, \beta = 20')

1 Functions

1-1856

The wider mainlobe generates considerable artifacts upon resampling.

Resample a Sinusoid

Generate 60 samples of a sinusoid and resample it at 3/2 the original rate. Display the original and
resampled signals.

tx = 0:6:360-3;
x = sin(2*pi*tx/120);

ty = 0:4:360-2;
[y,by] = resample(x,3,2);

plot(tx,x,'+-',ty,y,'o:')
legend('original','resampled')

 resample

1-1857

Plot the frequency response of the anti-aliasing filter.

freqz(by)

1 Functions

1-1858

Resample the signal at 2/3 the original rate. Display the original signal and its resampling.

tz = 0:9:360-9;
[z,bz] = resample(x,2,3);

plot(tx,x,'+-',tz,z,'o:')
legend('original','resampled')

 resample

1-1859

Plot the impulse response of the new lowpass filter.

impz(bz)

1 Functions

1-1860

Resample Data in Timetable

Create two vectors of ten randomly generated numbers. Assume one number for each vector was
recorded daily for a total of ten days. Store the data in a MATLAB timetable.

a = randn(10,1);
b = randn(10,1);

t = days(1:10);

xTT = timetable(t',[a b]);

Use the resample function to increase the sample rate from once daily to once hourly. Plot both data
sets.

yTT = resample(xTT,24,1);

subplot(2,1,1)
plot(xTT.Time,xTT.Var1,'-o')
subplot(2,1,2)
plot(yTT.Time,yTT.Var1,'-o')

 resample

1-1861

Resample a Nonuniformly Sampled Data Set

Use the data recorded by Galileo Galilei in 1610 to determine the orbital period of Callisto, the
outermost of Jupiter's four largest satellites.

Galileo observed the satellites' motion for six weeks, starting on 15 January. The observations have
several gaps because Jupiter was not visible on cloudy nights. Generate a datetime array of
observation times.

t = [0 2 3 7 8 9 10 11 12 17 18 19 20 24 25 26 27 28 29 31 32 33 35 37 ...
 41 42 43 44 45]'+1;

yg = [10.5 11.5 10.5 -5.5 -10.0 -12.0 -11.5 -12.0 -7.5 8.5 12.5 12.5 ...
 10.5 -6.0 -11.5 -12.5 -12.5 -10.5 -6.5 2.0 8.5 10.5 13.5 10.5 -8.5 ...
 -10.5 -10.5 -10.0 -8.0]';

obsv = datetime(1610,1,15+t);

Resample the data onto a regular grid using a sample rate of one observation per day. Use a
moderate upsampling factor of 3 to avoid overfitting.

fs = 1;

[y,ty] = resample(yg,t,fs,3,1);

1 Functions

1-1862

Plot the data and the resampled signal.

plot(t,yg,'o',ty,y,'.-')
xlabel('Day')

Repeat the procedure using spline interpolation and displaying the observation dates. Express the
sample rate in inverse days.

fs = 1/86400;

[ys,tys] = resample(yg,obsv,fs,3,1,'spline');

plot(t,yg,'o')
hold on
plot(ys,'.-')
hold off

ax = gca;
ax.XTick = t(1:9:end);
ax.XTickLabel = char(obsv(1:9:end));

 resample

1-1863

Compute the periodogram power spectrum estimate of the uniformly spaced, linearly interpolated
data. Choose a DFT length of 1024. The signal peaks at the inverse of the orbital period.

[pxx,f] = periodogram(ys,[],1024,1,'power');
[pk,i0] = max(pxx);

f0 = f(i0);
T0 = 1/f0

T0 = 16.7869

plot(f,pxx,f0,pk,'o')
xlabel('Frequency (day^{-1})')

1 Functions

1-1864

Resample Nonuniformly Sampled Data in Timetable

A person recorded their weight in pounds during the leap year 2012. The person did not record their
weight every day, so the data are nonuniform. Load the data and store the measurements in a
MATLAB timetable. Use a datetime vector to specify “RowTimes”.

load weight2012.dat

rowTimes = datetime(2012,1,1:366)';
wt = weight2012(:,2);
xTT = timetable(rowTimes,wt);

Resample the data. The result is a timetable containing uniformly sampled data with the same
endpoints and number of samples as wt.

yTT = resample(xTT);

Plot both the original and the resampled data for comparison. Adjust the x-axis limits to display only
the measurements in the month of August.

plot(xTT.rowTimes,xTT.wt,'-o',yTT.Time,yTT.wt,'-*')
xlim(datetime([2012 08 01;2012 08 31]))
legend('Original','Resampled')

 resample

1-1865

Resample the data again using cubic interpolation.

yTTs = resample(xTT,'pchip');

plot(xTT.rowTimes,xTT.wt,'o',yTTs.Time,yTTs.wt,'-*')
xlim(datetime([2012 08 01;2012 08 31]))

1 Functions

1-1866

Now increase the sample rate to two measurements per day and use spline interpolation. Plot the
result.

fs = 1/86400;
yTTf = resample(xTT,2*fs,'spline');

plot(yTTf.Time,yTTf.wt,'-*')
xlim(datetime([2012 08 01;2012 08 31]))

 resample

1-1867

Resample Multichannel Signal

Generate a five-channel, 100-sample sinusoidal signal. Time increases across the columns and
frequency increases down the rows. Plot the signal.

p = 3;
q = 2;

tx = 0:p:300-p;

x = cos(2*pi*tx./(1:5)'/100);

plot(tx,x,'.:')
title('Original')
ylim([-1.5 1.5])

1 Functions

1-1868

Upsample the sinusoid by 3/2 along its second dimension. Overlay the resampled signal on the plot.

ty = 0:q:300-q;

y = resample(x,p,q,'Dimension',2);

plot(ty,y,'.:')
title('Upsampled')

 resample

1-1869

Reshape the resampled signal so that time runs along a third dimension.

y = permute(y,[1 3 2]);
size(y)

ans = 1×3

 5 1 150

Downsample the signal back to its original rate and plot it.

z = resample(y,q,p,'Dimension',3);

plot(tx,squeeze(z),'.:')
title('Downsampled')

1 Functions

1-1870

Input Arguments
x — Input signal
vector | matrix | N-D array

Input signal, specified as a vector, matrix, or N-D array. x can contain NaNs when time information is
provided. NaNs are treated as missing data and are excluded from the resampling.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: double

p, q — Resampling factors
positive integers

Resampling factors, specified as positive integers.
Data Types: double

n — Neighbor term number
10 (default) | positive integer

Neighbor term number, specified as a positive integer. If n = 0, resample performs nearest-neighbor
interpolation. The length of the antialiasing FIR filter is proportional to n. Larger values of n provide
better accuracy at the expense of more computation time.

 resample

1-1871

Data Types: double

beta — Shape parameter of Kaiser window
5 (default) | positive real scalar

Shape parameter of Kaiser window, specified as a positive real scalar. Increasing beta widens the
mainlobe of the window used to design the antialiasing filter and decreases the amplitude of the
window’s sidelobes.
Data Types: double

b — FIR filter coefficients
vector

FIR filter coefficients, specified as a vector. By default, resample designs the filter using firls with
a Kaiser window. When compensating for the delay, resample assumes b has odd length and linear
phase. See “Antialiasing Lowpass Filter” on page 1-1873 for more information.
Data Types: double

xTT — Input timetable
timetable

Input timetable with at least two rows, specified as a timetable. Each variable in xTT is treated as
an independent signal. If a variable in the timetable is an N-D array, then resample operates along
the first dimension.

Note

• RowTimes must be either a duration vector or a datetime object with unique and finite values.
Nonfinite time values are treated as missing data and are ignored.

• If unsorted, resample sorts RowTimes in ascending order.

See timetable for more information.

Data Types: double

tx — Time instants
nonnegative real vector | datetime array

Time instants, specified as a nonnegative real vector or a datetime array. tx must increase
monotonically but need not be uniformly spaced. tx can contain NaNs or NaTs. These values are
treated as missing data and excluded from the resampling. tx is valid only for input x.
Data Types: double | datetime

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.
Data Types: double

1 Functions

1-1872

method — Interpolation method
'linear' (default) | 'pchip' | 'spline'

Interpolation method, specified as one of 'linear', 'pchip', or 'spline':

• 'linear' — Linear interpolation.
• 'pchip' — Shape-preserving piecewise cubic interpolation.
• 'spline' — Spline interpolation using not-a-knot end conditions.

See the interp1 reference page for more information.

Note If x is not slowly varying, consider using interp1 with the 'pchip' interpolation method.

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If dim is not specified, resample
operates along the first array dimension with size greater than 1. If the input is a timetable, then dim
must be 1.
Data Types: single | double

Output Arguments
y — Resampled signal
vector | matrix | N-D array

Resampled signal, returned as a vector, matrix, or N-D array. If x is of length N along dimension dim
and you specify p and q, then y is of length ⌈N × p/q⌉ along dim.

b — FIR filter coefficients
vector

FIR filter coefficients, returned as a vector.

ty — Output instants
nonnegative real vector

Output instants, returned as a nonnegative real vector. ty applies only for input x.

yTT — Resampled timetable
timetable

Resampled timetable, returned as a timetable.

More About
Antialiasing Lowpass Filter

To resample a signal by a rational factor p/q, resample calls upfirdn, which conceptually performs
these steps:

 resample

1-1873

1 Insert zeros to upsample the signal by p.
2 Apply an FIR antialiasing filter to the upsampled signal.
3 Discard samples to downsample the filtered signal by q.

The ideal antialiasing filter has normalized cutoff frequency fc = π/max(p,q) rad/sample and gain p. To
approximate the antialiasing filter, resample uses the Kaiser window method.

• The filter order is 2 × n × max(p,q). The default value of n is 50.
• The Kaiser window has a shape parameter beta that controls the tradeoff between transition

width and stopband attenuation. The default value of beta is 5.
• The filter coefficients are normalized to account for the processing gain of the window.

As an example, design an antialiasing filter to resample a signal to 3/2 times its original sample rate:

p = 3;
q = 2;
maxpq = max(p,q);

fc = 1/maxpq;
n = 50;
order = 2*n*maxpq;
beta = 5;

b = fir1(order,fc,kaiser(order+1,beta));
b = p*b/sum(b);

See “Resampling Uniformly Sampled Signals” for more information.

Tips
• Use the isregular function to determine if a timetable is uniformly sampled.

Algorithms
resample performs an FIR design using firls, normalizes the result to account for the processing
gain of the window, and then implements a rate change using upfirdn.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

datetime and duration arrays are not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

datetime and duration arrays are not supported for code generation.

1 Functions

1-1874

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The 'pchip' interpolation method is not supported.
• Input timetable containing a gpuArray is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
decimate | downsample | fillgaps | firls | interp | interp1 | intfilt | kaiser | spline |
upfirdn | upsample

Topics
“Resampling Uniformly Sampled Signals”
“Resampling Nonuniformly Sampled Signals”
“Reconstructing Missing Data”
“Reconstruct a Signal from Irregularly Sampled Data”

Introduced before R2006a

 resample

1-1875

residuez
Z-transform partial-fraction expansion

Syntax
[ro,po,ko] = residuez(bi,ai)
[bo,ao] = residuez(ri,pi,ki)

Description
[ro,po,ko] = residuez(bi,ai) finds the residues, poles, and direct terms of a partial fraction
expansion of the ratio of numerator and denominator polynomials, b and a.

[bo,ao] = residuez(ri,pi,ki) with three input arguments and two output arguments,
converts the partial fraction expansion back to polynomials with coefficients in row vectors b and a.

Examples

Partial-Fraction Expansion of IIR Lowpass Filter

Compute the partial-fraction expansion corresponding to the third-order IIR lowpass filter described
by the transfer function

H(z) = 0 . 05634(1 + z−1)(1 − 1 . 0166z−1 + z−2)
(1 − 0 . 683z−1)(1 − 1 . 4461z−1 + 0 . 7957z−2)

.

Express the numerator and denominator as polynomial convolutions.

b0 = 0.05634;
b1 = [1 1];
b2 = [1 -1.0166 1];
a1 = [1 -0.683];
a2 = [1 -1.4461 0.7957];

b = b0*conv(b1,b2);
a = conv(a1,a2);

Compute the residues, poles, and direct terms of the partial-fraction expansion.

[r,p,k] = residuez(b,a)

r = 3×1 complex

 -0.1153 - 0.0182i
 -0.1153 + 0.0182i
 0.3905 + 0.0000i

p = 3×1 complex

1 Functions

1-1876

 0.7230 + 0.5224i
 0.7230 - 0.5224i
 0.6830 + 0.0000i

k = -0.1037

Plot the poles and zeros of the transfer function and overlay the poles you just found.

zplane(b,a)
hold on
plot(p,'^r')
hold off

Use residuez again to reconstruct the transfer function.

[bn,an] = residuez(r,p,k)

bn = 1×4

 0.0563 -0.0009 -0.0009 0.0563

an = 1×4

 1.0000 -2.1291 1.7834 -0.5435

 residuez

1-1877

Input Arguments
bi, ai — Polynomial coefficients
vector

Polynomial coefficients, specified as vectors. Vectors b and a specify the coefficients of the
polynomials of the discrete-time system b(z)/a(z) in descending powers of z.

B(z) = b0 + b1z−1 + b2z−2 +⋯+ bmz−m

A(z) = a0 + a1z−1 + a2z−2 +⋯+ anz−n

If there are multiple roots and a > n-1,

B(z)
A(z) = r(1)

1 − p(1)z−1 +⋯+ r(n)
1 − p(n)z−1 + k(1) + k(2)z−1 +⋯+ k(m− n + 1)z−(m− n)

ri — Residues
column vector

Residues of the partial fraction, specified as a vector.

pi — Poles
column vector

Poles of the partial fraction, specified as a vector.

ki — Direct terms
row vector

Direct terms, specified as a row vector.

Output Arguments
ro — Residues
column vector

Residues of the partial fraction, returned as a vector.

po — Poles
column vector

Pole of the partial fraction, returned as a vector. The number of poles is

n = length(a)-1 = length(r) = length(p)

If p(j) = ... = p(j+s-1) is a pole of multiplicity s, then the expansion includes terms of the
form

r(j)
1 − p(j)z−1 + r(j + 1)

(1 − p(j)z−1)2
+⋯+

r(j + sr − 1)
(1 − p(j)z−1)s

ko — Direct term
row vector

1 Functions

1-1878

Direct terms, returned as a row vector. The direct term coefficient vector k is empty if length(b) is
less than length(a); otherwise:

length(k) = length(b) - length(a) + 1

bo, ao — Polynomial coefficients
vector

Polynomial coefficients, returned as vectors.

Algorithms
residuez converts a discrete time system, expressed as the ratio of two polynomials, to partial
fraction expansion, or residue, form. It also converts the partial fraction expansion back to the
original polynomial coefficients.

Note Numerically, the partial fraction expansion of a ratio of polynomials is an ill-posed problem. If
the denominator polynomial is near a polynomial with multiple roots, then small changes in the data,
including round-off errors, can cause arbitrarily large changes in the resulting poles and residues.
You should use state-space or pole-zero representations instead.

residuez applies standard MATLAB functions and partial fraction techniques to find r, p, and k
from b and a. It finds

• The direct terms a using deconv (polynomial long division) when length(b) > length(a)-1.
• The poles using p = roots(a).
• Any repeated poles, reordering the poles according to their multiplicities.
• The residue for each nonrepeating pole pj by multiplying b(z)/a(z) by 1/(1 - pjz−1) and evaluating

the resulting rational function at z = pj.
• The residues for the repeated poles by solving

S2*r2 = h - S1*r1

for r2 using \. h is the impulse response of the reduced b(z)/a(z), S1 is a matrix whose columns
are impulse responses of the first-order systems made up of the nonrepeating roots, and r1 is a
column containing the residues for the nonrepeating roots. Each column of matrix S2 is an
impulse response. For each root pj of multiplicity sj, S2 contains sj columns representing the
impulse responses of each of the following systems.

1
1 − p jz−1 , 1

(1 − p jz−1)2
,⋯, 1

(1 − p jz−1)
s j

The vector h and matrices S1 and S2 have n + xtra rows, where n is the total number of roots
and the internal parameter xtra, set to 1 by default, determines the degree of over-determination
of the system of equations.

Note The residue function in the standard MATLAB language is very similar to residuez. It
computes the partial fraction expansion of continuous-time systems in the Laplace domain (see
reference [1]), rather than discrete-time systems in the z-domain as does residuez.

 residuez

1-1879

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd

Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

See Also
convmtx | deconv | poly | prony | residue | roots | ss2tf | tf2ss | tf2zp | tf2zpk | zp2ss

Introduced before R2006a

1 Functions

1-1880

risetime
Rise time of positive-going bilevel waveform transitions

Syntax
r = risetime(x)
r = risetime(x,fs)
r = risetime(x,t)

[r,lt,ut] = risetime(___)
[r,lt,ut,ll,ul] = risetime(___)

[___] = risetime(___ ,Name,Value)

risetime(___)

Description
r = risetime(x) returns a vector, r, containing the time each transition of the input bilevel
waveform, x, takes to cross from the 10% to 90% reference levels. To determine the transitions,
risetime estimates the state levels of the input waveform by a histogram method. risetime
identifies all regions that cross the upper-state boundary of the low state and the lower-state
boundary of the high state. The low-state and high-state boundaries are expressed as the state level
plus or minus a multiple of the difference between the state levels. See “State-Level Tolerances” on
page 1-1890. Because risetime uses interpolation, r can contain values that do not correspond to
sampling instants of the bilevel waveform, x.

r = risetime(x,fs) specifies the sample rate in hertz. The sample rate determines the sample
instants corresponding to the elements in x. The first sample instant in x corresponds to t = 0.
Because risetime uses interpolation, r can contain values that do not correspond to sampling
instants of the bilevel waveform, x.

r = risetime(x,t) specifies the sample instants, t, as a vector with the same number of elements
as x.

[r,lt,ut] = risetime(___) returns vectors, lt and ut, whose elements correspond to the time
instants where x crosses the lower- and upper-percent reference levels.

[r,lt,ut,ll,ul] = risetime(___) returns the levels, ll and ul, that correspond to the lower-
and upper-percent reference levels.

[___] = risetime(___ ,Name,Value) returns the rise times with additional options specified by
one or more Name,Value pair arguments.

risetime(___) plots the signal and darkens the regions of each transition where rise time is
computed. The plot marks the lower and upper crossings and the associated reference levels. The
state levels and the corresponding associated lower- and upper-state boundaries are also plotted.

Examples

 risetime

1-1881

Rise Time in Bilevel Waveform

Determine the rise time in samples for a 2.3 V clock waveform.

Load the 2.3 V clock data. Determine the rise time in samples. Use the default 10% and 90% percent
reference levels.

load('transitionex.mat','x','t')
R = risetime(x)

R = 0.7120

The rise time is less than 1, indicating that the transition occurred in a fraction of a sample. Plot the
data, including the time information, and annotate the rise time.

risetime(x,t);

Align Two Bilevel Waveforms

Generate two signals that represent bilevel waveforms. The signals are sampled at 50 Hz for 20
seconds. For the first signal, the transition occurs 13 seconds after the start of the measurement. For
the second signal, the transition occurs 5 seconds after the start of the measurement. The signals
have different amplitudes and are embedded in white Gaussian noise of different variances. Plot the
signals.

1 Functions

1-1882

tt = linspace(0,20,1001)';
e1 = 1.4*tanh(tt-13)+randn(size(tt))/3;
e2 = tanh(3*(tt-5))+randn(size(tt))/5;

plot(tt,e1,tt,e2)

Align the signals so their transition times coincide. Correlation-based methods cannot align this type
of signals adequately.

[y1,y2,D] = alignsignals(e1,e2);

plot(y1)
hold on
plot(y2)
hold off

 risetime

1-1883

Use risetime to align the signals. For each signal, find the transition time as the average of the
instant at which the signal crosses the lower reference level and the instant at which it crosses the
upper reference level. Plot the aligned waveforms.

[~,l1,u1] = risetime(e1,tt);
[~,l2,u2] = risetime(e2,tt);

t1 = tt-(l1+u1)/2;
t2 = tt-(l2+u2)/2;

plot(t1,e1,t2,e2)

1 Functions

1-1884

Rise Time with Nondefault Reference Levels

Determine the rise time in a 2.3 V clock waveform sampled at 4 MHz. Compute the rise time using
the 20% and 80% reference levels.

Load the 2.3 V clock data with sampling instants. Compute the sample rate as the inverse of the time
difference between consecutive samples. Determine the rise time using the 20% and 80% reference
levels. Plot the annotated waveform.

load('transitionex.mat','x','t')

fs = 1/(t(2)-t(1));

risetime(x,'PercentReferenceLevels',[20 80])

 risetime

1-1885

ans = 0.5340

Rise Time, Reference-Level Instants, and Reference Levels

Determine the rise time, reference-level instants, and reference levels in a 2.3 V clock waveform
sampled at 4 MHz.

Load the 2.3 V clock waveform along with the sampling instants.

load('transitionex.mat','x','t')

Determine the rise time, reference-level instants, and reference levels.

[R,lt,ut,ll,ul] = risetime(x,t);

Plot the waveform with the lower- and upper-reference levels and reference-level instants. Show that
the rise time is the difference between the upper- and lower-reference level instants.

plot(t,x)
xlabel('seconds')
ylabel('Volts')

hold on
plot([lt ut],[ll ul],'o')
hold off

1 Functions

1-1886

fprintf('Rise time is %g seconds.',ut-lt)

Rise time is 1.78e-07 seconds.

Input Arguments
x — Bilevel waveform
real vector

Bilevel waveform, specified as a real-valued vector.

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar in hertz.

t — sample instants
real vector

Sample instants, specified as a vector. The length of t must equal the length of the bilevel waveform
x.

 risetime

1-1887

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'StateLevels',[0,0.8],'Tolerance',10,'PercentReferenceLevels',[20 50]
specifies that the low and high levels are 0 ± 10% and 0.8 ± 10%, respectively, and that a transition
occurs when the signal crosses from 0.8 × 0.2 to 0.8 × 0.5.

PercentReferenceLevels — Reference levels as a percentage of the waveform amplitude
[10 90] (default) | two-element positive row vector

Reference levels as a percentage of the waveform amplitude, specified as the comma-separated pair
consisting of 'PercentReferenceLevels'and a two-element positive row vector. The elements of
the row vector correspond to the lower and upper percent reference levels. The high state level is
defined to be 100 percent and the low state level is defined to be 0 percent. See “Percent Reference
Levels” on page 1-628 for more details.

StateLevels — Low and high state levels
two-element positive row vector

Low and high state levels, specified as the comma-separated pair consisting of 'StateLevels' and
a two-element positive row vector. The first and second elements of the vector correspond to the low
and high state levels.

Tolerance — Lower- and upper-state boundaries
2 (default) | real positive scalar

Lower- and upper-state boundaries, specified as the comma-separated pair consisting of
'Tolerance' and a real positive scalar as a percentage value. See “State-Level Tolerances” on page
1-628 for more information on this name-value pair.

Output Arguments
r — Duration of positive-going transition
vector

Duration of positive-going transition, returned as a vector. If you specify the sample rate Fs or the
sample instants t, the rise times are in seconds. If you do not specify a sample rate or sample
instants, the rise times are in samples.

lt — Lower reference-level crossing instants
vector

Lower reference-level crossing instants, returned as a vector. The vector lt contains the time
instants when the positive-going transition crosses the lower reference level. By default, the lower
reference level is the 10% reference level. You can change the default reference levels by specifying
the 'PercentReferenceLevels' name-value pair.

ut — Upper reference-level crossing instants
vector

Upper reference-level crossing instants, returned as a vector. The vector ut contains the time
instants when the positive-going transition crosses the upper reference level. By default, the upper

1 Functions

1-1888

reference level is the 90% reference level. You can change the default reference levels by specifying
the 'PercentReferenceLevels' name-value pair.

ll — Lower reference level
real numeric scalar

Lower reference level in waveform amplitude units, returned as a real numeric scalar. ll is a vector
containing the waveform values corresponding to the lower reference level in each positive-going
transition. By default, the lower reference-level is the 10% reference level. You can change the
default reference-levels by specifying the 'PercentReferenceLevels' name-value pair.

ul — Upper reference level
real numeric scalar

Upper reference level in waveform amplitude units, returned as a real numeric scalar. ul is a vector
containing the waveform values corresponding to the upper reference level in each positive-going
transition. By default, the upper reference level is the 90% reference level. You can change the
default reference levels by specifying the 'PercentReferenceLevels' name-value pair.

More About
Positive-Going Transition

A positive-going transition in a bilevel waveform is a transition from the low-state level to the high-
state level. A positive-polarity (positive-going) pulse has a terminating state more positive than the
originating state. If the waveform is differentiable in the neighborhood of the transition, an equivalent
definition is a transition with a positive first derivative. This figure shows a positive-going transition.

 risetime

1-1889

The amplitude values of the waveform do not appear because a positive-going transition does not
depend on the actual waveform values. A positive-going transition is defined by the direction of the
transition.

Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent reference level, the waveform
value corresponding to the upper percent reference level is

S1 + U
100(S2− S1) .

If L is the lower-percent reference level, the waveform value corresponding to the lower percent
reference level is

S1 + L
100(S2− S1) .

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

1 Functions

1-1890

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003, pp. 15–

17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
falltime | slewrate | statelevels

Introduced in R2012a

 risetime

1-1891

rlevinson
Reverse Levinson-Durbin recursion

Syntax
r = rlevinson(a,efinal)
[r,u] = rlevinson(a,efinal)
[r,u,k] = rlevinson(a,efinal)
[r,u,k,e] = rlevinson(a,efinal)

Description
The reverse Levinson-Durbin recursion implements the step-down algorithm for solving the following
symmetric Toeplitz system of linear equations for r, where r = [r(1) … r(p + 1)] and r(i)* denotes the
complex conjugate of r(i).

r(1) r(2)∗ ⋯ r(p)∗

r(2) r(1) ⋯ r(p− 1)∗

⋮ ⋱ ⋱ ⋮
r(p) ⋯ r(2) r(1)

a(2)
a(3)
⋮

a(p + 1)

=

−r(2)
−r(3)
⋮

−r(p + 1)

r = rlevinson(a,efinal) solves the above system of equations for r given vector a, where
a = [1 a(2) … a(p + 1)]. In linear prediction applications, r represents the autocorrelation sequence
of the input to the prediction error filter, where r(1) is the zero-lag element. The figure below shows
the typical filter of this type, where H(z) is the optimal linear predictor, x(n) is the input signal, x (n) is
the predicted signal, and e(n) is the prediction error.

Input vector a represents the polynomial coefficients of this prediction error filter in descending
powers of z.

A(z) = 1 + a(2)z−1 +⋯+ a(n + 1)z−p

The filter must be minimum-phase to generate a valid autocorrelation sequence. efinal is the scalar
prediction error power, which is equal to the variance of the prediction error signal, σ2(e).

[r,u] = rlevinson(a,efinal) returns upper triangular matrix U from the UDU* decomposition

R−1 = UE−1U∗

where

1 Functions

1-1892

R =

r(1) r(2)∗ ⋯ r(p)∗

r(2) r(1) ⋯ r(p− 1)∗

⋮ ⋱ ⋱ ⋮
r(p) ⋯ r(2) r(1)

and E is a diagonal matrix with elements returned in output e (see below). This decomposition
permits the efficient evaluation of the inverse of the autocorrelation matrix, R−1.

Output matrix u contains the prediction filter polynomial, a, from each iteration of the reverse
Levinson-Durbin recursion

U =

a1(1)∗ a2(2)∗ ⋯ ap + 1(p + 1)∗

0 a2(1)∗ ⋱ ap + 1(p)∗

0 0 ⋱ ap + 1(p− 1)∗

⋮ ⋱ ⋱ ⋮
0 ⋯ 0 ap + 1(1)∗

where ai(j) is the jth coefficient of the ith order prediction filter polynomial (i.e., step i in the
recursion). For example, the 5th order prediction filter polynomial is

a5 = u(5:-1:1,5)'

Note that u(p+1:-1:1,p+1)' is the input polynomial coefficient vector a.

[r,u,k] = rlevinson(a,efinal) returns a vector k of length p + 1 containing the reflection
coefficients. The reflection coefficients are the conjugates of the values in the first row of u.

k = conj(u(1,2:end))

[r,u,k,e] = rlevinson(a,efinal) returns a vector of length p + 1 containing the prediction
errors from each iteration of the reverse Levinson-Durbin recursion: e(1) is the prediction error
from the first-order model, e(2) is the prediction error from the second-order model, and so on.

These prediction error values form the diagonal of the matrix E in the UDU* decomposition of R−1.

R−1 = UE−1U∗

Examples

Optimum Autoregressive Model Order

Estimate the spectrum of two sine waves in noise using an autoregressive model. Choose the best
model order from a group of models returned by the reverse Levinson-Durbin recursion.

Generate the signal. Specify a sample rate of 1 kHz and a signal duration of 50 seconds. The
sinusoids have frequencies of 50 Hz and 55 Hz. The noise has a variance of 0.2².

Fs = 1000;
t = (0:50e3-1)'/Fs;
x = sin(2*pi*50*t) + sin(2*pi*55*t) + 0.2*randn(50e3,1);

 rlevinson

1-1893

Estimate the autoregressive model parameters.

[a,e] = arcov(x,100);
[r,u,k] = rlevinson(a,e);

Estimate the power spectral density for orders 1, 5, 25, 50, and 100.

N = [1 5 25 50 100];
nFFT = 8096;
P = zeros(nFFT,5);

for idx = 1:numel(N)
 order = N(idx);
 ARtest = flipud(u(:,order));
 P(:,idx) = 1./abs(fft(ARtest,nFFT)).^2;
end

Plot the PSD estimates.

F = (0:1/nFFT:1/2-1/nFFT)*Fs;
plot(F, 10*log10(P(1:length(P)/2,:)))
grid

legend([repmat('Order = ',[5 1]) num2str(N')])
xlabel('Frequency (Hz)')
ylabel('dB')
xlim([35 70])

1 Functions

1-1894

References

[1] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” (MATLAB Coder).

See Also
levinson | lpc | prony | stmcb

Introduced before R2006a

 rlevinson

1-1895

rms
Root-mean-square level

Syntax
y = rms(x)
y = rms(x,dim)

Description
y = rms(x) returns the root-mean-square (RMS) level of the input, x. If x is a row or column vector,
y is a real-valued scalar. For matrices, y contains the RMS levels computed along the first array
dimension of x with size greater than 1. For example, if x is an N-by-M matrix with N > 1, then y is a
1-by-M row vector containing the RMS levels of the columns of x.

y = rms(x,dim) computes the RMS level of x along the dimension dim.

Examples

RMS Level of Sinusoid

Compute the RMS level of a 100 Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);

y = rms(x)

y = 0.7071

RMS Levels of 2-D Matrix

Create a matrix in which each column is a 100 Hz sinusoid sampled at 1 kHz with a different
amplitude. The amplitude is equal to the column index.

Compute the RMS levels of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)'*(1:4);

y = rms(x)

y = 1×4

 0.7071 1.4142 2.1213 2.8284

1 Functions

1-1896

RMS Levels of 2-D Matrix Along Specified Dimension

Create a matrix in which each row is a 100 Hz sinusoid sampled at 1 kHz with a different amplitude.
The amplitude is equal to the row index.

Compute the RMS levels of the rows specifying the dimension equal to 2 with the dim argument.

t = 0:0.001:1-0.001;
x = (1:4)'*cos(2*pi*100*t);

y = rms(x,2)

y = 4×1

 0.7071
 1.4142
 2.1213
 2.8284

Input Arguments
x — Input array
vector | matrix | N-D array | gpuArray object

Input array, specified as a vector, matrix, N-D array, or gpuArray object. By default, rms acts along
the first array dimension of X with size greater than 1.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel row-vector signal.
Example: cos(pi./[4;2]*(0:159))'+randn(160,2) is a two-channel signal.
Data Types: single | double
Complex Number Support: Yes

dim — Dimension along which to compute RMS levels
integer scalar

Dimension along which to compute RMS levels, specified as an integer scalar.
Data Types: single | double

Output Arguments
y — Root-mean-square level
real-valued scalar | real-valued vector | real-valued N-D array

Root-mean-square level, returned as a real-valued scalar, vector, N-D array, or gpuArray object. If x
is a vector, then y is a real-valued scalar. If x is a matrix, then y contains the RMS levels computed
along dimension dim. By default, dim is the first array dimension of x with size greater than 1.

 rms

1-1897

More About
Root-Mean-Square Level

The root-mean-square level of a vector x is

xRMS = 1
N ∑

n = 1

N
xn

2,

with the summation performed along the specified dimension.

References
[1] IEEE Std 181. IEEE Standard on Transitions, Pulses, and Related Waveforms. 2003.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply dim, then it must be constant.
• For variable-size inputs, see the automatic dimension restriction in “Variable-Sizing Restrictions

for Code Generation of Toolbox Functions” (MATLAB Coder).
• Code generation does not support sparse matrix inputs for this function.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mean | peak2peak | peak2rms | rssq | std

Introduced in R2012a

1 Functions

1-1898

rooteig
Frequency and power content using eigenvector method

Syntax
[w,pow] = rooteig(x,p)
[w,pow] = rooteig(___ ,'corr')
[f,pow] = rooteig(___ ,fs)

Description
[w,pow] = rooteig(x,p) estimates the frequency content in the input signal x and returns w, a
vector of frequencies in rad/sample, and the corresponding signal power in the vector pow. You can
specify the signal subspace dimension using the input argument p.

The extra threshold parameter in the second entry in p provides you more flexibility and control in
assigning the noise and signal subspaces.

[w,pow] = rooteig(___ ,'corr') forces the input argument x to be interpreted as a correlation
matrix rather than matrix of signal data. For this syntax, x must be a square matrix, and all of its
eigenvalues must be nonnegative. This syntax can include the input arguments from the previous
syntax.

Note You can place 'corr' anywhere after p.

[f,pow] = rooteig(___ ,fs) returns the vector of frequencies f calculated in Hz. You supply the
sampling frequency fs in Hz. If you specify fs as the empty vector [], the sampling frequency
defaults to 1 Hz.

Examples

Frequency Content of Complex Exponentials

Find the frequency content in a signal composed of three complex exponentials in noise. Use the
modified covariance method to estimate the correlation matrix used by the eigenvector method. Reset
the random number generator for reproducible results.

rng default
n = 0:99;
s = exp(1i*pi/2*n)+2*exp(1i*pi/4*n)+exp(1i*pi/3*n)+randn(1,100);

X = corrmtx(s,12,'mod');
[W,P] = rooteig(X,3)

W = 3×1

 0.7883
 1.5674

 rooteig

1-1899

 1.0429

P = 3×1

 4.1748
 1.0572
 1.2419

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then it is treated as one observation of
the signal. If x is a matrix, each row of x represents a separate observation of the signal. For
example, each row is one output of an array of sensors, as in array processing, such that x'*x is an
estimate of the correlation matrix.

For complex-valued input data x, pow and w have the same length. For real-valued input data x, the
length of the corresponding power vector pow is 0.5*length(w).

Note You can use the output of corrmtx to generate such an array x.

p — Subspace dimension
real positive integer | two-element vector

Subspace dimension, specified as a real positive integer or a two-element vector. If p is a real positive
integer, then it is treated as the subspace dimension. If p is a two-element vector, the second element
of p represents a threshold that is multiplied by λmin, the smallest estimated eigenvalue of the signal's
correlation matrix. Eigenvalues below the threshold λmin*p(2) are assigned to the noise subspace. In
this case, p(1) specifies the maximum dimension of the signal subspace. The extra threshold
parameter in the second entry in p provides you more flexibility and control in assigning the noise
and signal subspaces.

fs — Sample rate
1 (default) | positive scalar | []

Sample rate, specified as a positive scalar. You can supply the sample rate fsin Hz. If you specify fs
as the empty vector [], the sample rate defaults to 1 Hz.

Output Arguments
w — Output frequencies in rad/sample
vector

Output frequencies in rad/sample, returned as a vector. The length of the vector w is the computed
dimension of the signal subspace.

pow — Signal power
vector

1 Functions

1-1900

Signal power, returned as a vector.

f — Output frequencies in Hz
vector

Output frequencies in Hz, returned as a vector. You supply the sampling frequency fs in Hz. If you
specify fs with the empty vector [], the sampling frequency defaults to 1 Hz.

Algorithms
The eigenvector method used by rooteig is the same as that used by peig. The algorithm performs
eigenspace analysis of the signal's correlation matrix to estimate the signal's frequency content.

The difference between peig and rooteig is:

• peig returns the pseudospectrum at all frequency samples.
• rooteig returns the estimated discrete frequency spectrum, along with the corresponding signal

power estimates.

rooteig is most useful for frequency estimation of signals made up of a sum of sinusoids embedded
in additive white Gaussian noise.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Generated code might return outputs in a different sorted order compared to MATLAB.

See Also
corrmtx | peig | pmusic | rootmusic

Introduced before R2006a

 rooteig

1-1901

rootmusic
Root MUSIC algorithm

Syntax
w = rootmusic(x,p)
[w,pow] = rootmusic(x,p)
[w,pow] = rootmusic(___ ,'corr')
[f,pow] = rootmusic(___ ,fs)

Description
w = rootmusic(x,p) estimates the frequency content in the input signal x and returns w, a vector
of frequencies in rad/sample. You can specify the signal subspace dimension using the input
argument p.

The extra threshold parameter in the second entry in p provides you more flexibility and control in
assigning the noise and signal subspaces.

[w,pow] = rootmusic(x,p) returns the vector of frequencies w and the corresponding signal
power in the vector pow.

[w,pow] = rootmusic(___ ,'corr') forces the input argument x to be interpreted as a
correlation matrix rather than a matrix of signal data. For this syntax, x must be a square matrix, and
all of its eigenvalues must be nonnegative. This syntax can include the input arguments from the
previous syntax.

Note You can place 'corr' anywhere after p.

[f,pow] = rootmusic(___ ,fs) returns the vector of frequencies f calculated in Hz. You supply
the sampling frequency fs in Hz.

Examples

Sinusoid Amplitudes

Estimate the amplitudes for two sinusoids in noise. The separation between the sinusoids is less than
the resolution of the periodogram, 2π/N radians/sample. Use the autocorrelation matrix as the input
to rootmusic.

rng default
n = (0:99)';
frqs = [pi/4 pi/4+0.06];

s = 2*exp(1j*frqs(1)*n)+1.5*exp(1j*frqs(2)*n)+ ...
 0.5*randn(100,1)+1j*0.5*randn(100,1);

1 Functions

1-1902

[~,R] = corrmtx(s,12,'mod');
[W,P] = rootmusic(R,2,'corr')

W = 2×1

 0.7946
 0.8917

P = 2×1

 4.1535
 0.7797

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, then it is treated as one observation of
the signal. If x is a matrix, each row of x represents a separate observation of the signal. For
example, each row is one output of an array of sensors, as in array processing, such that x'*x is an
estimate of the correlation matrix.

For complex-valued input data x, pow and w have the same length. For real-valued input data x, the
length of the corresponding power vector pow is 0.5*length(w).

Note You can use the output of corrmtx to generate such an array x.

p — Subspace dimension
real positive integer | two-element vector

Subspace dimension, specified as a real positive integer or a two-element vector. If p is a real positive
integer, then it is treated as the subspace dimension. If p is a two-element vector, the second element
of p represents a threshold that is multiplied by λmin, the smallest estimated eigenvalue of the signal's
correlation matrix. Eigenvalues below the threshold λmin*p(2) are assigned to the noise subspace. In
this case, p(1) specifies the maximum dimension of the signal subspace. The extra threshold
parameter in the second entry in p provides you more flexibility and control in assigning the noise
and signal subspaces.

fs — Sample rate
1 (default) | positive scalar | []

Sample rate, specified as a positive scalar. You can supply the sample rate fsin Hz. If you specify fs
as the empty vector [], the sample rate defaults to 1 Hz.

Output Arguments
w — Output frequencies in rad/sample
vector

 rootmusic

1-1903

Output frequencies in rad/sample, returned as a vector. The length of the vector w is the computed
dimension of the signal subspace.

pow — Signal power
vector

Signal power, returned as a vector.

f — Output frequencies in Hz
vector

Output frequencies in Hz, returned as a vector. You supply the sampling frequency fs in Hz. If you
specify fs with the empty vector [], the sampling frequency defaults to 1 Hz.

Diagnostics
If the input signal x is real, and an odd number of sinusoids is specified by p, an error message is
displayed:

Real signals require an even number p of complex sinusoids.

Algorithms
The multiple signal classification (MUSIC) algorithm used by rootmusic is the same as that used by
pmusic. The algorithm performs eigenspace analysis of the signal's correlation matrix in order to
estimate the signal's frequency content.

The difference between pmusic and rootmusic is:

• pmusic returns the pseudospectrum at all frequency samples.
• rootmusic returns the estimated discrete frequency spectrum, along with the corresponding

signal power estimates.

rootmusic is most useful for frequency estimation of signals made up of a sum of sinusoids
embedded in additive white Gaussian noise.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Generated code might return outputs in a different sorted order compared to MATLAB.

See Also
corrmtx | peig | pmusic | rooteig

Introduced before R2006a

1 Functions

1-1904

rpmfreqmap
Frequency-RPM map for order analysis

Syntax
map = rpmfreqmap(x,fs,rpm)
map = rpmfreqmap(x,fs,rpm,res)

map = rpmfreqmap(___ ,Name,Value)

[map,freq,rpm,time,res] = rpmfreqmap(___)

rpmfreqmap(___)

Description
map = rpmfreqmap(x,fs,rpm) returns the frequency-RPM map matrix, map, that results from
performing frequency analysis on the input vector, x. x is measured at a set rpm of rotational speeds
expressed in revolutions per minute. fs is the sample rate in Hz. Each column of map contains root-
mean-square (RMS) amplitude estimates of the spectral content present at each value of rpm.
rpmfreqmap uses the short-time Fourier transform to analyze the spectral content of x.

map = rpmfreqmap(x,fs,rpm,res) specifies the resolution bandwidth of the map in Hz.

map = rpmfreqmap(___ ,Name,Value) specifies options using Name,Value pairs in addition to
the input arguments in previous syntaxes.

[map,freq,rpm,time,res] = rpmfreqmap(___) returns vectors with the frequencies,
rotational speeds, and time instants at which the frequency map is computed. It also returns the
resolution bandwidth used.

rpmfreqmap(___) with no output arguments plots the frequency map as a function of rotational
speed and time on an interactive figure. The plot is also known as a Campbell diagram.

Examples

Frequency-RPM Map of Chirp with 4 Orders

Create a simulated signal sampled at 600 Hz for 5 seconds. The system that is being tested increases
its rotational speed from 10 to 40 revolutions per second during the observation period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;
f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

 rpmfreqmap

1-1905

The signal consists of four harmonically related chirps with orders 1, 0.5, 4, and 6. The order-4 chirp
has twice the amplitude of the others. To generate the chirps, use the trapezoidal rule to express the
phase as the integral of the rotational speed.

o1 = 1;
o2 = 0.5;
o3 = 4;
o4 = 6;

ph = 2*pi*cumtrapz(rpm/60)/fs;

x = [1 1 2 1]*cos([o1 o2 o3 o4]'*ph);

Visualize the frequency-RPM map of the signal.

rpmfreqmap(x,fs,rpm)

1 Functions

1-1906

Frequency-RPM Map of Helicopter Vibration Data

Analyze simulated data from an accelerometer placed in the cockpit of a helicopter.

Load the helicopter data. The vibrational measurements, vib, are sampled at a rate of 500 Hz for 10
seconds. Inspection of the data reveals that it has a linear trend. Remove the trend to prevent it from
degrading the quality of the frequency estimation.

load('helidata.mat')

vib = detrend(vib);

Plot the nonlinear RPM profile. The rotor runs up until it reaches a maximum rotational speed of
about 27,600 revolutions per minute and then coasts down.

plot(t,rpm)
xlabel('Time (s)')
ylabel('RPM')

Compute the frequency-RPM map. Specify a resolution bandwidth of 2.5 Hz.

[map,freq,rpmOut,time] = rpmfreqmap(vib,fs,rpm,2.5);

Visualize the map.

 rpmfreqmap

1-1907

imagesc(time,freq,map)
ax = gca;
ax.YDir = 'normal';
xlabel('Time (s)')
ylabel('Frequency (Hz)')

Repeat the computation using a finer resolution bandwidth. Plot the map using the built-in
functionality of rpmfreqmap. The gain in frequency resolution comes at the expense of time
resolution.

rpmfreqmap(vib,fs,rpm,1.5);

1 Functions

1-1908

Waterfall Plot of Frequency-RPM Map

Generate a signal that consists of two linear chirps and a quadratic chirp, all sampled at 600 Hz for
15 seconds. The system that produces the signal increases its rotational speed from 10 to 40
revolutions per second during the testing period.

Generate the tachometer readings.

fs = 600;
t1 = 15;
t = 0:1/fs:t1;

f0 = 10;

 rpmfreqmap

1-1909

f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The linear chirps have orders 1 and 2.5. The component with order 1 has half the amplitude of the
other. The quadratic chirp starts at order 6 and returns to this order at the end of the measurement.
Its amplitude is 0.8. Create the signal using this information.

o1 = 1;
o2 = 2.5;
o6 = 6;

x = 0.5*chirp(t,o1*f0,t1,o1*f1)+chirp(t,o2*f0,t1,o2*f1) + ...
 0.8*chirp(t,o6*f0,t1,o6*f1,'quadratic');

Compute the frequency-RPM map of the signal. Use the peak amplitude at each measurement cell.
Specify a resolution of 6 Hz. Window the data with a flat top window.

[map,fr,rp] = rpmfreqmap(x,fs,rpm,6, ...
 'Amplitude','peak','Window','flattopwin');

Draw the frequency-RPM map as a waterfall plot.

[FR,RP] = meshgrid(fr,rp);
waterfall(FR,RP,map')

view(-6,60)
xlabel('Frequency (Hz)')
ylabel('RPM')
zlabel('Amplitude')

1 Functions

1-1910

Interactive Frequency-RPM Map

Plot an interactive frequency-RPM map by calling rpmfreqmap without output arguments.

Load a file containing simulated vibrational data from an accelerometer placed in the cockpit of a
helicopter. The data is sampled at a rate of 500 Hz for 10 seconds. Remove the linear trend in the
data. Call rpmfreqmap to generate an interactive plot of the frequency-RPM map. Specify a
frequency resolution of 2 Hz.

load helidata.mat
rpmfreqmap(detrend(vib),fs,rpm,2)

 rpmfreqmap

1-1911

Move the crosshair cursors in the figure to determine the RPM and the RMS amplitude at a frequency
of 25 Hz after 5 seconds.

1 Functions

1-1912

Click the Zoom X button in the toolbar to zoom into the time region between 2 and 4 seconds. A
panner appears in the bottom plot.

 rpmfreqmap

1-1913

Click the Waterfall Plot button in the toolbar to display the frequency-RPM map as a waterfall
plot. For improved visibility, rotate the plot clockwise using the Rotate Left button three times.
Move the panner to the interval between 4 and 6 seconds.

1 Functions

1-1914

Input Arguments
x — Input signal
vector

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.

 rpmfreqmap

1-1915

rpm — Rotational speeds
vector of positive values

Rotational speeds, specified as a vector of positive values expressed in revolutions per minute. rpm
must have the same length as x.

• If you have a tachometer pulse signal, use tachorpm to extract rpm directly.
• If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

Example: 100:10:3000 specifies that a system rotates initially at 100 revolutions per minute and
runs up to 3000 revolutions per minute in increments of 10.

res — Resolution bandwidth
fs/128 (default) | positive scalar

Resolution bandwidth of the frequency-RPM map, specified as a positive scalar. If res is not
specified, then rpmfreqmap sets it to the sample rate divided by 128. If the signal is not long enough,
then the function uses the entire signal length to compute a single frequency estimate.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Scale','dB','Window','hann' specifies that the frequency map estimates are to be
scaled in decibels and determined using a Hann window.

Amplitude — Frequency-RPM map amplitudes
'rms' (default) | 'peak' | 'power'

Frequency-RPM map amplitudes, specified as the comma-separated pair consisting of 'Amplitude'
and one of 'rms', 'peak', or 'power'.

• 'rms' — Returns the root-mean-square amplitude for each estimated frequency.
• 'peak' — Returns the peak amplitude for each estimated frequency.
• 'power' — Returns the power level for each estimated frequency.

OverlapPercent — Overlap percentage between adjoining segments
50 (default) | scalar from 0 to 100

Overlap percentage between adjoining segments, specified as the comma-separated pair consisting of
'OverlapPercent' and a scalar from 0 to 100. A value of 0 means that adjoining segments do not
overlap. A value of 100 means that adjoining segments are shifted by one sample. A larger overlap
percentage produces a smoother map but increases the computation time. See rpmordermap for
more information.
Data Types: double | single

Scale — Frequency-RPM map scaling
'linear' (default) | 'dB'

Frequency-RPM map scaling, specified as the comma-separated pair consisting of 'Scale' and
either 'linear' or 'dB'.

1 Functions

1-1916

• 'linear' — Returns a linearly scaled map.
• 'dB' — Returns a logarithmic map with values expressed in decibels.

Window — Analysis window
'hann' (default) | 'chebwin' | 'flattopwin' | 'hamming' | 'kaiser' | 'rectwin'

Analysis window, specified as the comma-separated pair consisting of 'Window' and one of these
values:

• 'hann' specifies a Hann window. See hann for more details.
• 'chebwin' specifies a Chebyshev window. Use a cell array to specify a sidelobe attenuation in

decibels. The sidelobe attenuation must be greater than 45 dB. If not specified, it defaults to
100 dB. See chebwin for more details.

• 'flattopwin' specifies a flat top window. See flattopwin for more details.
• 'hamming' specifies a Hamming window. See hamming for more details.
• 'kaiser' specifies a Kaiser window. Use a cell array to specify a shape parameter, β. The shape

parameter must be a positive scalar. If not specified, it defaults to 0.5. See kaiser for more
details.

• 'rectwin' specifies a rectangular window. See rectwin for more details.

Example: 'Window','chebwin' specifies a Chebyshev window with a sidelobe attenuation of
100 dB.
Example: 'Window',{'chebwin',60} specifies a Chebyshev window with a sidelobe attenuation of
60 dB.
Example: 'Window','kaiser' specifies a Kaiser window with a shape parameter of 0.5.
Example: 'Window',{'kaiser',1} specifies a Kaiser window with a shape parameter of 1.
Data Types: char | string | cell

Output Arguments
map — Frequency-RPM map
matrix

Frequency-RPM map, returned as a matrix.

freq — Frequencies
vector

Frequencies, returned as a vector.

rpm — Rotational speeds
vector

Rotational speeds, returned as a vector.

time — Time instants
vector

Time instants, returned as a vector.

 rpmfreqmap

1-1917

res — Resolution bandwidth
scalar

Resolution bandwidth, returned as a scalar.

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
orderspectrum | ordertrack | orderwaveform | rpmordermap | rpmtrack | spectrogram |
tachorpm

Introduced in R2015b

1 Functions

1-1918

rpmordermap
Order-RPM map for order analysis

Syntax
map = rpmordermap(x,fs,rpm)
map = rpmordermap(x,fs,rpm,res)

map = rpmordermap(___ ,Name,Value)

[map,order,rpm,time,res] = rpmordermap(___)

rpmordermap(___)

Description
map = rpmordermap(x,fs,rpm) returns the order-RPM map matrix, map, that results from
performing order analysis on the input vector, x. x is measured at a set rpm of rotational speeds
expressed in revolutions per minute. fs is the measurement sample rate in Hz. Each column of map
contains root-mean-square (RMS) amplitude estimates of the orders present at each rpm value.
rpmordermap resamples x to a constant samples-per-cycle rate and uses the short-time Fourier
transform to analyze the spectral content of the resampled signal.

map = rpmordermap(x,fs,rpm,res) specifies the order resolution of the map in units of orders.

map = rpmordermap(___ ,Name,Value) specifies options using Name,Value pairs in addition to
the input arguments in previous syntaxes.

[map,order,rpm,time,res] = rpmordermap(___) returns vectors with the orders, rotational
speeds, and time instants at which the order map is computed. It also returns the order resolution
used.

rpmordermap(___) with no output arguments plots the order map as a function of rotational speed
and time on an interactive figure.

Examples

Order-RPM Map of Chirp with 4 Orders

Create a simulated signal sampled at 600 Hz for 5 seconds. The system that is being tested increases
its rotational speed from 10 to 40 revolutions per second during the observation period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;

 rpmordermap

1-1919

f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The signal consists of four harmonically related chirps with orders 1, 0.5, 4, and 6. The order-4 chirp
has twice the amplitude of the others. To generate the chirps, use the trapezoidal rule to express the
phase as the integral of the rotational speed.

o1 = 1;
o2 = 0.5;
o3 = 4;
o4 = 6;

ph = 2*pi*cumtrapz(rpm/60)/fs;

x = [1 1 2 1]*cos([o1 o2 o3 o4]'*ph);

Visualize the order-RPM map of the signal.

rpmordermap(x,fs,rpm)

1 Functions

1-1920

Order-RPM Map of Helicopter Vibration Data

Analyze simulated data from an accelerometer placed in the cockpit of a helicopter.

Load the helicopter data. The vibrational measurements, vib, are sampled at a rate of 500 Hz for 10
seconds. Inspection of the data reveals that it has a linear trend. Remove the trend to prevent it from
degrading the quality of the order estimation.

load('helidata.mat')

vib = detrend(vib);

 rpmordermap

1-1921

Plot the nonlinear RPM profile. The rotor runs up until it reaches a maximum rotational speed of
about 27,600 revolutions per minute and then coasts down.

plot(t,rpm)
xlabel('Time (s)')
ylabel('RPM')

Compute the order-RPM map. Specify an order resolution of 0.015.

[map,order,rpmOut,time] = rpmordermap(vib,fs,rpm,0.015);

Visualize the map.

imagesc(time,order,map)
ax = gca;
ax.YDir = 'normal';
xlabel('Time (s)')
ylabel('Order')

1 Functions

1-1922

Repeat the computation using a finer order resolution. Plot the map using the built-in functionality of
rpmordermap. The lower orders are resolved more clearly.

rpmordermap(vib,fs,rpm,0.005)

 rpmordermap

1-1923

Waterfall Plot of Order-RPM Map

Generate a signal that consists of two linear chirps and a quadratic chirp, all sampled at 600 Hz for 5
seconds. The system that produces the signal increases its rotational speed from 10 to 40 revolutions
per second during the testing period.

Generate the tachometer readings.

fs = 600;
t1 = 5;
t = 0:1/fs:t1;

f0 = 10;

1 Functions

1-1924

f1 = 40;
rpm = 60*linspace(f0,f1,length(t));

The linear chirps have orders 1 and 2.5. The component with order 1 has twice the amplitude of the
other. The quadratic chirp starts at order 6 and returns to this order at the end of the measurement.
Its amplitude is 0.8. Create the signal using this information.

o1 = 1;
o2 = 2.5;
o6 = 6;

x = 2*chirp(t,o1*f0,t1,o1*f1)+chirp(t,o2*f0,t1,o2*f1) + ...
 0.8*chirp(t,o6*f0,t1,o6*f1,'quadratic');

Compute the order-RPM map of the signal. Use the peak amplitude at each measurement cell. Specify
a resolution of 0.25 orders. Window the data with a Chebyshev window whose sidelobe attenuation is
80 dB.

[map,or,rp] = rpmordermap(x,fs,rpm,0.25, ...
 'Amplitude','peak','Window',{'chebwin',80});

Draw the order-RPM map as a waterfall plot.

[OR,RP] = meshgrid(or,rp);
waterfall(OR,RP,map')

view(-15,45)
xlabel('Order')
ylabel('RPM')
zlabel('Amplitude')

 rpmordermap

1-1925

Interactive Order-RPM Map

Plot an interactive order-RPM map by calling rpmordermap without output arguments.

Load the file helidata.mat, which contains simulated vibrational data from an accelerometer
placed in the cockpit of a helicopter. The data is sampled at a rate of 500 Hz for 10 seconds. Remove
the linear trend in the data. Call rpmordermap to generate an interactive plot of the order-RPM map.
Specify an order resolution of 0.005 orders.

load helidata.mat
rpmordermap(detrend(vib),fs,rpm,0.005)

1 Functions

1-1926

See “Algorithms” on page 1-1933 for a more detailed description of the RPM-vs.-time plot at the
bottom of the figure.

Move the crosshair cursors in the figure to determine the RPM and the RMS amplitude at order 0.053
after 6 seconds.

 rpmordermap

1-1927

Click the Zoom X button in the toolbar to zoom into the time region between 2 and 4 seconds.
The gray rectangle in the RPM-vs.-time plot shows the region of interest. You can slide this region to
pan through time.

1 Functions

1-1928

Click the Waterfall Plot button to display the order-RPM map as a waterfall plot. For improved
visibility, rotate the plot clockwise using the Rotate Left button three times. Move the panner to
the interval between 5 and 7 seconds.

 rpmordermap

1-1929

Input Arguments
x — Input signal
vector

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.

1 Functions

1-1930

rpm — Rotational speeds
vector of positive values

Rotational speeds, specified as a vector of positive values expressed in revolutions per minute. rpm
must have the same length as x.

• If you have a tachometer pulse signal, use tachorpm to extract rpm directly.
• If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

Example: 100:10:3000 specifies that a system rotates initially at 100 revolutions per minute and
runs up to 3000 revolutions per minute in increments of 10.

res — Order resolution
(15 × fs)/(16 × max(rpm)) (default) | positive scalar

Order resolution of the order-RPM map, specified as a positive scalar. If res is not specified, then
rpmordermap sets it to the sample rate of the constant-samples-per-cycle signal divided by 256. If
the resampled input signal is not long enough, then the function uses the entire resampled signal
length to compute a single order estimate.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Scale','dB','Window','hann' specifies that the order map estimates are to be scaled
in decibels and determined using a Hann window.

Amplitude — Order-RPM map amplitudes
'rms' (default) | 'peak' | 'power'

Order-RPM map amplitudes, specified as the comma-separated pair consisting of 'Amplitude' and
one of 'rms', 'peak', or 'power'.

• 'rms' — Returns the root-mean-square amplitude for each estimated order.
• 'peak' — Returns the peak amplitude for each estimated order.
• 'power' — Returns the power level for each estimated order.

OverlapPercent — Overlap percentage between adjoining segments
50 (default) | scalar from 0 to 100

Overlap percentage between adjoining segments, specified as the comma-separated pair consisting of
'OverlapPercent' and a scalar from 0 to 100. A value of 0 means that adjoining segments do not
overlap. A value of 100 means that adjoining segments are shifted by one sample. A larger overlap
percentage produces a smoother map but increases the computation time. See “Algorithms” on page
1-1933 for more information.
Data Types: double | single

Scale — Order-RPM map scaling
'linear' (default) | 'dB'

 rpmordermap

1-1931

Order-RPM map scaling, specified as the comma-separated pair consisting of 'Scale' and either
'linear' or 'dB'.

• 'linear' — Returns a linearly scaled map.
• 'dB' — Returns a logarithmic map with values expressed in decibels.

Window — Analysis window
'flattopwin' (default) | 'chebwin' | 'hamming' | 'hann' | 'kaiser' | 'rectwin'

Analysis window, specified as the comma-separated pair consisting of 'Window' and one of these
values:

• 'flattopwin' specifies a flat top window. See flattopwin for more details.
• 'chebwin' specifies a Chebyshev window. Use a cell array to specify a sidelobe attenuation in

decibels. The sidelobe attenuation must be greater than 45 dB. If not specified, it defaults to
100 dB. See chebwin for more details.

• 'hamming' specifies a Hamming window. See hamming for more details.
• 'hann' specifies a Hann window. See hann for more details.
• 'kaiser' specifies a Kaiser window. Use a cell array to specify a shape parameter, β. The shape

parameter must be a positive scalar. If not specified, it defaults to 0.5. See kaiser for more
details.

• 'rectwin' specifies a rectangular window. See rectwin for more details.

Example: 'Window','chebwin' specifies a Chebyshev window with a sidelobe attenuation of
100 dB.
Example: 'Window',{'chebwin',60} specifies a Chebyshev window with a sidelobe attenuation of
60 dB.
Example: 'Window','kaiser' specifies a Kaiser window with a shape parameter of 0.5.
Example: 'Window',{'kaiser',1} specifies a Kaiser window with a shape parameter of 1.
Data Types: char | string | cell

Output Arguments
map — Order-RPM map
matrix

Order-RPM map, returned as a matrix.

order — Orders
vector

Orders, returned as a vector.

rpm — Rotational speeds
vector

Rotational speeds, returned as a vector.

time — Time instants
vector

1 Functions

1-1932

Time instants, returned as a vector.

res — Order resolution
scalar

Order resolution, returned as a scalar.

Algorithms
Order analysis is the study of vibrations in rotating systems that result from the rotation itself. The
frequencies of these vibrations are often proportional to the rotational speed. The constants of
proportionality are the orders.

The rotational speed is usually measured independently and changes with time under most
experimental conditions. Proper analysis of rotation-induced vibrations requires resampling and
interpolating the measured signal to achieve a constant number of samples per cycle. Through this
process, the signal components whose frequencies are constant multiples of the rotational speed
transform into constant tones. The transformation reduces the smearing of spectral components that
occurs when frequency changes rapidly with time.

The rpmordermap function performs these steps:

1 Uses cumtrapz to estimate the phase angle as the time integral of the rotational speed:

ϕ(t) =∫0 t RPM(τ)
60 dτ .

2 Uses resample to upsample and lowpass-filter the signal. This step enables the function to
interpolate the signal at nonsampled time points without aliasing of the high-frequency
components. rpmordermap upsamples the signal by a factor of 15.

3 Uses interp1 to interpolate the upsampled signal linearly onto a uniform grid in the phase
domain. The highest accessible order in a measurement is fixed by the sample rate and the
highest rotational speed reached by the system:

Omax =
fs/2

max RPM
60

.

To capture this highest order accurately, it is necessary to sample the signal at twice Omax at
least. For better results, rpmordermap oversamples by an extra factor of 4. The resulting phase-
domain sample rate, fp, is

fp = 4 × 2Omax = 4 × 2
fs/2

max RPM
60

.

The default order resolution, r, is

r =
fp

256 = 4 × 60
256

2 × fs/2
max(RPM) = 15

16
fs

max(RPM) .

4 Uses spectrogram to compute the short-time Fourier transform (STFT) of the interpolated
signal. By default, the function divides the signal into L-sample segments and windows each of
them with a flat top window. There are

Noverlap = min
poverlap

100 × L , L− 1

 rpmordermap

1-1933

samples of overlap between adjoining segments, where poverlap is specified using the
'OverlapPercent' name-value pair and defaults to 50%. The DFT length is set to L. The
resolution is related to the sample rate and segment length through

r =
kfp
L ,

where k is the equivalent noise bandwidth of the window, as implemented in enbw. Adjust the
resolution to differentiate closely spaced orders. Smaller r values require larger segment lengths.
If you need to attain a given resolution, make sure that your signal has enough samples.

The red dots in the RPM-vs.-time plot at the bottom of the interactive rpmordermap window
correspond to the right edge of each windowed segment. The blue line in the plot is the RPM signal
drawn as a function of time:

1 Functions

1-1934

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
orderspectrum | ordertrack | orderwaveform | rpmfreqmap | rpmtrack | spectrogram |
tachorpm

Introduced in R2015b

 rpmordermap

1-1935

rpmtrack
Track and extract RPM profile from vibration signal

Syntax
rpm = rpmtrack(x,fs,order,p)
rpm = rpmtrack(xt,order,p)

rpm = rpmtrack(___ ,Name,Value)

[rpm,tout] = rpmtrack(___)

rpmtrack(___)

Description
rpm = rpmtrack(x,fs,order,p) returns a time-dependent estimate of the rotational speed, rpm,
from a vibration signal x sampled at a rate fs.

The two-column matrix p contains a set of points that lie on a time-frequency ridge corresponding to
a given order. Each row of p specifies one coordinate pair. If you call rpmtrack without specifying
both order and p, the function opens an interactive plot that displays the time-frequency map and
enables you to select the points.

If you have a tachometer pulse signal, use tachorpm to extract rpm directly.

rpm = rpmtrack(xt,order,p) returns a time-dependent estimate of the rotational speed from a
signal stored in the MATLAB timetable xt.

rpm = rpmtrack(___ ,Name,Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. Options include the method used to estimate the time-frequency
map and the starting time for the RPM profile.

[rpm,tout] = rpmtrack(___) also returns the time vector at which the RPM profile is
computed.

rpmtrack(___) with no output arguments plots the power time-frequency map and the estimated
RPM profile on an interactive figure.

Examples

RPM Profile of Vibration Signal

Generate a vibration signal with three harmonic components. The signal is sampled at 1 kHz for 16
seconds. The signal's instantaneous frequency resembles the runup and coastdown of an engine.
Compute the instantaneous phase by integrating the frequency using the trapezoidal rule.

fs = 1000;
t = 0:1/fs:16;

1 Functions

1-1936

ifq = 20 + t.^6.*exp(-t);
phi = 2*pi*cumtrapz(t,ifq);

The harmonic components of the signal correspond to orders 1, 2, and 3. The order-2 sinusoid has
twice the amplitude of the others.

ol = [1 2 3];
amp = [5 10 5];

vib = amp*cos(ol'.*phi);

Extract and visualize the RPM profile of the signal using a point on the order-2 ridge.

time = 3;
order = 2;
p = [time order*ifq(t==time)];

rpmtrack(vib,fs,order,p)

RPM Profile of Revving Engine

Generate a signal that resembles the vibrations caused by revving a car engine. The signal is sampled
at 1 kHz for 30 seconds and contains three harmonic components of orders 1, 2.4, and 3, with
amplitudes 5, 4, and 0.5, respectively. Embed the signal in unit-variance white Gaussian noise and
store it in a MATLAB® timetable. Multiply the instantaneous frequency by 60 to obtain an RPM
profile. Plot the RPM profile.

fs = 1000;
t = (0:1/fs:30)';

fit = @(a,x) (t-x).^6.*exp(-(t-x)).*((t-x)>=0)*a';

fis = fit([0.4 1 0.6 1],[0 6 13 17]);
phi = 2*pi*cumtrapz(t,fis);

ol = [1 2.4 3];
amp = [5 4 0.5]';
vib = cos(phi.*ol)*amp + randn(size(t));

xt = timetable(seconds(t),vib);

plot(t,fis*60)

 rpmtrack

1-1937

Use the rpmtrack function to derive the RPM profile from the vibration signal. Use four points at 5
second intervals to specify the ridge corresponding to order 2.4. Display a summary of the output
timetable.

ndx = (5:5:20)*fs;
order = ol(2);

p = [t(ndx) order*fis(ndx)];

rpmest = rpmtrack(xt,order,p);

summary(rpmest)

RowTimes:

 tout: 30001x1 duration
 Values:
 Min 0 sec
 Median 15 sec
 Max 30 sec
 TimeStep 0.001 sec

Variables:

 rpm: 30001x1 double

 Values:

1 Functions

1-1938

 Min 2.2204e-16
 Median 4327.2
 Max 8879.8

Plot the reconstructed RPM profile and the points used in the reconstruction.

hold on
plot(seconds(rpmest.tout),rpmest.rpm,'.-')
plot(t(ndx),fis(ndx)*60,'ok')
hold off
legend('Original','Reconstructed','Ridge points','Location','northwest')

Use the extracted RPM profile to generate the order-RPM map of the signal.

rpmordermap(vib,fs,rpmest.rpm)

 rpmtrack

1-1939

Reconstruct and plot the time-domain waveforms that compose the signal. Zoom in on a time interval
occurring after the transients have decayed.

xrc = orderwaveform(vib,fs,rpmest.rpm,ol);

figure
plot(t,xrc)
legend([repmat('Order = ',[3 1]) num2str(ol')])
xlim([5 20])

1 Functions

1-1940

Fan Switchoff RPM Profile

Estimate the RPM profile of a fan blade as it slows down after switchoff.

An industrial roof fan spinning at 20,000 rpm is turned off. Air resistance (with a negligible
contribution from bearing friction) causes the fan rotor to stop in approximately 6 seconds. A high-
speed camera measures the x-coordinate of one of the fan blades at a rate of 1 kHz.

fs = 1000;
t = 0:1/fs:6-1/fs;

rpm0 = 20000;

Idealize the fan blade as a point mass circling the rotor center at a radius of 50 cm. The blade
experiences a drag force proportional to speed, resulting in the following expression for the phase
angle:

ϕ = 2πf0T(1 − e−t/T),

where f0 is the initial frequency and T = 0 . 75 second is the decay time.

a = 0.5;
f0 = rpm0/60;
T = 0.75;

 rpmtrack

1-1941

phi = 2*pi*f0*T*(1-exp(-t/T));

Compute and plot the x- and y-coordinates of the blade. Add white Gaussian noise of variance 0 . 12.

x = a*cos(phi) + randn(size(phi))/10;
y = a*sin(phi) + randn(size(phi))/10;

plot(t,x,t,y)

Use the rpmtrack function to determine the RPM profile. Type

rpmtrack(x,fs)

at the command line to open the interactive figure.

1 Functions

1-1942

Use the slider to adjust the frequency resolution of the time-frequency map to about 11 Hz. Assume
that the signal component corresponds to order 1 and set the end time for ridge extraction to 3.0
seconds. Use the crosshair cursor in the time-frequency map and the Add button to add three points
lying on the ridge. (Alternatively, double-click the cursor to add the points at the locations you
choose.) Click Estimate to track and extract the RPM profile.

 rpmtrack

1-1943

Verify that the RPM profile decays exponentially. On the Export tab, click Export and select
Generate MATLAB Script. The script appears in the Editor.

% MATLAB Code from rpmtrack GUI

% Generated by MATLAB 9.4 and Signal Processing Toolbox 8.0

% Generated on 18-Dec-2017 19:00:35

% Set sample rate
fs = 1000.0000;
% Set order of ridge of interest
order = 1.0000;
% Set ridge points on ridge of interest
ridgePoints = [...
 0.4501 179.8246;...
 0.9944 88.5965;...
 2.4161 11.4035];
% Estimate RPM
[rpmOut,tOut] = rpmtrack(x,fs,order,ridgePoints,...
 'Method','stft',...
 'FrequencyResolution',11.1612,...
 'PowerPenalty',Inf,...
 'FrequencyPenalty',0.0000,...
 'StartTime',0.0000,...
 'EndTime',3.0000);

1 Functions

1-1944

Run the script. Display the RPM profile in a semilogarithmic plot.

semilogy(tOut,rpmOut)
ylim([500 20000])

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a noisy sinusoid sampled at 2π Hz.
Data Types: single | double

fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.
Data Types: single | double

order — Ridge order
positive real scalar

Ridge order, specified as a positive real scalar.

 rpmtrack

1-1945

Data Types: single | double

p — Ridge points
two-column matrix

Ridge points, specified as a two-column matrix containing one time-frequency coordinate on each
row. The coordinates describe points on the time-frequency map belonging to the order ridge of
interest.
Data Types: single | double

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration.
The timetable must contain only one numeric data vector with signal values.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,1)) specifies a random variable sampled at 1 Hz
for 4 seconds.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Method','fsst','PowerPenalty',10 specifies that the time-frequency map is
estimated using the synchrosqueezed Fourier transform, allowing up to 10 decibels of power
difference between adjacent points on a ridge.

Method — Type of time-frequency map
'stft' (default) | 'fsst'

Type of time-frequency map used in the estimation process, specified as the comma-separated pair
consisting of 'Method' and either 'stft' or 'fsst'.

• 'stft' — Use the short-time Fourier transform to compute a power spectrogram time-frequency
map. See pspectrum for more details about the short-time Fourier transform.

• 'fsst' — Use the synchrosqueezed Fourier transform to compute a time-frequency map. See
fsst for more details about the synchrosqueezed Fourier transform.

FrequencyResolution — Frequency resolution bandwidth
numeric scalar

Frequency resolution bandwidth used to compute the time-frequency map, specified as the comma-
separated pair consisting of 'FrequencyResolution' and a numeric scalar expressed in Hz.
Data Types: single | double

PowerPenalty — Maximum difference in power between adjacent ridge points
Inf (default) | numeric scalar in dB

1 Functions

1-1946

Maximum difference in power between adjacent ridge points, specified as the comma-separated pair
consisting of 'PowerPenalty' and a numeric scalar expressed in dB.

Use this parameter to ensure that the ridge-extraction algorithm of rpmtrack finds the correct ridge
for the corresponding order. 'PowerPenalty' is useful when the order ridge of interest crosses
other ridges or is very close in frequency to other ridges, but has a different power level.
Data Types: single | double

FrequencyPenalty — Penalty in coarse ridge extraction
0 (default) | nonnegative scalar

Penalty in coarse ridge extraction, specified as the comma-separated pair consisting of
'FrequencyPenalty' and a nonnegative scalar.

Use this parameter to ensure that the ridge-extraction algorithm of rpmtrack avoids large jumps
that could make the ridge estimate move to an incorrect time-frequency location.
'FrequencyPenalty' is useful when you want to differentiate order ridges that cross or are closely
spaced in frequency.
Data Types: single | double

StartTime — Start time for RPM profile estimation
input signal start time (default) | scalar in seconds | duration scalar

Start time for RPM profile estimation, specified as the comma-separated pair consisting of
'StartTime' and a numeric or duration scalar.
Data Types: single | double | duration

EndTime — End time for RPM profile estimation
input signal end time (default) | scalar in seconds | duration scalar

End time for RPM profile estimation, specified as the comma-separated pair consisting of 'EndTime'
and a numeric or duration scalar.
Data Types: single | double | duration

Output Arguments
rpm — Rotational speed estimate
vector | timetable

Rotational speed estimate, returned as a vector expressed in revolutions per minute.

If the input to rpmtrack is a timetable, then rpm is also a timetable with a single variable labeled
rpm. The row times of the timetable are labeled tout and are of type duration.

tout — Time values
vector

Time values at which the RPM profile is estimated, returned as a vector.

Algorithms
rpmtrack uses a two-step (coarse-fine) estimation method:

 rpmtrack

1-1947

1 Compute a time-frequency map of x and extract a time-frequency ridge based on a specified set
of points on the ridge, p, the order corresponding to that ridge, and the optional penalty
parameters 'PowerPenalty' and 'FrequencyPenalty'. The extracted ridge provides a
coarse estimate of the RPM profile.

2 Compute the order waveform corresponding to the extracted ridge using a Vold-Kalman filter and
calculate a new time-frequency map from this waveform. The isolated order ridge from the new
time-frequency map provides a fine estimate of the RPM profile.

References
[1] Urbanek, Jacek, Tomasz Barszcz, and Jerome Antoni. "A Two-Step Procedure for Estimation of

Instantaneous Rotational Speed with Large Fluctuations." Mechanical Systems and Signal
Processing. Vol. 38, 2013, pp. 96–102.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any name-value argument character or string input must be a constant at compile time.

See Also
Functions
ordertrack | rpmfreqmap | rpmordermap | tachorpm

Introduced in R2018a

1 Functions

1-1948

rssq
Root-sum-of-squares level

Syntax
y = rssq(x)
y = rssq(x,dim)

Description
y = rssq(x) returns the root-sum-of-squares (RSS) level, y, of the input array x. If x is a row or
column vector, y is a real-valued scalar. If x has more than one dimension, then rssq operates along
the first array dimension with size greater than 1.

y = rssq(x,dim) computes the RSS level of x along dimension dim.

Examples

RSS Level of Sinusoid

Compute the RSS level of a 100 Hz sinusoid sampled at 1 kHz.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t);

y = rssq(x)

y = 22.3607

RSS Levels of 2-D Matrix

Create a matrix where each column is a 100 Hz sinusoid sampled at 1 kHz with a different amplitude.
The amplitude is equal to the column index.

Compute the RSS levels of the columns.

t = 0:0.001:1-0.001;
x = cos(2*pi*100*t)'*(1:4);

y = rssq(x)

y = 1×4

 22.3607 44.7214 67.0820 89.4427

 rssq

1-1949

RSS Levels of 2-D Matrix Along Specified Dimension

Create a matrix where each row is a 100 Hz sinusoid sampled at 1 kHz with a different amplitude.
The amplitude is equal to the row index.

Compute the RSS levels of the rows by specifying the dimension with the dim argument.

t = 0:0.001:1-0.001;
x = (1:4)'*cos(2*pi*100*t);

y = rssq(x,2)

y = 4×1

 22.3607
 44.7214
 67.0820
 89.4427

Input Arguments
x — Input array
vector | matrix | N-D array

Input array, specified as a vector, matrix, or N-D array.
Example: cos(2*pi*100*(0:0.001:1-0.001)) specifies a sinusoid sampled at 1 kHz for 1 second.
Data Types: single | double
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.
Data Types: single | double

Output Arguments
y — Root-sum-of-squares level
scalar | vector | matrix | N-D array

Root-sum-of-squares level, returned as a scalar, vector, matrix, or N-D array.

More About
Root-Sum-of-Squares Level

The root-sum-of-squares (RSS) level of a vector, x, is

xRSS = ∑
n = 1

N
xn

2,

1 Functions

1-1950

with the summation performed along the specified dimension. The RSS level is also referred to as the
2-norm.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If you supply dim, then it must be constant.
• For limitations related to variable-size inputs, see “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” (MATLAB Coder).
• Code generation does not support sparse matrix inputs for this function.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

See Also
mean | peak2peak | peak2rms | rms | std

Introduced in R2012a

 rssq

1-1951

sawtooth
Sawtooth or triangle wave

Syntax
x = sawtooth(t)
x = sawtooth(t,xmax)

Description
x = sawtooth(t) generates a sawtooth wave with period 2π for the elements of the time array t.
sawtooth is similar to the sine function but creates a sawtooth wave with peaks of –1 and 1. The
sawtooth wave is defined to be –1 at multiples of 2π and to increase linearly with time with a slope of
1/π at all other times.

x = sawtooth(t,xmax) generates a modified triangle wave with the maximum location at each
period controlled by xmax. Set xmax to 0.5 to generate a standard triangle wave.

Examples

50 Hz Sawtooth Wave

Generate 10 periods of a sawtooth wave with a fundamental frequency of 50 Hz. The sample rate is 1
kHz.

T = 10*(1/50);

fs = 1000;
t = 0:1/fs:T-1/fs;

x = sawtooth(2*pi*50*t);

plot(t,x)
grid on

1 Functions

1-1952

Plot the power spectrum of the wave.

pspectrum(x,fs,'Leakage',0.91)

 sawtooth

1-1953

50 Hz Triangle Wave

Generate 10 periods of a triangle wave with a fundamental frequency of 50 Hz. The sample rate is 1
kHz.

T = 10*(1/50);

fs = 1000;
t = 0:1/fs:T-1/fs;

x = sawtooth(2*pi*50*t,1/2);

plot(t,x)
grid on

1 Functions

1-1954

Plot the power spectrum of the wave.

pspectrum(x,fs,'Leakage',0.91)

 sawtooth

1-1955

Input Arguments
t — Time array
vector | matrix | N-D array

Time array, specified as a vector, matrix, or N-D array. sawtooth operates along the first array
dimension of t with size greater than 1.
Data Types: double

xmax — Wave maximum location
1 (default) | scalar between 0 and 1

Wave maximum location, specified as a scalar between 0 and 1. xmax determines the point between 0
and 2π at which the wave reaches its maximum. The function increases from –1 to 1 on the interval 0
to 2π × xmax, then decreases linearly from 1 to –1 on the interval 2π × xmax to 2π. The shape then
repeats with a period of 2π.
Example: xmax = 0.5 specifies a standard triangle wave, symmetric about time π with a peak-to-
peak amplitude of 1.
Data Types: double

1 Functions

1-1956

Output Arguments
x — Sawtooth wave
vector | matrix | N-D array

Sawtooth wave, returned as a vector, matrix, or N-D array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | cos | diric | gauspuls | pulstran | rectpuls | sin | square | tripuls

Introduced before R2006a

 sawtooth

1-1957

schurrc
Compute reflection coefficients from autocorrelation sequence

Syntax
k = schurrc(r)
[k,e] = schurrc(r)

Description
k = schurrc(r) uses the Schur algorithm to compute a vector k of reflection coefficients from a
vector r representing an autocorrelation sequence. k and r are the same size. The reflection
coefficients represent the lattice parameters of a prediction filter for a signal with the given
autocorrelation sequence, r. When r is a matrix, schurrc treats each column of r as an independent
autocorrelation sequence, and produces a matrix k, the same size as r. Each column of k represents
the reflection coefficients for the lattice filter for predicting the process with the corresponding
autocorrelation sequence r.

[k,e] = schurrc(r) also computes the scalar e, the prediction error variance. When r is a matrix,
e is a column vector. The number of rows of e is the same as the number of columns of r.

Examples

Reflection Coefficients of Speech Autocorrelation Sequence

Create an autocorrelation sequence from the MATLAB® speech signal contained in mtlb.mat. Use
the Schur algorithm to compute the reflection coefficients of a lattice prediction filter for the
sequence.

load mtlb
r = xcorr(mtlb(1:5),'unbiased');
k = schurrc(r(5:end))

k = 4×1

 -0.7583
 0.1384
 0.7042
 -0.3699

References

[1] Proakis, John G., and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms, and
Applications. 3rd Edition. Upper Saddle River, NJ: Prentice-Hall, 1996, pp. 868–873.

1 Functions

1-1958

See Also
levinson

Introduced before R2006a

 schurrc

1-1959

settlingtime
Settling time for bilevel waveform

Syntax
S = settlingtime(X,D)
S = settlingtime(X,FS,D)
S = settlingtime(X,T,D)
[S,SLEV,SINST] = settlingtime(...)
[S,SLEV,SINST] = settlingtime(...,Name,Value)
settlingtime(...)

Description
S = settlingtime(X,D) returns the time, S, from the mid-reference level instant to the time
instant each transition enters and remains within a 2% tolerance region of the final state over the
duration, D. D is a positive scalar. Because settlingtime uses interpolation to determine the mid-
reference level instant, S may contain values that do not correspond to sampling instants. The length
of S is equal to the number of detected transitions in the input signal, X. If for any transition, the level
of the waveform does not remain within the lower and upper tolerance boundaries, the requested
duration is not present, or an intervening transition is detected, settlingtime marks the
corresponding element in S as NaN. See “Settle Seek Duration” on page 1-1965 for cases in which
settlingtime returns a NaN. To determine the transitions, settlingtime estimates the state
levels of the input waveform by a histogram method. settlingtime identifies all regions that cross
the upper-state boundary of the low state and the lower-state boundary of the high state. The low-
state and high-state boundaries are expressed as the state level plus or minus a multiple of the
difference between the state levels. See “State-Level Tolerances” on page 1-1964.

S = settlingtime(X,FS,D) specifies the sample rate for the bilevel waveform, X in hertz. The
first sample instant in X is equal to t = 0. Because settlingtime uses interpolation to determine the
mid-reference level instant, S may contain values that do not correspond to sampling instants.

S = settlingtime(X,T,D) specifies the sample instants, T, as a vector with the same number of
elements as X.

[S,SLEV,SINST] = settlingtime(...) returns vectors, SLEV, and SINST, whose elements
correspond to the levels and sample instants of the settling points for each transition.

[S,SLEV,SINST] = settlingtime(...,Name,Value) returns the settling times, levels, and
corresponding sample instants with additional options specified by one or more Name,Value pair
arguments.

settlingtime(...) plots the signal and darkens the regions of each transition where settling time
is computed. The plot marks the location of the settling time of each transition, the mid-crossings,
and the associated reference levels. The plot also displays the state levels with the corresponding
lower and upper tolerance boundaries.

1 Functions

1-1960

Input Arguments
X

Bilevel waveform. X is a real-valued row or column vector.

D

Settle-seek duration. D is a positive scalar, which defines the duration after the mid-reference level
instant that settlingtime looks for a settling time. If no settling time occurs in D seconds after the
mid-reference level instant, settlingtime returns a NaN. See “Settling Time” on page 1-1964 and
“Settle Seek Duration” on page 1-1965.

FS

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform, X.

Name-Value Pair Arguments

MidPercentReferenceLevel

Mid-reference level as a percentage of the waveform amplitude. See “Mid-Reference Level” on page
1-1964.

Default: 50

StateLevels

Low and high-state levels. StateLevels is a 1-by-2 real-valued vector. The first element is the low-
state level. The second element is the high-state level. If you do not specify low and high-state levels,
settlingtime estimates the state levels from the input waveform using the histogram method.

Tolerance

Tolerance levels (lower and upper state boundaries) expressed as a percentage. See “State-Level
Tolerances” on page 1-1964.

Default: 2

Output Arguments
S

The time from the mid-reference level instant to the time instant each transition enters and remains
within a 2% tolerance region of the final state over duration, D.

SLEV

Waveform values at the settling points.

 settlingtime

1-1961

SINST

Time instants of the settling points.

Examples

Determine Settling Point and Settling Level

Determine the settling point and corresponding waveform value for a bilevel waveform. Specify a
settle-seek duration of 10 seconds.

load('transitionex.mat', 'x')
[s,slev,sinst] = settlingtime(x,10);

Plot the waveform and annotate the settling point.

settlingtime(x,10)

ans = 1.8901

1 Functions

1-1962

Determine Settling Points of Three-Transition Bilevel Waveform

Determine the settling points for a three-transition bilevel waveform. The data are sampled at 4 MHz.
Specify a settle-seek duration of one microsecond.

load('transitionex.mat','x')
y = [x; fliplr(x)];
fs = 4e6;
t = 0:1/fs:(length(y)*1/fs)-1/fs;

[s,slev,sinst] = settlingtime(y,fs,1e-6);

Plot the waveform and annotate the settling points.

settlingtime(y,fs,1e-6)

ans = 3×1
10-6 ×

 0.4725
 0.1181
 0.4725

 settlingtime

1-1963

More About
Settling Time

The settling time is the time after the mid-reference level instant when the signal crosses into and
remains in the 2%-tolerance region around the state level. The settling time is illustrated in the
following figure. The low- and high-state levels are the dashed black lines. The 2% tolerances above
and below the state levels are shown by the red dashed lines and the settling time is indicated by the
yellow circle.

Mid-Reference Level

The mid-reference level in a bilevel waveform with low-state level, S_1, and high- state level, S_2, is

S1 + 1
2(S2− S1)

Mid-Reference Level Instant

Let y50% denote the mid reference level.

Let t50%-
 and t50%+

 denote the two consecutive sampling instants corresponding to the waveform
values nearest in value to y50%.

Let y50%-
 and y50%+

 denote the waveform values at t50%-
 and t50%+

.

The mid-reference level instant is

t50% = t50% + (
t50%+− t50%−
y50%+− y50%−

)(y50%+− y50%−)

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

1 Functions

1-1964

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

Settle Seek Duration

The settle seek duration defines the interval of time after the mid-reference level instant that
settlingtime looks for a settling point. If settlingtime does not find a settling point within the
settle seek duration, settlingtime returns NaN for the settling time. The following figure illustrates
a settle seek duration of 10 samples.

 settlingtime

1-1965

settlingtime may fail to find a settling point in the specified settle seek duration if any one of the
following conditions occurs:

• The last waveform value in the settle seek interval is not within the upper- and lower-state
boundaries determined by the specified tolerance. The following figure illustrates this condition
for a settle seek duration of 8 samples and a 2% tolerance region.

In the preceding figure, you see that the last sample in the settle seek interval exceeds the upper
state boundary. In this example, reducing or increasing the settle seek duration can result in a
valid settling time.

• There is an insufficient number of waveform samples for the specified settle seek duration. The
following figure illustrates this condition for a settle seek duration of 20 samples. The settle seek
duration extends beyond the final sample of the waveform.

1 Functions

1-1966

• An intervening transition is detected before the end of the specified settle seek duration. The
following figure illustrates this condition for a settle seek duration of 22 samples. An intervening
transition is detected before the end of the 22–sample settle seek duration.

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003, pp. 23–
24.

See Also
falltime | midcross | pulsewidth | risetime | statelevels

Introduced in R2012a

 settlingtime

1-1967

seqperiod
Compute period of sequence

Syntax
p = seqperiod(x)
p = seqperiod(x,tol)
[p,nr] = seqperiod(x)

Description
p = seqperiod(x) returns the integers that correspond to the periods of the sequences in x. The
period p is computed as the minimum length of a subsequence x(1:p) of x that repeats itself
continuously every p samples.

p = seqperiod(x,tol) specifies tol as the absolute tolerance to determine when two numbers
are close enough to be treated as equal.

[p,nr] = seqperiod(x) also returns the number of repetitions of x(1:p) in x.

Examples

Multichannel Signal Periods

Generate a multichannel signal and determine the period of each column.

x = [4 0 1 6;
 2 0 2 7;
 4 0 1 5;
 2 0 5 6];

p = seqperiod(x)

p = 1×4

 2 1 4 3

The first column of x has period 2. The second column of x has period 1. The third column of x is not
periodic, so p(3) is just the number of rows of x. The fourth column of x has period 3, although the
second repetition of the periodic sequence is incomplete.

Compute the number of times that each periodic sequence is repeated.

[~,nr] = seqperiod(x)

nr = 1×4

 2.0000 4.0000 1.0000 1.3333

1 Functions

1-1968

In the first column of x, the periodic sequence appears twice. In the second column, the one-sample
sequence is repeated as many times as there are samples. In the third column, there is no repetition.
The number of repetitions in the fourth column is one plus the fraction of the sequence length
represented by the remaining sample.

Periods of Two-Channel Sinusoid

Generate a two-channel sinusoid such that one channel has four periods in the sampling interval and
the other channel has two periods. Plot the sinusoid.

n = 0:31;
x = cos(2*pi./[8;16].*n)';

plot(n,x,'.-')
axis tight

Compute the lengths of the repeated subsequences and the number of repetitions. Specify an
absolute tolerance of 1e-5.

[p,nr] = seqperiod(x,1e-5)

p = 1×2

 8 16

 seqperiod

1-1969

nr = 1×2

 4 2

Sequence Period Along Higher Dimension

Create an array whose first two dimensions have size 1. Along the third dimension, the array has a
repeating sequence.

a = permute([5 4 3 5 4 3 5 4],[3 1 2])

a =
a(:,:,1) =

 5

a(:,:,2) =

 4

a(:,:,3) =

 3

a(:,:,4) =

 5

a(:,:,5) =

 4

a(:,:,6) =

 3

a(:,:,7) =

 5

a(:,:,8) =

 4

Compute the period of the repeating sequence and the number of repetitions contained in the array.
The function works along the third dimension, as expected.

1 Functions

1-1970

[p,nr] = seqperiod(a)

p = 3

nr = 2.6667

Input Arguments
x — Input array
vector | matrix | N-D array

Input array, specified as a vector, matrix, or N-D array.

• If x is a matrix, then seqperiod checks for periodicity along each column of x.
• If x is a multidimensional array, then seqperiod checks for periodicity along the first array

dimension of x with size greater than 1.

The length of x does not have to be a multiple of p, so that incomplete repetitions are permitted at
the end of x.
Example: sin(pi./[4;2]*(0:159))' specifies a two-channel sinusoid. The second channel has
twice the frequency of the first channel.
Data Types: double

tol — Absolute tolerance
1e-10 (default) | positive real scalar

Absolute tolerance to determine when two numbers are close enough to be treated as equal, specified
as a positive real scalar.
Data Types: double

Output Arguments
p — Sequence period
scalar | vector | matrix | N-D array

Sequence period, returned as a scalar, vector, matrix, or N-D array. If a sequence is not periodic, then
p equals the length of x along the chosen dimension.

• If x is a matrix, then p is a row vector with the same number of columns as x.
• If x is a multidimensional array, then p is a multidimensional array of integers whose first

dimension is of size 1. The remaining dimensions of p correspond to the remaining dimensions of
x with sizes larger than 1.

nr — Number of sequence repetitions
vector | matrix | N-D array

Number of sequence repetitions, returned as a scalar, vector, matrix, or N-D array. nr has the same
dimensions as p. The elements of nr are not necessarily integers.

See Also
findsignal | pulseperiod

 seqperiod

1-1971

Topics
“Measuring Signal Similarities”

Introduced before R2006a

1 Functions

1-1972

sfdr
Spurious free dynamic range

Syntax
r = sfdr(x)
r = sfdr(x,fs)
r = sfdr(x,fs,msd)

r = sfdr(sxx,f,'power')
r = sfdr(sxx,f,msd,'power')

[r,spurpow,spurfreq] = sfdr(___)

sfdr(___)

Description
r = sfdr(x) returns the spurious free dynamic range (SFDR), r, in dB of the real sinusoidal signal,
x. sfdr computes the power spectrum using a modified periodogram and a Kaiser window with β =
38. The mean is subtracted from x before computing the power spectrum. The number of points used
in the computation of the discrete Fourier transform (DFT) is the same as the length of the signal, x.

r = sfdr(x,fs) returns the SFDR of the time-domain input signal, x, when the sample rate, fs, is
specified. The default value of fs is 1 Hz.

r = sfdr(x,fs,msd) returns the SFDR considering only spurs that are separated from the
fundamental (carrier) frequency by the minimum spur distance, msd, specified in cycles/unit time.
The sample rate is fs. If the carrier frequency is Fc, then all spurs in the interval (Fc-msd, Fc+msd)
are ignored.

r = sfdr(sxx,f,'power') returns the SFDR of the one-sided power spectrum of a real-valued
signal, sxx. f is the vector of frequencies corresponding to the power estimates in sxx. The first
element of f must equal 0. The algorithm removes all the power that decreases monotonically away
from the DC bin.

r = sfdr(sxx,f,msd,'power') returns the SFDR considering only spurs that are separated from
the fundamental (carrier) frequency by the minimum spur distance, msd. If the carrier frequency is
Fc, then all spurs in the interval (Fc-msd, Fc+msd) are ignored. When the input to sfdr is a power
spectrum, specifying msd can prevent high sidelobe levels from being identified as spurs.

[r,spurpow,spurfreq] = sfdr(___) returns the power and frequency of the largest spur.

sfdr(___) with no output arguments plots the spectrum of the signal in the current figure window.
It uses different colors to draw the fundamental component, the DC value, and the rest of the
spectrum. It shades the SFDR and displays its value above the plot. It also labels the fundamental and
the largest spur.

Examples

 sfdr

1-1973

SFDR of Sinusoid

Obtain the SFDR for a 10 MHz tone with amplitude 1 sampled at 100 MHz. There is a spur at the 1st
harmonic (20 MHz) with an amplitude of 3 . 16 × 10−4.

deltat = 1e-8;
fs = 1/deltat;
t = 0:deltat:1e-5-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
r = sfdr(x,fs)

r = 70.0063

Display the spectrum of the signal. Annotate the fundamental, the DC value, the spur, and the SFDR.

sfdr(x,fs);

Minimum Spur Distance

Obtain the SFDR for a 10 MHz tone with amplitude 1 sampled at 100 MHz. There is a spur at the 1st
harmonic (20 MHz) with an amplitude of 3 . 16 × 10−4 and another spur at 25 MHz with an amplitude
of 10−5. Skip the first harmonic by using a minimum spur distance of 11 MHz.

deltat = 1e-8;
fs = 1/deltat;

1 Functions

1-1974

t = 0:deltat:1e-5-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t)+ ...
 0.1e-5*cos(2*pi*25e6*t);
r = sfdr(x,fs,11e6)

r = 120.0000

Display the spectrum of the signal. Annotate the fundamental, the DC value, the spurs, and the SFDR.

sfdr(x,fs,11e6);

SFDR from Periodogram

Obtain the power spectrum of a 10 MHz tone with amplitude 1 sampled at 100 MHz. There is a spur
at the 1st harmonic (20 MHz) with an amplitude of 3 . 16 × 10−4. Use the one-sided power spectrum
and a vector of corresponding frequencies in Hz to compute the SFDR.

deltat = 1e-8;
fs = 1/deltat;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
[sxx,f] = periodogram(x,rectwin(length(x)),length(x),fs,'power');
r = sfdr(sxx,f,'power');

 sfdr

1-1975

Display the spectrum of the signal. Annotate the fundamental, the DC value, the first spur, and the
SFDR.

sfdr(sxx,f,'power');

Frequency and Power of Largest Spur

Determine the frequency in MHz for the largest spur. The input signal is a 10 MHz tone with
amplitude 1 sampled at 100 MHz. There is a spur at the first harmonic (20 MHz) with an amplitude of
3 . 16 × 10−4.

deltat = 1e-8;
t = 0:deltat:1e-6-deltat;
x = cos(2*pi*10e6*t)+3.16e-4*cos(2*pi*20e6*t);
[r,spurpow,spurfreq] = sfdr(x,1/deltat);
spur_MHz = spurfreq/1e6

spur_MHz = 20

SFDR from Time Series

Create a superposition of three sinusoids, with frequencies of 9.8, 14.7, and 19.6 kHz, in white
Gaussian additive noise. The signal is sampled at 44.1 kHz. The 9.8 kHz sine wave has an amplitude

1 Functions

1-1976

of 1 volt, the 14.7 kHz wave has an amplitude of 100 microvolts, and the 19.6 kHz signal has
amplitude 30 microvolts. The noise has 0 mean and a variance of 0.01 microvolt. Additionally, the
signal has a DC shift of 0.1 volt.

rng default

Fs = 44.1e3;
f1 = 9.8e3;
f2 = 14.7e3;
f3 = 19.6e3;
N = 900;

nT = (0:N-1)/Fs;
x = 0.1+sin(2*pi*f1*nT)+100e-6*sin(2*pi*f2*nT) ...
 +30e-6*sin(2*pi*f3*nT)+sqrt(1e-8)*randn(1,N);

Plot the spectrum and SFDR of the signal. Display its fundamental and its largest spur. The DC level
is excluded from the SFDR computation.

sfdr(x,Fs);

Input Arguments
x — Real-valued sinusoidal signal
row vector | column vector

 sfdr

1-1977

Real-valued sinusoidal signal, specified as a row or column vector. The mean is subtracted from x
prior to obtaining the power spectrum for SFDR computation.
Example: x = cos(pi/4*(0:79))+1e-4*cos(pi/2*(0:79));
Data Types: double

fs — Sample rate
1 (default) | positive scalar

Sample rate of the signal in cycles/unit time, specified as a positive scalar. When the unit of time is
seconds, fs is in Hz.
Data Types: double

msd — Minimum spur distance
0 (default) | positive scalar

Minimum number of discrete Fourier transform (DFT) bins to ignore in the SFDR computation,
specified as a positive scalar. You can use this argument to ignore spurs or sidelobes that occur in
close proximity to the fundamental frequency. For example, if the carrier frequency is Fc, then all
spurs in the range (Fc-msd, Fc+msd) are ignored.
Data Types: double

sxx — One-sided power spectrum
row or column vector of positive numbers

One-sided power spectrum to use in the SFDR computation, specified as row or column vector.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a noisy two-channel sinusoid sampled at 2π Hz
and the frequencies at which it is computed.
Data Types: double

f — Vector of frequencies
row or column vector of nonnegative numbers

Vector of frequencies corresponding to the power estimates in sxx, specified as a row or column
vector.

Output Arguments
r — Spurious free dynamic range
real-valued scalar

Spurious free dynamic range in dB, specified as a real-valued scalar. The spurious free dynamic range
is the difference in dB between the power at the peak frequency and the power at the next largest
frequency (spur). If the input is time series data, the power estimates are obtained from a modified
periodogram using a Hamming window. The length of the DFT used in the periodogram is equal to
the length of the input signal, x. If you want to use a different power spectrum as the basis for the
SFDR measurement, you can input your power spectrum using the 'power' flag.

1 Functions

1-1978

Data Types: double

spurpow — power of largest spur
real-valued scalar

Power in dB of the largest spur, specified as a real-valued scalar.
Data Types: double

spurfreq — frequency of largest spur
real-valued scalar

Frequency in Hz of the largest spur, specified as a real-valued scalar. If you do not supply the sample
rate as an input argument, sfdr assumes a sample rate of 1 Hz.
Data Types: double

More About
Distortion Measurement Functions

The functions thd, sfdr, sinad, and snr measure the response of a weakly nonlinear system
stimulated by a sinusoid.

When given time-domain input, sfdr performs a periodogram using a Kaiser window with large
sidelobe attenuation. To find the fundamental frequency, the algorithm searches the periodogram for
the largest nonzero spectral component. It then computes the central moment of all adjacent bins
that decrease monotonically away from the maximum. To be detectable, the fundamental should be at
least in the second frequency bin. If a harmonic lies within the monotonically decreasing region in the
neighborhood of another, its power is considered to belong to the larger harmonic. This larger
harmonic may or may not be the fundamental. The algorithm ignores all the power that decreases
monotonically away from the DC bin.

sfdr fails if the fundamental is not the highest spectral component in the signal.

Ensure that the frequency components are far enough apart to accommodate for the sidelobe width
of the Kaiser window. If this is not feasible, you can use the 'power' flag and compute a
periodogram with a different window.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If supplied, input argument 'power' must be a compile-time constant.

See Also
bandpower | enbw | periodogram

Topics
“Spurious-Free Dynamic Range (SFDR) Measurement”

 sfdr

1-1979

Introduced in R2013a

1 Functions

1-1980

sgolay
Savitzky-Golay filter design

Syntax
b = sgolay(order,framelen)
b = sgolay(order,framelen,weights)
[b,g] = sgolay(___)

Description
b = sgolay(order,framelen) designs a Savitzky-Golay FIR smoothing filter with polynomial
order order and frame length framelen.

b = sgolay(order,framelen,weights) specifies a weighting vector, weights, which contains
the real, positive-valued weights to be used during the least-squares minimization.

[b,g] = sgolay(___) returns the matrix g of differentiation filters. You can use these output
arguments with any of the previous input syntaxes.

Examples

Savitzky-Golay Smoothing of Noisy Sinusoid

Generate a signal that consists of a 0.2 Hz sinusoid embedded in white Gaussian noise and sampled
five times a second for 200 seconds.

dt = 1/5;
t = (0:dt:200-dt)';

x = 5*sin(2*pi*0.2*t) + randn(size(t));

Use sgolay to smooth the signal. Use 21-sample frames and fourth order polynomials.

order = 4;
framelen = 21;

b = sgolay(order,framelen);

Compute the steady-state portion of the signal by convolving it with the center row of b.

ycenter = conv(x,b((framelen+1)/2,:),'valid');

Compute the transients. Use the last rows of b for the startup and the first rows of b for the terminal.

ybegin = b(end:-1:(framelen+3)/2,:) * x(framelen:-1:1);
yend = b((framelen-1)/2:-1:1,:) * x(end:-1:end-(framelen-1));

Concatenate the transients and the steady-state portion to generate the complete smoothed signal.
Plot the original signal and the Savitzky-Golay estimate.

 sgolay

1-1981

y = [ybegin; ycenter; yend];
plot([x y])
legend('Noisy Sinusoid','S-G smoothed sinusoid')

Savitzky-Golay Differentiation

Generate a signal that consists of a 0.2 Hz sinusoid embedded in white Gaussian noise and sampled
four times a second for 20 seconds.

dt = 0.25;
t = (0:dt:20-1)';

x = 5*sin(2*pi*0.2*t)+0.5*randn(size(t));

Estimate the first three derivatives of the sinusoid using the Savitzky-Golay method. Use 25-sample
frames and fifth order polynomials. Divide the columns by powers of dt to scale the derivatives
correctly.

[b,g] = sgolay(5,25);

dx = zeros(length(x),4);
for p = 0:3
 dx(:,p+1) = conv(x, factorial(p)/(-dt)^p * g(:,p+1), 'same');
end

1 Functions

1-1982

Plot the original signal, the smoothed sequence, and the derivative estimates.

plot(x,'.-')
hold on
plot(dx)
hold off

legend('x','x (smoothed)','x''','x''''', 'x''''''')
title('Savitzky-Golay Derivative Estimates')

Input Arguments
order — Polynomial order
positive integer

Polynomial order, specified as a positive integer. The value of order must be smaller than framelen.
If order = framelen – 1, then the designed filter produces no smoothing.

framelen — Frame length
positive odd integer

Frame length, specified as a positive odd integer. The value of framelen must be greater than
order.

weights — Weighting vector
real positive vector

 sgolay

1-1983

Weighting vector, specified as a real positive vector. The weighting vector has the same length as
framelen and is used to perform least-squares minimization.

Output Arguments
b — Time-varying FIR filter coefficients
matrix

Time-varying FIR filter coefficients, specified as a framelen-by-framelen matrix. In a smoothing
filter implementation (for example, sgolayfilt), the last (framelen-1)/2 rows (each an FIR
filter) are applied to the signal during the startup transient, and the first (framelen-1)/2 rows are
applied to the signal during the terminal transient. The center row is applied to the signal in the
steady state.

g — Matrix of differentiation filters
matrix

Matrix of differentiation filters, specified as a matrix. Each column of g is a differentiation filter for
derivatives of order p-1, where p is the column index. Given a signal x of length framelen, you can
find an estimate of the pth order derivative, xp, of its middle value from xp((framelen+1)/2) =
(factorial(p)) * g(:,p+1)' * x.

Algorithms
Savitzky-Golay filters are used to smooth out noisy signals with a large frequency span. Savitzky-
Golay smoothing filters tend to filter out less of the signal's high-frequency content than standard
averaging FIR filters. However, they are less successful at rejecting noise when noise levels are
particularly high.

In general, filtering consists of replacing each point of a signal by some combination of the signal
values contained in a moving window centered at the point, on the assumption that nearby points
measure nearly the same underlying value. For example, moving average filters replace each data
point with the local average of the surrounding data points. If a given data point has k points to the
left and k points to the right, for a total window length of L = 2k + 1, the moving average filter makes
the replacement

xs x s = 1
L ∑

r = − k

k
xs + r .

Savitzky-Golay filters generalize this idea by least-squares fitting an nth-order polynomial through the
signal values in the window and taking the calculated central point of the fitted polynomial curve as
the new smoothed data point. For a given point, xs,

1 Functions

1-1984

xs− k

⋮
xs− 1

xs
xs + 1

⋮
xs + k

=

b0 + b1 ts− kΔt + b2 ts− kΔt 2 +⋯+ bn ts− kΔt n

⋮
b0 + b1 ts− 1Δt + b2 ts− 1Δt 2 +⋯+ bn ts− 1Δt n

b0 + b1 ts− 0Δt + b2 ts− 0Δt 2 +⋯+ bn ts− 0Δt n

b0 + b1 ts + 1Δt + b2 ts + 1Δt 2 +⋯+ bn ts + 1Δt n

⋮
b0 + b1 ts + kΔt + b2 ts + kΔt 2 +⋯+ bn ts + kΔt n

=

a0 + a1 −k + a2 −k 2 +⋯+ an −k n

⋮
a0 + a1 −1 + a2 −1 2 +⋯+ an −1 n

a0 + a1 0 + a2 0 2 +⋯+ an 0 n

a0 + a1 1 + a2 1 2 +⋯+ an 1 n

⋮
a0 + a1 k + a2 k 2 +⋯+ an k n

or, in terms of matrices,

x =

1 −k −k 2 ⋯ −k n

1 ⋮ ⋮ ⋰ ⋮
1 −2 −2 2 ⋯ −2 n

1 −1 −1 2 ⋯ −1 n

1 0 0 ⋯ 0

1 1 12 ⋯ 1n

1 2 22 ⋯ 2n

1 ⋮ ⋮ ⋱ ⋮
1 k k2 ⋯ kn

a0

⋮
an

≡ Ha .

To find the Savitzky-Golay estimates, use the pseudoinverse of H to compute a and then premultiply
by H:

x = H HTH −1HTx = Bx .

To avoid ill-conditioning, sgolay uses the qr function to compute an economy-size decomposition of
H as H = QR, in terms of which B = QQT.

It is necessary to compute B only once. The Savitzky-Golay estimates for most signal points result
from convolving the signal with the center row of B. The result is the steady-state portion of the
filtered signal. The first k rows of B yield the initial transient, and the final k rows of B yield the final
transient. See sgolayfilt for an example. It is possible to improve noise suppression by increasing
the window length, but this introduces ringing analogous to the Gibbs phenomenon near any
transients.

 sgolay

1-1985

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

1996.

[2] Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. New York: Cambridge University Press, 1992.

[3] Schafer, Ronald W. “What Is a Savitzky-Golay Filter? [Lecture Notes].” IEEE Signal Processing
Magazine Vol. 28, Number 4, July 2011, pp. 111–117. https://doi.org/10.1109/
MSP.2011.941097.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fir1 | firls | filter | sgolayfilt

Introduced before R2006a

1 Functions

1-1986

https://doi.org/10.1109/MSP.2011.941097
https://doi.org/10.1109/MSP.2011.941097

sgolayfilt
Savitzky-Golay filtering

Syntax
y = sgolayfilt(x,order,framelen)
y = sgolayfilt(x,order,framelen,weights)
y = sgolayfilt(x,order,framelen,weights,dim)

Description
y = sgolayfilt(x,order,framelen) applies a Savitzky-Golay finite impulse response (FIR)
smoothing filter of polynomial order order and frame length framelen to the data in vector x. If x is
a matrix, then sgolayfilt operates on each column.

y = sgolayfilt(x,order,framelen,weights) specifies a weighting vector to use during the
least-squares minimization.

y = sgolayfilt(x,order,framelen,weights,dim) specifies the dimension along which the
filter operates.

Examples

Steady-State and Transient Savitzky-Golay Filters

Generate a random signal and smooth it using sgolayfilt. Specify a polynomial order of 3 and a
frame length of 11. Plot the original and smoothed signals.

order = 3;
framelen = 11;

lx = 34;
x = randn(lx,1);

sgf = sgolayfilt(x,order,framelen);

plot(x,':')
hold on
plot(sgf,'.-')
legend('signal','sgolay')

 sgolayfilt

1-1987

The sgolayfilt function performs most of the filtering by convolving the signal with the center row
of B, the output of sgolay. The result is the steady-state portion of the filtered signal. Generate and
plot this portion.

m = (framelen-1)/2;

B = sgolay(order,framelen);

steady = conv(x,B(m+1,:),'same');

plot(steady)
legend('signal','sgolay','steady')

1 Functions

1-1988

Samples close to the signal edges cannot be placed at the center of a symmetric window and have to
be treated differently.

To determine the startup transient, matrix multiply the first (framelen-1)/2 rows of B by the first
framelen samples of the signal.

ybeg = B(1:m,:)*x(1:framelen);

To determine the terminal transient, matrix multiply the final (framelen-1)/2 rows of B by the final
framelen samples of the signal.

yend = B(framelen-m+1:framelen,:)*x(lx-framelen+1:lx);

Concatenate the transients and the steady-state portion to generate the complete signal.

cmplt = steady;
cmplt(1:m) = ybeg;
cmplt(lx-m+1:lx) = yend;

plot(cmplt)
legend('signal','sgolay','steady','complete')
hold off

 sgolayfilt

1-1989

Adding weights to the minimization breaks the symmetry of B and requires extra steps for a proper
solution.

Savitzky-Golay Filtering of Speech Signal

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb
t = (0:length(mtlb)-1)/Fs;

Smooth the signal by applying a Savitzky-Golay filter of polynomial order 9 to data frames of length
21. Plot the original and filtered signals. Zoom in on a 0.02-second interval.

rd = 9;
fl = 21;

smtlb = sgolayfilt(mtlb,rd,fl);

subplot(2,1,1)
plot(t,mtlb)
axis([0.2 0.22 -3 2])
title('Original')
grid

1 Functions

1-1990

subplot(2,1,2)
plot(t,smtlb)
axis([0.2 0.22 -3 2])
title('Filtered')
grid

Repeat the calculation, but now use a Kaiser window as a weighting vector. Specify a shape factor
β = 38. Plot the new filtered signal.

kmtlb = sgolayfilt(mtlb,rd,fl,kaiser(fl,38));

subplot(2,1,2)
hold on
plot(t,kmtlb)
axis([0.2 0.22 -3 2])
hold off

 sgolayfilt

1-1991

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Data Types: single | double

order — Polynomial order
positive integer

Polynomial order, specified as a positive integer. order must be smaller than framelen. If order =
framelen – 1, the filter produces no smoothing.
Data Types: single | double

framelen — Frame length
positive odd integer

Frame length, specified as a positive odd integer.
Data Types: single | double

weights — Weighting array
real positive vector | real positive matrix

1 Functions

1-1992

Weighting array, specified as a real positive vector or matrix of length framelen.
Data Types: single | double

dim — Dimension to filter along
positive integer scalar

Dimension to filter along, specified as a positive integer scalar. By default, sgolayfilt operates
along the first dimension of x whose size is greater than 1.
Data Types: single | double

Output Arguments
y — Filtered signal
vector | matrix

Filtered signal, returned as a vector or matrix.

Tips
Savitzky-Golay smoothing filters are typically used to "smooth out" a noisy signal whose frequency
span (without noise) is large. They are also called digital smoothing polynomial filters or least-squares
smoothing filters. Savitzky-Golay filters perform better in some applications than standard averaging
FIR filters, which tend to filter high-frequency content along with the noise. Savitzky-Golay filters are
more effective at preserving high frequency signal components but less successful at rejecting noise.

Savitzky-Golay filters are optimal in the sense that they minimize the least-squares error in fitting a
polynomial to frames of noisy data. See sgolay for more information about the Savitzky-Golay
algorithm.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

1996.

[2] Schafer, Ronald. “What Is a Savitzky-Golay Filter? [Lecture Notes].” IEEE Signal Processing
Magazine 28, no. 4 (July 2011): 111–17. https://doi.org/10.1109/MSP.2011.941097.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
medfilt1 | filter | sgolay | sosfilt

Introduced before R2006a

 sgolayfilt

1-1993

shiftdata
Shift data to operate on specified dimension

Syntax
[y,perm,nshifts] = shiftdata(x,dim)

Description
[y,perm,nshifts] = shiftdata(x,dim) shifts data x to permute dimension dim to the first
column using the same permutation as the built-in filter function. perm is the permutation that the
function uses.

Note Use the shiftdata function in tandem with the unshiftdata function, which shifts the data
back to its original shape. These functions are useful for creating functions that work along a certain
dimension, like filter, goertzel, sgolayfilt, and sosfilt.

Examples

Permute Dimensions of Magic Square

Shift a 3-by-3 magic square, permuting the second dimension to the first column. Shift the matrix
back to its original shape.

Create a 3-by-3 magic square.

x = magic(3)

x = 3×3

 8 1 6
 3 5 7
 4 9 2

Shift the matrix to work along the second dimension. Return the permutation vector, the number of
shifts, and the shifted matrix.

[x,perm,nshifts] = shiftdata(x,2)

x = 3×3

 8 3 4
 1 5 9
 6 7 2

perm = 1×2

1 Functions

1-1994

 2 1

nshifts =

 []

Restore the matrix back to its original shape.

y = unshiftdata(x,perm,nshifts)

y = 3×3

 8 1 6
 3 5 7
 4 9 2

Rearrange Array to Operate on First Nonsingleton Dimension

Define the data to shift as a row vector.

x = 1:5

x = 1×5

 1 2 3 4 5

Define dim as empty to shift the first nonsingleton dimension of the data to the first column.
shiftdata returns the data as a column vector, the permutation vector, and the number of shifts.

dim = [];
[x,perm,nshifts] = shiftdata(x,dim)

x = 5×1

 1
 2
 3
 4
 5

perm =

 []

nshifts = 1

Restore the shifted data to its original shape.

y = unshiftdata(x,perm,nshifts)

y = 1×5

 shiftdata

1-1995

 1 2 3 4 5

Input Arguments
x — Data
vector | matrix

Data, specified as a vector or matrix.
Data Types: single | double

dim — Dimension to operate along
[] | positive integer

Dimension to operate along, specified as a positive integer or []. If dim is [], then the function shifts
the first nonsingleton dimension to the first column and returns the number of shifts in nshifts.
Data Types: single | double

Output Arguments
y — Shifted data
vector | matrix

Shifted data, returned as a vector or matrix.

perm — Permutation
vector

Permutation used to shift the data, returned as a vector.

nshifts — Number of shifts
scalar

Number of shifts, returned as a scalar.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
permute | shiftdim | unshiftdata

Introduced in R2012b

1 Functions

1-1996

Signal Analyzer
Visualize and compare multiple signals and spectra

Description
The Signal Analyzer app is an interactive tool for visualizing, preprocessing, measuring, analyzing,
and comparing signals in the time domain, in the frequency domain, and in the time-frequency
domain. Using the app, you can:

• Easily access all the signals in the MATLAB workspace
• Smooth, filter, resample, detrend, denoise, duplicate, extract, and rename signals without leaving

the app
• Add and apply custom preprocessing functions
• Visualize and compare multiple waveform, spectrum, persistence, spectrogram, and scalogram

representations of signals simultaneously

The Signal Analyzer app provides a way to work with many signals of varying durations at the same
time and in the same view.

For more information, see Using Signal Analyzer App.

• Signal Analyzer no longer opens Signal Labeler, which is now available as an app. If you want
to label signals, open Signal Labeler from the MATLAB Toolstrip or the Command Window.

• You need a Wavelet Toolbox™ license to use the scalogram view and to apply wavelet denoising to
signals.

 Signal Analyzer

1-1997

Open the Signal Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter signalAnalyzer.

Examples
• “Extract Voices from Music Signal”
• “Modulation and Demodulation Using Complex Envelope”
• “Find and Track Ridges Using Reassigned Spectrogram”
• “Declip Saturated Signals Using Your Own Function”
• “Compute Envelope Spectrum of Vibration Signal”
• “Find Delay Between Correlated Signals”
• “Plot Signals from the Command Line”
• “Resolve Tones by Varying Window Leakage”
• “Analyze Signals with Inherent Time Information”
• “Spectrogram View of Dial Tone Signal”

1 Functions

1-1998

• “Find Interference Using Persistence Spectrum”
• “Scalogram of Hyperbolic Chirp”
• “Denoise Noisy Doppler Signal”
• “Resample and Filter a Nonuniformly Sampled Signal”
• “Extract Regions of Interest from Whale Song”

Programmatic Use
signalAnalyzer opens the Signal Analyzer app.

signalAnalyzer(sig) opens the Signal Analyzer app and imports and plots the signal sig. If the
app is already open, then it plots sig in the current display. If sig is already plotted but has
changed, then the function call updates the plot.

sig can be a variable in the workspace or a MATLAB expression. sig can be:

• A vector or a matrix with independent signals in each column.
• A timetable with time values specified as durations.
• A timeseries object.

See “Data Types Supported by Signal Analyzer” for more details.

By default, the app plots the signal as a function of sample index. If you provide time information, or
if the signal has inherent time information, then the app plots the signal as a function of time.

signalAnalyzer(sig1,...,sigN) imports N signal vectors or matrices and plots them in the
current display. The app does not support importing signals with inherent time information and
signals without inherent time information in the same function call.

signalAnalyzer(___ ,'SampleRate',fs) specifies a sample rate, fs, as a positive scalar
expressed in Hz. The app uses the sample rate to plot one or more signals against time, assuming a
start time of zero. You can specify a sample rate for signals with no inherent time information.

signalAnalyzer(___ ,'SampleTime',ts) specifies a sample time, ts, as a positive scalar
expressed in seconds. The app uses the sample time to plot one or more signals against time,
assuming a start time of zero. You can specify a sample time for signals with no inherent time
information.

signalAnalyzer(___ ,'StartTime',st) specifies a signal start time, st, as a scalar expressed
in seconds. If you do not specify a sample rate or sample time, then the app assumes a sample rate of
1 Hz. You can specify a start time for signals with no inherent time information.

signalAnalyzer(___ ,'TimeValues',tv) specifies a vector, tv, with time values corresponding
to the data points. tv can be a real numeric vector with values expressed in seconds. tv can also be a
duration array. The values in tv must be unique and cannot be NaN, but they need not be uniformly
spaced. All input signals must have the same length as tv. You can specify a vector of time values for
signals with no inherent time information.

Filtering and scalogram view do not support nonuniformly sampled signals.

 Signal Analyzer

1-1999

Compatibility Considerations
Label button removed from Signal Analyzer
Behavior changed in R2020a

Signal Analyzer no longer opens Signal Labeler, which is now available as an app. If you want to
label signals, open Signal Labeler from the MATLAB Toolstrip or the Command Window.

See Also
Apps
Filter Designer | Signal Labeler

Functions
periodogram | pspectrum | pwelch | spectrogram

Topics
“Extract Voices from Music Signal”
“Modulation and Demodulation Using Complex Envelope”
“Find and Track Ridges Using Reassigned Spectrogram”
“Declip Saturated Signals Using Your Own Function”
“Compute Envelope Spectrum of Vibration Signal”
“Find Delay Between Correlated Signals”
“Plot Signals from the Command Line”
“Resolve Tones by Varying Window Leakage”
“Analyze Signals with Inherent Time Information”
“Spectrogram View of Dial Tone Signal”
“Find Interference Using Persistence Spectrum”
“Scalogram of Hyperbolic Chirp”
“Denoise Noisy Doppler Signal”
“Resample and Filter a Nonuniformly Sampled Signal”
“Extract Regions of Interest from Whale Song”
“Time-Frequency Gallery”
“Using Signal Analyzer App”
“Edit Sample Rate and Other Time Information”
“Data Types Supported by Signal Analyzer”
“Spectrum Computation in Signal Analyzer”
“Persistence Spectrum in Signal Analyzer”
“Spectrogram Computation in Signal Analyzer”
“Scalogram Computation in Signal Analyzer”
“Keyboard Shortcuts for Signal Analyzer”
“Signal Analyzer Tips and Limitations”

Introduced in R2016a

1 Functions

1-2000

signalLabelDefinition
Create signal label definition

Description
Use signalLabelDefinition to create signal label definitions for data sets. The labels can
correspond to attributes, regions, or points of interest. Use a vector of signalLabelDefinition
objects to create a labeledSignalSet.

Creation

Syntax
sld = signalLabelDefinition(name)
sld = signalLabelDefinition(name,Name,Value)

Description

sld = signalLabelDefinition(name) creates a signal label definition object, sld, with the
“Name” on page 1-0 property set to name and other properties set to default values.

sld = signalLabelDefinition(name,Name,Value) sets “Properties” on page 1-2001 using
name-value pairs. You can specify multiple name-value pairs. Enclose each property name in quotes.

Input Arguments

name — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar.
Data Types: char | string

Properties
Name — Name of label
character vector | string scalar

Name of label, specified as a character vector or string scalar.
Data Types: char | string

LabelType — Type of label
'attribute' (default) | 'roi' | 'point'

Type of label, specified as one of the following:

• 'attribute' — Define signal characteristics.

 signalLabelDefinition

1-2001

• 'roi' — Define signal characteristics over regions of interest.
• 'point' — Define signal characteristics over points of interest.

Data Types: char | string

LabelDataType — Data type of label
'logical' (default) | 'categorical' | 'numeric' | 'string' | 'table' | 'timetable'

Data type of label, specified as 'logical', 'categorical', 'numeric', 'string', 'table', or
'timetable'. Use the “Categories” on page 1-0 property to specify the array of categories when
this property is set to 'categorical'.
Data Types: char | string

Categories — Label category names
string array | cell array of character vectors

Label category names, specified as a string array or a cell array of character vectors. The array must
have unique elements. This property applies only when the “LabelDataType” on page 1-0 property
is set to 'categorical'.
Example: 'LabelDataType','categorical','Categories',["apple","orange"]
Data Types: char | string

ROILimitsDataType — Data type of ROI limits
'double' (default) | 'duration'

Data type of ROI limits, specified as either 'double' or 'duration'. This property applies only
when “LabelType” on page 1-0 is set to 'roi'.
Data Types: char | string

PointLocationsDataType — Data type of point locations
'double' (default) | 'duration'

Data type of point locations, specified as either 'double' or 'duration'. This property applies only
when “LabelType” on page 1-0 is set to 'point'.
Data Types: char | string

ValidationFunction — Validation function
function handle

Validation function, specified as a function handle and used when setting label values in a
labeledSignalSet object. This property applies only when “LabelDataType” on page 1-0 is set
to 'categorical', 'logical', 'numeric', 'table', or 'timetable'. If not specified, the
function checks only that its input values are of the correct data type. If “LabelDataType” on page 1-
0 is set to 'categorical', the function checks that the input is one of the values specified using
“Categories” on page 1-0 . The function takes an input value and returns true if the value is valid
and false if the value is invalid.
Example:
'LabelDataType','numeric','DefaultValue',1,'ValidationFunction',@(x)x<2

Data Types: function_handle

1 Functions

1-2002

DefaultValue — Default value of label
[] (default) | LabelDataType value

Default value of label, specified as a value of the type specified using “LabelDataType” on page 1-
0 . If “LabelDataType” on page 1-0 is set to 'categorical', then “DefaultValue” on page 1-
0 must be one of the values specified using “Categories” on page 1-0 .
Example: 'LabelDataType','categorical','Categories',
["apple","orange"],'DefaultValue',"apple"

Data Types: char | double | logical | string | table

Description — Label description
character vector | string scalar

Label description, specified as a character vector or string scalar.
Example: 'Description','Patient is asleep'
Data Types: char | string

Tag — Label tag identifier
character vector | string scalar

Label tag identifier, specified as a character vector or string scalar. Use this property to identify the
same label in a larger labeling scheme or public labeling set.
Example: 'Tag','Peak1'
Data Types: char | string

Sublabels — Array of sublabels
signal label definition object

Array of sublabels, specified as a signal label definition object. To specify more than one sublabel, set
this property to a vector of signal label definition objects. Use this property to create a relationship
between a parent label and its children.

Note Sublabels cannot have sublabels.

Example: 'Sublabels',
[signalLabelDefinition("negative"),signalLabelDefinition("positive")]

Object Functions
labelDefinitionsHierarchy Get hierarchical list of label and sublabel names
labelDefinitionsSummary Get summary table of signal label definitions

Examples

Label Definitions for Whale Songs

Consider a set of whale sound recordings. The recorded whale sounds consist of trills and moans.
Trills sound like series of clicks. Moans are low-frequency cries similar to the sound made by a ship's

 signalLabelDefinition

1-2003

horn. You want to look at each signal and label it to identify the whale type, the trill regions, and the
moan regions. For each trill region, you also want to label the signal peaks higher than a certain
threshold.

Signal Label Definitions

Define an attribute label to store whale types. The possible categories are blue whale, humpback
whale, and white whale.

dWhaleType = signalLabelDefinition('WhaleType',...
 'LabelType','attribute',...
 'LabelDataType','categorical',...
 'Categories',{'blue','humpback','white'},...
 'Description','Whale type');

Define a region-of-interest (ROI) label to capture moan regions. Define another ROI label to capture
trill regions.

dMoans = signalLabelDefinition('MoanRegions',...
 'LabelType','roi',...
 'LabelDataType','logical',...
 'Description','Regions where moans occur');

dTrills = signalLabelDefinition('TrillRegions',...
 'LabelType','roi',...
 'LabelDataType','logical',...
 'Description','Regions where trills occur');

Finally, define a point label to capture the trill peaks. Set this label as a sublabel of the dTrills
definition.

dTrillPeaks = signalLabelDefinition('TrillPeaks',...
 'LabelType','point',...
 'LabelDataType','numeric',...
 'Description','Trill peaks');

dTrills.Sublabels = dTrillPeaks;

Labeled Signal Set

Create a labeledSignalSet with the whale signals and the label definitions. Add label values to
identify the whale type, the moan and trill regions, and the peaks of the trills.

load labelwhalesignals
lbldefs = [dWhaleType dMoans dTrills];

lss = labeledSignalSet({whale1 whale2},lbldefs,'MemberNames',{'Whale1','Whale2'}, ...
 'SampleRate',Fs,'Description','Characterize whale song regions');

Visualize the label hierarchy and label properties using labelDefinitionsHierarchy and
labelDefinitionsSummary.

labelDefinitionsHierarchy(lss)

ans =
 'WhaleType
 Sublabels: []
 MoanRegions

1 Functions

1-2004

 Sublabels: []
 TrillRegions
 Sublabels: TrillPeaks
 '

labelDefinitionsSummary(lss)

ans=3×9 table
 LabelName LabelType LabelDataType Categories ValidationFunction DefaultValue Sublabels Tag Description
 ______________ ___________ _____________ ____________ __________________ ____________ ___________________________ ___ ____________________________

 "WhaleType" "attribute" "categorical" {3x1 string} {["N/A"]} {0x0 double} {0x0 double } "" "Whale type"
 "MoanRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {0x0 double } "" "Regions where moans occur"
 "TrillRegions" "roi" "logical" {["N/A"]} {0x0 double} {0x0 double} {1x1 signalLabelDefinition} "" "Regions where trills occur"

The signals in the loaded data correspond to songs of two blue whales. Set the 'WhaleType' values
for both signals.

setLabelValue(lss,1,'WhaleType','blue');
setLabelValue(lss,2,'WhaleType','blue');

Visualize the 'Labels' property. The table has the newly added 'WhaleType' values for both
signals.

lss.Labels

ans=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Whale1 blue {0x2 table} {0x3 table}
 Whale2 blue {0x2 table} {0x3 table}

Visualize Region Labels

Visualize the whale songs to identify the trill and moan regions.

subplot(2,1,1)
plot((0:length(whale1)-1)/Fs,whale1)
ylabel('Whale 1')

subplot(2,1,2)
plot((0:length(whale2)-1)/Fs,whale2)
ylabel('Whale 2')

 signalLabelDefinition

1-2005

Moan regions are sustained low-frequency wails.

• whale1 has moans centered at about 7 seconds, 12 seconds, and 17 seconds.
• whale2 has moans centered at about 3 seconds, 7 seconds, and 16 seconds.

Add the moan regions to the labeled set. Specify the ROI limits in seconds and the label values.

moanRegionsWhale1 = [6.1 7.7; 11.4 13.1; 16.5 18.1];
mrsz1 = [size(moanRegionsWhale1,1) 1];
setLabelValue(lss,1,'MoanRegions',moanRegionsWhale1,true(mrsz1));

moanRegionsWhale2 = [2.5 3.5; 5.8 8; 15.4 16.7];
mrsz2 = [size(moanRegionsWhale2,1) 1];
setLabelValue(lss,2,'MoanRegions',moanRegionsWhale2,true(mrsz2));

Trill regions have distinct bursts of sound punctuated by silence.

• whale1 has a trill centered at about 2 seconds.
• whale2 has a trill centered at about 12 seconds.

Add the trill regions to the labeled set.

trillRegionWhale1 = [1.4 3.1];
trsz1 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,1,'TrillRegions',trillRegionWhale1,true(trsz1));

trillRegionWhale2 = [11.1 13];

1 Functions

1-2006

trsz2 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,2,'TrillRegions',trillRegionWhale2,true(trsz2));

Create a signalMask object for each whale song and use it to visualize and label the different
regions. For better visualization, change the label values from logical to categorical.

mr1 = getLabelValues(lss,1,'MoanRegions');
mr1.Value = categorical(repmat("moan",mrsz1));
tr1 = getLabelValues(lss,1,'TrillRegions');
tr1.Value = categorical(repmat("trill",trsz1));

msk1 = signalMask([mr1;tr1],'SampleRate',Fs);

subplot(2,1,1)
plotsigroi(msk1,whale1)
ylabel('Whale 1')
hold on

mr2 = getLabelValues(lss,2,'MoanRegions');
mr2.Value = categorical(repmat("moan",mrsz2));
tr2 = getLabelValues(lss,2,'TrillRegions');
tr2.Value = categorical(repmat("trill",trsz2));

msk2 = signalMask([mr2;tr2],'SampleRate',Fs);

subplot(2,1,2)
plotsigroi(msk2,whale2)
ylabel('Whale 2')
hold on

 signalLabelDefinition

1-2007

Visualize Point Labels

Label three peaks for each trill region. For point labels, you specify the point locations and the label
values. In this example, the point locations are in seconds.

peakLocsWhale1 = [1.553 1.626 1.7];
peakValsWhale1 = [0.211 0.254 0.211];

setLabelValue(lss,1,{'TrillRegions','TrillPeaks'}, ...
 peakLocsWhale1,peakValsWhale1,'LabelRowIndex',1);

subplot(2,1,1)
plot(peakLocsWhale1,peakValsWhale1,'v')
hold off

peakLocsWhale2 = [11.214 11.288 11.437];
peakValsWhale2 = [0.119 0.14 0.15];

setLabelValue(lss,2,{'TrillRegions','TrillPeaks'}, ...
 peakLocsWhale2,peakValsWhale2,'LabelRowIndex',1);

subplot(2,1,2)
plot(peakLocsWhale2,peakValsWhale2,'v')
hold off

1 Functions

1-2008

Explore Label Values

Explore the label values using getLabelValues.

getLabelValues(lss)

ans=2×3 table
 WhaleType MoanRegions TrillRegions
 _________ ___________ ____________

 Whale1 blue {3x2 table} {1x3 table}
 Whale2 blue {3x2 table} {1x3 table}

Retrieve the moan regions for the first member of the labeled set.

getLabelValues(lss,1,'MoanRegions')

ans=3×2 table
 ROILimits Value
 ____________ _____

 6.1 7.7 {[1]}
 11.4 13.1 {[1]}
 16.5 18.1 {[1]}

Use a second output argument to list the sublabels of a label.

 signalLabelDefinition

1-2009

[value,valueWithSublabel] = getLabelValues(lss,1,'TrillRegions')

value=1×2 table
 ROILimits Value
 __________ _____

 1.4 3.1 {[1]}

valueWithSublabel=1×3 table
 ROILimits Value Sublabels
 TrillPeaks
 __________ _____ ___________

 1.4 3.1 {[1]} {3x2 table}

To retrieve the values in a sublabel, express the label name as a two-element array.

getLabelValues(lss,1,{'TrillRegions','TrillPeaks'})

ans=3×2 table
 Location Value
 ________ __________

 1.553 {[0.2110]}
 1.626 {[0.2540]}
 1.7 {[0.2110]}

Find the value of the third trill peak corresponding to the second member of the set.

getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
 'LabelRowIndex',1,'SublabelRowIndex',3)

ans=1×2 table
 Location Value
 ________ __________

 11.437 {[0.1500]}

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
 {'chirp.mat' }
 {'gong.mat' }
 {'handel.mat' }
 {'laughter.mat'}
 {'mtlb.mat' }

1 Functions

1-2010

 {'splat.mat' }
 {'train.mat' }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet on page 1-1194 object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
 'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
 'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
 'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-0 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)

 [sig,info] = read(sds);
 fs = info.SampleRate;

 [~,fn] = fileparts(info.FileName);
 if fn=="handel" || fn=="laughter"
 setLabelValue(lss,kj,"Voice",true)
 end

 xm = find(islocalmax(sig,'MaxNumExtrema',1));
 setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

 N = length(sig);

 signalLabelDefinition

1-2011

 rois = randROI(N,round(N/10),round(N/6));
 setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

 kj = kj+1;

end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
 Voice Count Percent
 _____ _____ _______

 false 4 66.667
 true 2 33.333

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
 Maximum Count Percent MemberCount
 ______________________ _____ _______ ___________

 0.80000000000000004441 1 16.667 1
 0.89113331915798421612 1 16.667 1
 0.94730769230769229505 1 16.667 1
 1 2 33.333 2
 1.0575668990330560071 1 16.667 1

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
 RanROI Count Percent MemberCount
 ______ _____ _______ ___________

 ROI 24 100 6
 other 0 0 0

Create two datastores with the data in the labeled signal set:

• The signalDatastore object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.

1 Functions

1-2012

• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

 [sg,nf] = read(sd);

 lbls = read(ld);

 nexttile

 msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);
 plotsigroi(msk,sg)
 colorbar off
 xlabel('')

 xline(lbls{:}.Maximum{:}.Location, ...
 'LineWidth',2,'Color','#EDB120')

 if lbls{:}.Voice{:}
 ylabel('VOICED','Color','#D95319')
 end

end

function roilims = randROI(N,wid,sep)

 signalLabelDefinition

1-2013

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask

Introduced in R2018b

1 Functions

1-2014

Signal Labeler
Label signal attributes, regions, and points of interest

Description
The Signal Labeler app is an interactive tool that enables you to label signals for analysis or for use
in machine learning and deep learning applications. Using Signal Labeler, you can:

• Label signal attributes, regions, and points of interest
• Use logical, categorical, numerical, or string-valued labels
• Automatically label signal peaks or apply custom labeling functions
• Import, label, and play audio signals
• Use frequency and time-frequency views to aid labeling
• Add, edit, and delete labels or sublabels
• Display selected subsets of signals and labels

Signal Labeler saves data as labeledSignalSet objects. You can use labeledSignalSet objects
to train a network, classifier, or analyze data and report statistics.

For more information, see “Using Signal Labeler App”.

• With an Audio Toolbox license you can “Import and Play Audio File Data in Signal Labeler”.

 Signal Labeler

1-2015

Open the Signal Labeler App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter signalLabeler.

Examples
• “Label Signal Attributes, Regions of Interest, and Points”
• “Examine Labeled Signal Set”
• “Automate Signal Labeling with Custom Functions”
• “Label Spoken Words in Audio Signals Using External API”
• “Label Radar Signals with Signal Labeler” (Radar Toolbox)

Programmatic Use
signalLabeler opens the Signal Labeler app.

1 Functions

1-2016

See Also
Apps
Signal Analyzer

Functions
labeledSignalSet | signalLabelDefinition

Topics
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Radar Signals with Signal Labeler” (Radar Toolbox)
“Using Signal Labeler App”
“Import Data into Signal Labeler”
“Import and Play Audio File Data in Signal Labeler”
“Create or Import Signal Label Definitions”
“Label Signals Interactively or Automatically”
“Custom Labeling Functions”
“Customize Labeling View”
“Dashboard”
“Export Labeled Signal Sets and Signal Label Definitions”
“Signal Labeler Usage Tips”

Introduced in R2019a

 Signal Labeler

1-2017

signalDatastore
Datastore for collection of signals

Description
Use a signalDatastore object to manage a collection of in-memory data or signal files, where each
individual file fits in memory, but the entire collection does not necessarily fit.

Creation
Syntax
sds = signalDatastore(data)
sds = signalDatastore(location)
sds = signalDatastore(___ ,Name,Value)

Description

sds = signalDatastore(data) creates a signal datastore with in-memory input signals contained
in data.

sds = signalDatastore(location) creates a signal datastore based on a collection of either
MAT-files or CSV files in location. If location contains a mixture of MAT-files and CSV files, then
sds contains MAT-files.

sds = signalDatastore(___ ,Name,Value) specifies additional properties using one or more
name-value arguments.

Input Arguments

data — In-memory input data
cell array of vectors | cell array of matrices | cell array of timetables | cell array of cell arrays

In-memory input data, specified as vectors, matrices, timetables, or cell arrays. Each element of data
is a member that is output by the datastore on each call to read.
Example: {randn(100,1); randn(120,3); randn(135,2); randn(100,1)}

location — Files or folders to include in datastore
FileSet object | path | DsFileSet object

Files or folders included in the datastore, specified as a FileSet object, as file paths, or as a
DsFileSet object.

• FileSet object — You can specify location as a FileSet object. Specifying the location as a
FileSet object leads to a faster construction time for datastores compared to specifying a path
or DsFileSet object. For more information, see matlab.io.datastore.FileSet.

• File path — You can specify a single file path as a character vector or string scalar. You can specify
multiple file paths as a cell array of character vectors or a string array.

1 Functions

1-2018

• DsFileSet object — You can specify a DsFileSet object. For more information, see
matlab.io.datastore.DsFileSet.

Files or folders may be local or remote:

• Local files or folders — Specify local paths to files or folders. If the files are not in the current
folder, then specify full or relative paths. Files within subfolders of the specified folder are not
automatically included in the datastore. You can use the wildcard character (*) when specifying
the local path. This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify full paths to remote files or folders as a uniform resource locator
(URL) of the form hdfs:///path_to_file. For more information, see “Work with Remote Data”.

When you specify a folder, the datastore includes only files with supported file formats and ignores
files with any other format. To specify a custom list of file extensions to include in your datastore, see
the FileExtensions property.
Example: 'whale.mat'
Example: '../dir/data/signal.mat'
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: sds = signalDatastore('C:\dir\signaldata','FileExtensions','.csv')

IncludeSubfolders — Subfolder inclusion flag
false or 0 (default) | true or 1

Subfolder inclusion flag, specified as true or false. Specify true to include all files and subfolders
within each folder or false to include only the files within each folder.
Example: 'IncludeSubfolders',true
Data Types: logical | double

FileExtensions — Signal file extensions
character vector | cell array of character vectors | string scalar | string array

Signal file extensions, specified as a string scalar, string array, character vector, or cell array of
character vectors.

If no read function is specified, 'FileExtensions' can only be set to .mat to read MAT-files, or
to .csv to read CSV files. If 'FileExtensions' is omitted, it defaults to .mat if there are MAT-files
in the specified location, otherwise 'FileExtensions' defaults to .csv if there are CSV files in the
specified location.

If the specified location contains both MAT-files and CSV files, signalDatastore defaults to reading
the MAT-files. If neither MAT-files nor CSV files are present, signalDatastore errors out with the
default read function. Specify a custom read using ReadFcn function to read files of any other type.

When you do not specify a file extension, the signalDatastore needs to parse the files to decide
the default extension to read. Specify an extension to avoid the parsing time.

 signalDatastore

1-2019

Example: 'FileExtensions','.csv'
Data Types: string | char | cell

In addition to these name-value arguments, you also can specify any of the properties on this page as
name-value pairs, except for the Files property.

Properties
In-Memory Data

Members — Member names
cell array

Member names, specified as a cell array. The length of the member names for the input data should
equal the length of the data cell array. This property applies only when the datastore contains in-
memory data.

MemberNames — Signal member data
["Member1"..."MemberN"] (default) | string scalar | string array

Signal member data, specified as a string scalar or a string array. The length of the member names
for the input data should equal the length of the data cell array. This property applies only when the
datastore contains in-memory data.

File Data

Files — Files included in datastore
cell array of strings | cell array of character vectors

Files included in the datastore, specified as a cell array of strings or character vectors. Each
character vector in the cell array represents the full path to a file. The location argument in the
signalDatastore defines Files when the datastore is created. This property applies only when
the datastore contains file data.
Data Types: string | char | cell

ReadFcn — Custom read function
read (default) | function handle

Function that reads data, specified as a function handle. The function must take a file name as input,
and then it outputs the corresponding data. For example, if customreader is the specified function
to read the data, then it must have one of these templates:

function data = customreader(filename)
...
end

function [data,info] = customreader(filename)
...
end

The signal data is output in the data variable. The info variable must be a user-defined structure
containing user-defined information from the file. If you need extra arguments, you can include them
after the filename argument. signalDatastore appends to the info structure a field containing
the name of the file.

1 Functions

1-2020

Example: @customreader
Data Types: function_handle

AlternateFileSystemRoots — Alternate file system root paths
string vector | cell array

Alternate file system root paths, specified as the name-value argument consisting of
"AlternateFileSystemRoots" and a string vector or a cell array. Use
"AlternateFileSystemRoots" when you create a datastore on a local machine, but need to
access and process the data on another machine (possibly of a different operating system). Also,
when processing data using the Parallel Computing Toolbox and the MATLAB Parallel Server™, and
the data is stored on your local machines with a copy of the data available on different platform cloud
or cluster machines, you must use "AlternateFileSystemRoots" to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
"AlternateFileSystemRoots" as a string vector. For example,

["Z:\datasets","/mynetwork/datasets"]
• To associate multiple sets of root paths that are equivalent for the datastore, specify

"AlternateFileSystemRoots" as a cell array containing multiple rows where each row
represents a set of equivalent root paths. Specify each row in the cell array as either a string
vector or a cell array of character vectors. For example:

• Specify "AlternateFileSystemRoots" as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"];...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify "AlternateFileSystemRoots" as a cell array of cell array of
character vectors.

{{'Z:\datasets','/mynetwork/datasets'};...
 {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}

The value of "AlternateFileSystemRoots" must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths and each root path must contain at least two characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

For more information, see “Set Up Datastore for Processing on Different Machines or Clusters”.
Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string | cell

SignalVariableNames — Names of variables in signal files
first variable name (default) | string scalar | string vector

Names of variables in signal files, specified as a string scalar or vector of unique names. Use this
property when your files contain more than one variable and you want to specify the names of the
variables that hold the signal data you want to read.

• When the property value is a string scalar, signalDatastore returns data contained in the
specified variable.

 signalDatastore

1-2021

• When the property value is a string vector, signalDatastore returns a cell array with the data
contained in the specified variables. In this case, you can use the ReadOutputOrientation
property to specify the orientation of the output cell array as a column or a row.

If this property is not specified, signalDatastore reads the first variable in the variable list of each
file.

Note To determine the name of the first variable in a file, signalDatastore follows these steps:

• For MAT-files:

s = load(fileName);
varNames = fieldnames(s);
firstVar = s.(varNames{1});

• For CSV files:

opts = detectImportOptions(fileName,'PreserveVariableNames',true);
varNames = opts.VariableNames;
firstVar = string(varNames{1});

This property applies only when the datastore contains file data and the default read function is used.

ReadOutputOrientation — Output signal data cell array orientation
'column' (default) | 'row'

Output signal data cell array orientation, specified as 'column' or 'row'. This property specifies
how to orient the output signal data cell array after a call to the read function when
SignalVariableNames contains more than one signal name. ReadOutputOrientation has no
effect when SignalVariableNames contains only one element and does not apply if
SignalVariableNames has not been specified.

This property applies only when the datastore contains file data and the default read function is used.

Example: Output Cell Array Orientation

In the “Read Multiple Variables from Files in Signal Datastore” on page 1-2030 example, data has
the default output orientation and is a 2-by-1 column array:

 {1×4941 double}
 {1×4941 double}

If you specify ReadOutputOrientation as 'row', then data is a 1-by-2 row array:

 {1×4941 double} {1×4941 double}

SampleRateVariableName — Name of variable holding sample rate
string scalar

Name of the variable holding the sample rate, specified as a string scalar. This property applies only
when the datastore contains file data.

SampleTimeVariableName — Name of variable holding sample time value
string scalar

1 Functions

1-2022

Name of the variable holding the sample time value, specified as a string scalar. This property applies
only when the datastore contains file data.

TimeValuesVariableName — Name of variable holding time values vector
string scalar

Name of the variable holding the time values vector, specified as a string scalar. This property applies
only when the datastore contains file data.

Note 'SampleRateVariableName', 'SampleTimeVariableName', and
'TimeValuesVariableName' are mutually exclusive. Use these properties when your files contain
a variable that holds the time information of the signal data. If not specified, signalDatastore
assumes that signal data has no time information. These properties are not valid if a custom read
function is specified.

In-Memory and File Data

SampleRate — Sample rate values
positive scalar | positive vector

Sample rate values, specified as a positive real scalar or vector.

• Set the value of SampleRate to a scalar to specify the same sample rate for all signals in the
signalDatastore.

• Set the value of SampleRate to a vector to specify a different sample rate for each signal in the
signalDatastore.

The number of elements in the vector must equal the number of elements in the signalDatastore.

SampleTime — Sample time values
positive scalar | vector | duration scalar | duration vector

Sample time values, specified as a positive scalar, a vector, a duration scalar, or a duration vector.

• Set the value of SampleTime to a scalar to specify the same sample time for all signals in the
signalDatastore.

• Set the value of SampleTime to a vector to specify a different sample time for each signal in the
signalDatastore.

The number of elements in the vector must equal the number of elements in the signalDatastore.

TimeValues — Time values
vector | duration vector | matrix | cell array

Time values, specified as a vector, a duration vector, a matrix, or a cell array.

• Set TimeValues to a numeric or duration vector to specify the same time values for all signals
in the signalDatastore. The vector must have the same length as all the signals in the set.

• Set TimeValues to a numeric or duration matrix or cell array to specify that each signal of the
signalDatastore has signals with the same time values, but the time values differ from signal
to signal.

 signalDatastore

1-2023

• If TimeValues is a matrix, then the number of columns equal the number of members of the
signalDatastore. All signals in the datastore must have a length equal to the number of
rows of the matrix.

• If TimeValues is a cell array, then the number of vectors equal the number of members of the
signalDatastore. All signals in a member must have a length equal to the number of
elements of the corresponding vector in the cell array.

ReadSize — Maximum number of signal files returned by read
1 (default) | positive real scalar

Maximum number of signal files returned by read, specified as a positive real scalar. If you set the
ReadSize property to n, such that n > 1, each time you call the read function, the function reads:

• The first variable of the first n files, if sds contains file data.
• The first n members, if sds contains in-memory data.

The output of read is a cell array of signal data when ReadSize > 1.

Object Functions
read Read next consecutive signal observation
readall Read all signals from datastore
writeall Write datastore to files
preview Read first signal observation from datastore for preview
shuffle Shuffle signals in signal datastore
subset Create datastore with subset of signals
partition Partition signal datastore and return partitioned portion
numpartitions Return estimate for reasonable number of partitions for parallel processing
reset Reset datastore to initial state
progress Determine how much data has been read
hasdata Determine if data is available to read
transform Transform datastore
combine Combine data from multiple datastores
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Note isPartitionable and isShuffleable return true by default for signalDatastore. You
can test if the output of combine and transform are partitionable or shuffleable using the two
functions.

Examples

Signal Datastore with In-Memory Data

Create a signal datastore to iterate through the elements of an in-memory cell array of signal data.
The data consists of a sinusoidally modulated linear chirp, a concave quadratic chirp, and a voltage
controlled oscillator. The signals are sampled at 3000 Hz.

fs = 3000;
t = 0:1/fs:3-1/fs;
data = {chirp(t,300,t(end),800).*exp(2j*pi*10*cos(2*pi*2*t)); ...

1 Functions

1-2024

 2*chirp(t,200,t(end),1000,'quadratic',[],'concave'); ...
 vco(sin(2*pi*t),[0.1 0.4]*fs,fs)};
sds = signalDatastore(data,'SampleRate',fs);

While the datastore has data, read each observation from the signal datastore and plot the short-time
Fourier transform.

plotID = 1;
while hasdata(sds)
 [dataOut,info] = read(sds);
 subplot(3,1,plotID)
 stft(dataOut,info.SampleRate)
 plotID = plotID + 1;
end

Create Signal Datastore

Specify the path to the sample signals included with Signal Processing Toolbox™.

folder = fullfile(matlabroot,'examples','signal','data');

Create and display a signal datastore that points to the specified folder.

sds = signalDatastore(folder)

 signalDatastore

1-2025

sds =
 signalDatastore with properties:

 Files:{
 'B:\matlab\examples\signal\data\BufferedHumanactivity.mat';
 'B:\matlab\examples\signal\data\EMGdata.mat';
 'B:\matlab\examples\signal\data\EMGindex.mat'
 ... and 49 more
 }
 Folders: {'B:\matlab\examples\signal\data'}
 AlternateFileSystemRoots: [0x0 string]
 ReadSize: 1

Specify File Extensions to Include in Signal Datastore

Specify the file path to the signal samples included with Signal Processing Toolbox™.

folder = fullfile(matlabroot,'examples','signal','data');

Create a signal datastore that points to the .csv files in the specified folder.

sds = signalDatastore(folder,'FileExtensions','.csv')

sds =
 signalDatastore with properties:

 Files:{
 'B:\matlab\examples\signal\data\tremor.csv'
 }
 Folders: {'B:\matlab\examples\signal\data'}
 AlternateFileSystemRoots: [0x0 string]
 ReadSize: 1

Read Multiple Files with Signal Datastore

Specify the path to four example files included with Signal Processing Toolbox™.

folder = fullfile(matlabroot,'examples','signal','data', ...
 ["INR.mat","relatedsig.mat","spots_num.mat","voice.mat"]);

Set the ReadSize property to 2 to read data from two files at a time. Each read returns a cell array
where the first cell contains the first variable of the first file read, and the second cell contains the
first variable from the second file. While the datastore has data, display the names of the variables
read in each read.

sds = signalDatastore(folder,'ReadSize',2);
while hasdata(sds)
 [data,info] = read(sds);
 fprintf('Variable Name:\t%s\n',info.SignalVariableNames)
end

1 Functions

1-2026

Variable Name: Date
Variable Name: s1
Variable Name: year
Variable Name: fs

Custom Read Data From Signal Datastore

Specify the path to three signals included with Signal Processing Toolbox™.

• The strong.mat file contains three variables: her, him and fs.
• The slogan.mat file contains three variables: hotword, phrase and fs.
• The Ring.mat file contains two variables: y and Fs.

fld = ["strong.mat","slogan.mat","Ring.mat"];
folder = fullfile(matlabroot,'examples','signal','data',fld);

Create a signal datastore that points to the specified folder. Each file contains multiple variables of
different names. The scalar in each file represents a sample rate. Define a custom read function that
reads all the variables in the file as a structure and returns the variable in dataOut and information
about the variables in infoOut. The SampleRate field of infoOut contains the scalar contained in
each file, and dataOut contains the variables read from each file.

function [dataOut,infoOut] = MyCustomRead(filename)
 fText = importdata(filename);
 value = struct2cell(fText);
 dataOut = {};
 for i = 1:length(value)
 if isscalar(value{i}) == 1
 infoOut.SampleRate = value{i};
 else
 dataOut{end+1} = value{i};
 end
 end
end

sds = signalDatastore(folder,'ReadFcn',@MyCustomRead);

While the datastore has unread files, read from the datastore and compute the short-time Fourier
transforms of the signals.

while hasdata(sds)
 [data,infoOut] = read(sds);
 fs = infoOut.SampleRate;
 figure
 for i = 1:length(data)
 if length(data)>1
 subplot(2,1,i)
 end
 stft(data{i},fs)
 end
end

 signalDatastore

1-2027

1 Functions

1-2028

 signalDatastore

1-2029

Read Multiple Variables from Files in Signal Datastore

Specify the path to example files included with Signal Processing Toolbox™. Each file contains two
signals and a random sample rate fs ranging from 3000 to 4000 Hz.

• The first signal, x1, is a convex quadratic chirp.
• The second signal, x2, is a chirp with sinusoidally varying frequency content.

folder = fullfile(matlabroot,'examples','signal','data','dataset');

Create a signal datastore that points to the specified folder and set the names of the signal variables
and sample rate. While the datastore has data, read each observation and visualize the spectrogram
of each signal.

sds = signalDatastore(folder,'SignalVariableNames',['x1';'x2'],'SampleRateVariableName','fs');

tiledlayout flow
while hasdata(sds)
 [data,info] = read(sds);
 nexttile
 pspectrum(data{1},info.SampleRate,'spectrogram','TwoSided',true)
 nexttile
 pspectrum(data{2},info.SampleRate,'spectrogram','TwoSided',true)
end

1 Functions

1-2030

See Also
datastore | mapreduce | tall

Topics
“Waveform Segmentation Using Deep Learning”
“Preprocess Data for Domain-Specific Deep Learning Applications” (Deep Learning Toolbox)

Introduced in R2020a

 signalDatastore

1-2031

combine
Combine data from multiple datastores

Syntax
sdsnew = combine(sds1,sds2,...,sdsn)

Description
sdsnew = combine(sds1,sds2,...,sdsn) combines two or more datastores by horizontally
concatenating the data returned by the read function called on the input datastores.

Examples

Compute Envelopes of Signals

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird chirp, a
gong, a train, and a splat. All signals are sampled at 8192 Hz.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo', ...
 ["chirp.mat","gong.mat","train.mat","splat.mat"]);

Create a signal datastore that points to the specified files. Each file contains the variable Fs that
denotes the sample rate.

sds1 = signalDatastore(folder,'SampleRateVariableName','Fs');

Define a function that takes the output of the read function and calculates the upper and lower
envelopes of the signals using spline interpolation over local maxima separated by at least 80
samples. The function also returns the sample times for each signal.

function [dataOut,infoOut] = signalEnvelope(dataIn,info)
 [dataOut(:,1),dataOut(:,2)] = envelope(dataIn,80,'peak');
 infoOut = info;
 infoOut.TimeInstants = (0:length(dataOut)-1)/info.SampleRate;
end

Call the transform function to create a second datastore, sds2, that computes the envelopes of the
signals using the function you defined.

sds2 = transform(sds1,@signalEnvelope,"IncludeInfo",true);

Combine sds1 and sds2 create a third datastore. Each call to the read function from the combined
datastore returns a matrix with three columns:

• The first column corresponds to the original signal.
• The second and third columns correspond to the upper and lower envelopes, respectively.

sdsCombined = combine(sds1,sds2);

1 Functions

1-2032

Read and display the original data and the upper and lower envelopes from the combined datastore.
Use the extractBetween function to extract the file name from the file path.

tiledlayout('flow')
while hasdata(sdsCombined)
 [dataOut,infoOut] = read(sdsCombined);
 ts = infoOut{2}.TimeInstants;
 nexttile
 hold on
 plot(ts,dataOut(:,1),'Color','#DCDCDC','LineStyle',':')
 plot(ts,dataOut(:,2:3),'Linewidth',1.5)
 hold off
 xlabel('Time (s)')
 ylabel('Signal')
 title(extractBetween(infoOut{:,2}.FileName,'audiovideo\','.mat'))
end

Calculate Instantaneous Frequencies of Chirps

Specify the path to example files included with Signal Processing Toolbox™. Each file contains a chirp
and a random sample rate ranging from 100 to 150 Hz.

folder = fullfile(matlabroot,'examples','signal','data','sample_chirps');

 combine

1-2033

Create a signal datastore that points to the specified folder and set the names of the sample rate
variables.

sds = signalDatastore(folder,'SampleRateVariableName','fs');

Define a function that takes the output of the read function and uses the pspectrum function to
estimate the power spectrum of the signal. Use the estimate to compute the instantaneous frequency.
The function also returns the vector of time instants corresponding to the centers of the windowed
segments and the frequencies corresponding to the spectral estimates contained in the spectrograms
of the signals.

function [dataOut,infoOut] = extractinstfreq(dataIn,info)
 [P,F,T] = pspectrum(dataIn,info.SampleRate,'spectrogram',...
 'TimeResolution',0.1,'OverlapPercent',40,'Leakage',0.8);
 dataOut = {instfreq(P,F,T)'};
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call the transform function to create a new datastore that computes the instantaneous frequencies.

sds2 = transform(sds,@extractinstfreq,'IncludeInfo',true);

Because the data in sds2 is not horizontally concatenable with the data in sds, transform the data in
sds into cell arrays.

sds1 = transform(sds,@(x) {x});

Combine sds1 and sds2. While the combined datastore has unread files, read from the new
datastore and visualize the spectrograms. Overlay the instantaneous frequencies on the
spectrograms.

sdsCombined = combine(sds1,sds2);
sdsSubset = subset(sdsCombined,[1,4,9,10]);
plotID = 1;
while hasdata(sdsSubset)
 subplot(2,2,plotID)
 [sig,info] = read(sdsSubset);
 pspectrum(sig{:,1},info{:,2}.SampleRate,'spectrogram', ...
 'TimeResolution',0.1,'OverlapPercent',40,'Leakage',0.8)
 hold on
 plot(info{:,2}.TimeInstants',sig{:,2})
 plotID = plotID + 1;
end

1 Functions

1-2034

Input Arguments
sds1,sds2,...,sdsn — Signal datastores to combine
signalDatastore objects

Signal datastores to combine, specified as two or more comma-separated signalDatastore objects.

Output Arguments
sdsnew — New signal datastore with combined data
CombinedDatastore object

New datastore with the combined data, returned as a CombinedDatastore object.

Calling read on the combined datastore, horizontally concatenates the data by calling read on each
input datastore.

See Also
signalDatastore | hasdata

Topics
“Waveform Segmentation Using Deep Learning”

 combine

1-2035

Introduced in R2020a

1 Functions

1-2036

hasdata
Return true if there is more data in datastore

Syntax
tf = hasdata(sds)

Description
tf = hasdata(sds) returns logical 1 (true) if there is data available to read from the datastore
specified by sds. Otherwise, it returns logical 0 (false).

Examples

Read File Data in Signal Datastore

Specify the path to a set of audio signals included as MAT-files with MATLAB®.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder and set sample rate variable name to Fs.
List the names of the MAT-files in the datastore.

sds = signalDatastore(folder,'FileExtension','.mat','SampleRateVariableName','Fs');
[~,c] = fileparts(sds.Files)

c = 7x1 cell
 {'chirp' }
 {'gong' }
 {'handel' }
 {'laughter'}
 {'mtlb' }
 {'splat' }
 {'train' }

While the signal datastore has unread files, read consecutive files from the datastore. Use the
progress function to monitor the fraction of files read.

while hasdata(sds)
 [data,info] = read(sds);
 fprintf('Fraction of files read: %.2f\n',progress(sds))
end

Fraction of files read: 0.14
Fraction of files read: 0.29
Fraction of files read: 0.43
Fraction of files read: 0.57
Fraction of files read: 0.71
Fraction of files read: 0.86
Fraction of files read: 1.00

 hasdata

1-2037

Print and inspect the info structure returned by the last call to the read function.

info

info = struct with fields:
 SampleRate: 8192
 TimeVariableName: "Fs"
 SignalVariableNames: "y"
 FileName: "B:\matlab\toolbox\matlab\audiovideo\train.mat"

Find Spectrogram of Chirps

Specify the path to four files included with Signal Processing Toolbox™. Each file contains a chirp and
a random sample rate, fs, ranging from 100 to 150 Hz. Create a signal datastore that points to the
specified folder.

folder = fullfile(matlabroot,'examples','signal','data','sample_chirps', ...
 ["chirp_1.mat","chirp_4.mat","chirp_9.mat","chirp_10.mat"]);
sds = signalDatastore(folder,'SampleRateVariableName','fs');

Define a function that takes the output of the read function and computes and returns:

• The spectrograms of the chirps.
• The vector of time instants corresponding to the centers of the windowed segments.
• The frequencies corresponding to the estimates.

function [dataOut,infoOut] = extractSpectrogram(dataIn,info)
 [dataOut,F,T] = pspectrum(dataIn,info.SampleRate,'spectrogram',...
 'TimeResolution',0.25,...
 'OverlapPercent',40,'Leakage',0.8);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call the transform function to create a datastore that computes the spectrogram of each chirp
using the function you defined.

sdsNew = transform(sds,@extractSpectrogram,'IncludeInfo',true);

While the transformed datastore has unread files, read from the new datastore and visualize the
spectrograms in three-dimensional space.

t = tiledlayout('flow');
while hasdata(sdsNew)
 nexttile
 [sig,infoOut] = read(sdsNew);
 waterfall(infoOut.TimeInstants,infoOut.CenterFrequencies,sig)
 xlabel('Frequency (Hz)')
 ylabel('Time (S)')
 view([30 70])
end

1 Functions

1-2038

Compute Envelopes of Signals

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird chirp, a
gong, a train, and a splat. All signals are sampled at 8192 Hz.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo', ...
 ["chirp.mat","gong.mat","train.mat","splat.mat"]);

Create a signal datastore that points to the specified files. Each file contains the variable Fs that
denotes the sample rate.

sds1 = signalDatastore(folder,'SampleRateVariableName','Fs');

Define a function that takes the output of the read function and calculates the upper and lower
envelopes of the signals using spline interpolation over local maxima separated by at least 80
samples. The function also returns the sample times for each signal.

function [dataOut,infoOut] = signalEnvelope(dataIn,info)
 [dataOut(:,1),dataOut(:,2)] = envelope(dataIn,80,'peak');
 infoOut = info;
 infoOut.TimeInstants = (0:length(dataOut)-1)/info.SampleRate;
end

Call the transform function to create a second datastore, sds2, that computes the envelopes of the
signals using the function you defined.

 hasdata

1-2039

sds2 = transform(sds1,@signalEnvelope,"IncludeInfo",true);

Combine sds1 and sds2 create a third datastore. Each call to the read function from the combined
datastore returns a matrix with three columns:

• The first column corresponds to the original signal.
• The second and third columns correspond to the upper and lower envelopes, respectively.

sdsCombined = combine(sds1,sds2);

Read and display the original data and the upper and lower envelopes from the combined datastore.
Use the extractBetween function to extract the file name from the file path.

tiledlayout('flow')
while hasdata(sdsCombined)
 [dataOut,infoOut] = read(sdsCombined);
 ts = infoOut{2}.TimeInstants;
 nexttile
 hold on
 plot(ts,dataOut(:,1),'Color','#DCDCDC','LineStyle',':')
 plot(ts,dataOut(:,2:3),'Linewidth',1.5)
 hold off
 xlabel('Time (s)')
 ylabel('Signal')
 title(extractBetween(infoOut{:,2}.FileName,'audiovideo\','.mat'))
end

1 Functions

1-2040

Input Arguments
sds — Signal datastore
signalDatastore object

Specify sds as an signalDatastore object.

Output Arguments
tf — Indication if data is available to read
true | false

Indication if data is available to read from the datastore, returned as true or false.
Data Types: logical

See Also
signalDatastore | progress | subset | hasdata

Introduced in R2020a

 hasdata

1-2041

read
Read next consecutive signal observation

Syntax
sig = read(sds)
[sig,info] = read(sds)

Description
sig = read(sds) returns signal data extracted from the datastore. Each subsequent call to read
returns data from the next file in the datastore (if sds contains file data) or the next member (if sds
contains in-memory data).

[sig,info] = read(sds) also returns information about the extracted signal data.

Examples

Read File Data in Signal Datastore

Specify the path to a set of audio signals included as MAT-files with MATLAB®.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder and set sample rate variable name to Fs.
List the names of the MAT-files in the datastore.

sds = signalDatastore(folder,'FileExtension','.mat','SampleRateVariableName','Fs');
[~,c] = fileparts(sds.Files)

c = 7x1 cell
 {'chirp' }
 {'gong' }
 {'handel' }
 {'laughter'}
 {'mtlb' }
 {'splat' }
 {'train' }

While the signal datastore has unread files, read consecutive files from the datastore. Use the
progress function to monitor the fraction of files read.

while hasdata(sds)
 [data,info] = read(sds);
 fprintf('Fraction of files read: %.2f\n',progress(sds))
end

Fraction of files read: 0.14
Fraction of files read: 0.29
Fraction of files read: 0.43

1 Functions

1-2042

Fraction of files read: 0.57
Fraction of files read: 0.71
Fraction of files read: 0.86
Fraction of files read: 1.00

Print and inspect the info structure returned by the last call to the read function.

info

info = struct with fields:
 SampleRate: 8192
 TimeVariableName: "Fs"
 SignalVariableNames: "y"
 FileName: "B:\matlab\toolbox\matlab\audiovideo\train.mat"

Signal Datastore with In-Memory Data

Create a signal datastore to iterate through the elements of an in-memory cell array of signal data.
The data consists of a sinusoidally modulated linear chirp, a concave quadratic chirp, and a voltage
controlled oscillator. The signals are sampled at 3000 Hz.

fs = 3000;
t = 0:1/fs:3-1/fs;
data = {chirp(t,300,t(end),800).*exp(2j*pi*10*cos(2*pi*2*t)); ...
 2*chirp(t,200,t(end),1000,'quadratic',[],'concave'); ...
 vco(sin(2*pi*t),[0.1 0.4]*fs,fs)};
sds = signalDatastore(data,'SampleRate',fs);

While the datastore has data, read each observation from the signal datastore and plot the short-time
Fourier transform.

plotID = 1;
while hasdata(sds)
 [dataOut,info] = read(sds);
 subplot(3,1,plotID)
 stft(dataOut,info.SampleRate)
 plotID = plotID + 1;
end

 read

1-2043

Compute Envelopes of Signals

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird chirp, a
gong, a train, and a splat. All signals are sampled at 8192 Hz.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo', ...
 ["chirp.mat","gong.mat","train.mat","splat.mat"]);

Create a signal datastore that points to the specified files. Each file contains the variable Fs that
denotes the sample rate.

sds1 = signalDatastore(folder,'SampleRateVariableName','Fs');

Define a function that takes the output of the read function and calculates the upper and lower
envelopes of the signals using spline interpolation over local maxima separated by at least 80
samples. The function also returns the sample times for each signal.

function [dataOut,infoOut] = signalEnvelope(dataIn,info)
 [dataOut(:,1),dataOut(:,2)] = envelope(dataIn,80,'peak');
 infoOut = info;
 infoOut.TimeInstants = (0:length(dataOut)-1)/info.SampleRate;
end

Call the transform function to create a second datastore, sds2, that computes the envelopes of the
signals using the function you defined.

1 Functions

1-2044

sds2 = transform(sds1,@signalEnvelope,"IncludeInfo",true);

Combine sds1 and sds2 create a third datastore. Each call to the read function from the combined
datastore returns a matrix with three columns:

• The first column corresponds to the original signal.
• The second and third columns correspond to the upper and lower envelopes, respectively.

sdsCombined = combine(sds1,sds2);

Read and display the original data and the upper and lower envelopes from the combined datastore.
Use the extractBetween function to extract the file name from the file path.

tiledlayout('flow')
while hasdata(sdsCombined)
 [dataOut,infoOut] = read(sdsCombined);
 ts = infoOut{2}.TimeInstants;
 nexttile
 hold on
 plot(ts,dataOut(:,1),'Color','#DCDCDC','LineStyle',':')
 plot(ts,dataOut(:,2:3),'Linewidth',1.5)
 hold off
 xlabel('Time (s)')
 ylabel('Signal')
 title(extractBetween(infoOut{:,2}.FileName,'audiovideo\','.mat'))
end

 read

1-2045

Find Spectrogram of Chirps

Specify the path to four files included with Signal Processing Toolbox™. Each file contains a chirp and
a random sample rate, fs, ranging from 100 to 150 Hz. Create a signal datastore that points to the
specified folder.

folder = fullfile(matlabroot,'examples','signal','data','sample_chirps', ...
 ["chirp_1.mat","chirp_4.mat","chirp_9.mat","chirp_10.mat"]);
sds = signalDatastore(folder,'SampleRateVariableName','fs');

Define a function that takes the output of the read function and computes and returns:

• The spectrograms of the chirps.
• The vector of time instants corresponding to the centers of the windowed segments.
• The frequencies corresponding to the estimates.

function [dataOut,infoOut] = extractSpectrogram(dataIn,info)
 [dataOut,F,T] = pspectrum(dataIn,info.SampleRate,'spectrogram',...
 'TimeResolution',0.25,...
 'OverlapPercent',40,'Leakage',0.8);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call the transform function to create a datastore that computes the spectrogram of each chirp
using the function you defined.

sdsNew = transform(sds,@extractSpectrogram,'IncludeInfo',true);

While the transformed datastore has unread files, read from the new datastore and visualize the
spectrograms in three-dimensional space.

t = tiledlayout('flow');
while hasdata(sdsNew)
 nexttile
 [sig,infoOut] = read(sdsNew);
 waterfall(infoOut.TimeInstants,infoOut.CenterFrequencies,sig)
 xlabel('Frequency (Hz)')
 ylabel('Time (S)')
 view([30 70])
end

1 Functions

1-2046

Partition Signal Datastore into Default Number of Parts

Specify the file path to the example signals included with MATLAB®. Create a signal datastore that
points to the specified folder.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');
sds = signalDatastore(folder,'SampleRateVariableName','Fs');

Get the default number of partitions for the signal datastore.

n = numpartitions(sds)

n = 7

Partition the datastore into the default number of partitions and return the datastore corresponding
to the fourth partition.

subsds = partition(sds,n,4);

Use the extractAfter function to display the name of the file contained in the datastore
corresponding to the fourth partition.

fName = extractAfter(subsds.Files,'audiovideo\')

 read

1-2047

fName = 1x1 cell array
 {'laughter.mat'}

Read the data and information about the signal in the datastore corresponding to the fourth partition.
Extract the sample rate from info and resample the signal to half the original sample rate. Plot the
original and resampled signals.

while hasdata(subsds)
 [data,info] = read(subsds);
 fs = info.SampleRate;
 f_res = 0.5*fs;
 ts = (0:length(data)-1)/fs;
 data_res = resample(data,1,2);
 t_res = (0:length(data_res)-1)/f_res;
 plot(ts,data,t_res,data_res,':')
 xlabel('Time (s)')
 ylabel('Signal')
 legend('Original','Resampled','Location','NorthWest')
end

Input Arguments
sds — Signal datastore
signalDatastore object

1 Functions

1-2048

Signal datastore, specified as a signalDatastore object.

Output Arguments
sig — Signal data
array

Signal data, returned as an array. By default, calling read once returns the first variable of one file at
a time. If you set the ReadSize property to n, such that n > 1, each time you call the read function,
the function reads:

• The first variable of the first n files, if sds contains file data.
• The first n members, if sds contains in-memory data.

Note To determine the name of the first variable in a file, read follows these steps:

• For MAT-files:

s = load(fileName);
varNames = fieldnames(s);
firstVar = s.(varNames{1});

• For CSV files:

opts = detectImportOptions(fileName,'PreserveVariableNames',true);
varNames = opts.VariableNames;
firstVar = string(varNames{1});

If the SignalVariableNames property of the datastore contains more than one signal name, then
sig is a cell array. Use the ReadOutputOrientation property of the datastore to control the
orientation of sig as either a column array or a row array.

info — Information about signal data
structure

Information about signal data, returned as a structure.

• In case of file data, info contains the time information (if specified), file names, and the variable
names used to read signal and time data, if this information was specified in the
signalDatastore.

• If the datastore contains in-memory data, info contains time information (if specified) and
member names.

See Also
signalDatastore | readall | preview

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 read

1-2049

reset
Reset datastore read pointer to start of data

Syntax
reset(sds)

Description
reset(sds) resets the datastore read pointer to the start of the data. Resetting allows re-reading
from the same datastore.

Examples

Reset Signal Datastore to Initial State

Specify the path to the sample signals included with Signal Processing Toolbox™.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder.

sds = signalDatastore(folder);

While the datastore has unread files, call read in a loop to read files sequentially.

while hasdata(sds)
 data = read(sds);
end

Reset the datastore to the state where no data has been read from it. Read the first file from the
datastore.

reset(sds)
data = read(sds);

Input Arguments
sds — Signal datastore
signalDatastore object

Specify sds as an signalDatastore object.

See Also
signalDatastore | read | readall

Introduced in R2020a

1 Functions

1-2050

readall
Read all signals from datastore

Syntax
data = readall(sds)

Description
data = readall(sds) reads all signal data from the datastore sds.

Examples

Read and Analyze All Signals in Signal Datastore

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird chirp, a
gong, a train, and a splat. All signals are sampled at 8192 Hz.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo', ...
 ["chirp.mat","gong.mat","train.mat","splat.mat"]);
fs = 8192;
sds = signalDatastore(folder,'SampleRate',fs);

Read the data in the first variables of all the files in the datastore and plot the Fourier
synchrosqueezed transform of each signal.

data = readall(sds);

tiledlayout('flow')
for i = 1:length(data)
 nexttile
 fsst(data{i},fs,'yaxis')
end

 readall

1-2051

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

Output Arguments
data — All signals in signal datastore
cell array

All signals in the signal datastore, returned as a cell array. Each cell of data contains signals from a
file or a member. Use the ReadOutputOrientation property of the datastore to control the
orientation of data as either a column array or a row array.

Tips
When reading file data, because this function reads all the data in the files at once, you may run out
of memory if your dataset is large.

See Also
signalDatastore | read | preview

1 Functions

1-2052

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 readall

1-2053

numpartitions
Return estimate for reasonable number of partitions for parallel processing

Syntax
n = numpartitions(sds)
n = numpartitions(sds,pool)

Description
n = numpartitions(sds) returns the default number of partitions for the signal datastore sds.

n = numpartitions(sds,pool) returns a reasonable number of partitions to parallelize sds over
the parallel pool.

• If sds contains file data, the number of partitions depends on the number of workers in the pool
and the total number of files.

• If sds contains in-memory data, the number of partitions depends on the number of workers in
the pool and the total number of members.

To parallelize datastore access, you must have Parallel Computing Toolbox installed.

Examples

Partition Signal Datastore into Default Number of Parts

Specify the file path to the example signals included with MATLAB®. Create a signal datastore that
points to the specified folder.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');
sds = signalDatastore(folder,'SampleRateVariableName','Fs');

Get the default number of partitions for the signal datastore.

n = numpartitions(sds)

n = 7

Partition the datastore into the default number of partitions and return the datastore corresponding
to the fourth partition.

subsds = partition(sds,n,4);

Use the extractAfter function to display the name of the file contained in the datastore
corresponding to the fourth partition.

fName = extractAfter(subsds.Files,'audiovideo\')

fName = 1x1 cell array
 {'laughter.mat'}

1 Functions

1-2054

Read the data and information about the signal in the datastore corresponding to the fourth partition.
Extract the sample rate from info and resample the signal to half the original sample rate. Plot the
original and resampled signals.

while hasdata(subsds)
 [data,info] = read(subsds);
 fs = info.SampleRate;
 f_res = 0.5*fs;
 ts = (0:length(data)-1)/fs;
 data_res = resample(data,1,2);
 t_res = (0:length(data_res)-1)/f_res;
 plot(ts,data,t_res,data_res,':')
 xlabel('Time (s)')
 ylabel('Signal')
 legend('Original','Resampled','Location','NorthWest')
end

Partition Signal Datastore for Parallel Access

Specify the path to a directory containing example signals included with MATLAB®.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder.

 numpartitions

1-2055

sds = signalDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

n = numpartitions(sds,pool)

n = 7

Partition the signal datastore and read the signal data in each part.

parfor ii = 1:n
 subds = partition(sds,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

pool — Parallel pool
parallel pool object

Parallel pool, specified as a parallel pool object.

Output Arguments
n — Number of partitions
positive integer

Number of partitions over which datastore access is parallelized. By default, the number of partitions
is min(Nobservations , 3Nworkers), where:

• Nobservations is the number of files in the datastore (in case of file data) or number of members in the
datastore (in case of in-memory data).

• Nworkers is the number of workers in the pool.

See Also
signalDatastore | partition

Topics
“Waveform Segmentation Using Deep Learning”

1 Functions

1-2056

Introduced in R2020a

 numpartitions

1-2057

preview
Read first signal observation from datastore for preview

Syntax
data = preview(sds)

Description
data = preview(sds) always reads the first file from the signal datastore in the case of file data,
or the first member in the case of in-memory data. A call to preview does not affect the state of the
signal datastore object.

Examples

Preview Data in Signal Datastore

Specify the path to four signals included with MATLAB®. Create a signal datastore that points to the
specified folder and display the name of the first file.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');
sds = signalDatastore(folder);
[~,c] = fileparts(sds.Files(1))

c =
'chirp'

Plot the previewed data from the first file of sds.

data = preview(sds);
plot(data)
xlabel('Samples')
ylabel('Signal')

1 Functions

1-2058

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

Output Arguments
data — First observation
signal data

First observation from sds, returned as signal data.

See Also
signalDatastore | read | readall

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 preview

1-2059

partition
Partition signal datastore and return partitioned portion

Syntax
subsds = partition(sds,numPartitions,index)
subsds = partition(sds,'Observations',index)
subsds = partition(sds,'Observations',obsname)

Description
subsds = partition(sds,numPartitions,index) partitions the signal datastore into the
number of parts specified by numPartitions and returns the partition corresponding to index.

subsds = partition(sds,'Observations',index) partitions the signal datastore and returns
the partition corresponding to the index in the Observations property.

• If sds contains file data, the function partitions the signal datastore by files.
• If sds contains in-memory data, the function partitions the signal datastore by members.

subsds = partition(sds,'Observations',obsname) partitions the signal datastore and
returns the partition corresponding to the observation name obsname.

• If sds contains file data, the function partitions the datastore by files.
• If sds contains in-memory data, the function partitions the datastore by members.

Examples

Partition Signal Datastore into Default Number of Parts

Specify the file path to the example signals included with MATLAB®. Create a signal datastore that
points to the specified folder.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');
sds = signalDatastore(folder,'SampleRateVariableName','Fs');

Get the default number of partitions for the signal datastore.

n = numpartitions(sds)

n = 7

Partition the datastore into the default number of partitions and return the datastore corresponding
to the fourth partition.

subsds = partition(sds,n,4);

Use the extractAfter function to display the name of the file contained in the datastore
corresponding to the fourth partition.

1 Functions

1-2060

fName = extractAfter(subsds.Files,'audiovideo\')

fName = 1x1 cell array
 {'laughter.mat'}

Read the data and information about the signal in the datastore corresponding to the fourth partition.
Extract the sample rate from info and resample the signal to half the original sample rate. Plot the
original and resampled signals.

while hasdata(subsds)
 [data,info] = read(subsds);
 fs = info.SampleRate;
 f_res = 0.5*fs;
 ts = (0:length(data)-1)/fs;
 data_res = resample(data,1,2);
 t_res = (0:length(data_res)-1)/f_res;
 plot(ts,data,t_res,data_res,':')
 xlabel('Time (s)')
 ylabel('Signal')
 legend('Original','Resampled','Location','NorthWest')
end

 partition

1-2061

Partition Signal Datastore for Parallel Access

Specify the path to a directory containing example signals included with MATLAB®.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder.

sds = signalDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

n = numpartitions(sds,pool)

n = 7

Partition the signal datastore and read the signal data in each part.

parfor ii = 1:n
 subds = partition(sds,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

numPartitions — Number of partitions
positive integer

Number of partitions, specified as a positive integer. Use the numpartitions function to estimate a
reasonable value for numPartitions.
Data Types: single | double

index — Index of sub-datastore
positive integer

Index of sub-datastore, specified as a positive integer in the range [1,numPartitions].
Data Types: single | double

obsname — Observation name
string scalar | character vector

Observation name, specified as a string scalar or a character vector.

1 Functions

1-2062

The value of obsname is:

• A file name in the case of file data.
• A member name in the case of in-memory data.

Data Types: char | string

Output Arguments
subsds — Output signal datastore
signalDatastore object

Output signal datastore, returned as a signalDatastore object.

See Also
signalDatastore | numpartitions

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 partition

1-2063

progress
Fraction of files read

Syntax
fractionRead = progress(sds)

Description
fractionRead = progress(sds) returns the fraction of files read in the datastore as a
normalized value in the range [0,1].

Examples

Read File Data in Signal Datastore

Specify the path to a set of audio signals included as MAT-files with MATLAB®.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');

Create a signal datastore that points to the specified folder and set sample rate variable name to Fs.
List the names of the MAT-files in the datastore.

sds = signalDatastore(folder,'FileExtension','.mat','SampleRateVariableName','Fs');
[~,c] = fileparts(sds.Files)

c = 7x1 cell
 {'chirp' }
 {'gong' }
 {'handel' }
 {'laughter'}
 {'mtlb' }
 {'splat' }
 {'train' }

While the signal datastore has unread files, read consecutive files from the datastore. Use the
progress function to monitor the fraction of files read.

while hasdata(sds)
 [data,info] = read(sds);
 fprintf('Fraction of files read: %.2f\n',progress(sds))
end

Fraction of files read: 0.14
Fraction of files read: 0.29
Fraction of files read: 0.43
Fraction of files read: 0.57
Fraction of files read: 0.71
Fraction of files read: 0.86
Fraction of files read: 1.00

1 Functions

1-2064

Print and inspect the info structure returned by the last call to the read function.

info

info = struct with fields:
 SampleRate: 8192
 TimeVariableName: "Fs"
 SignalVariableNames: "y"
 FileName: "B:\matlab\toolbox\matlab\audiovideo\train.mat"

Input Arguments
sds — Signal datastore
signalDatastore object

Specify sds as an signalDatastore object.

Output Arguments
fractionRead — Fraction of files read
normalized value in the range [0,1]

Fraction of files read, returned as a normalized value in the range [0,1].
Data Types: double

See Also
signalDatastore | preview | readall | read | hasdata

Introduced in R2020a

 progress

1-2065

shuffle
Shuffle signals in signal datastore

Syntax
shuffledsds = shuffle(sds)

Description
shuffledsds = shuffle(sds) creates a “Deep Copy” on page 1-2067 of the input datastore sds
and shuffles the signals using the randperm function.

Examples

Shuffle Files in Signal Datastore

Specify the path to the example signals included with MATLAB®. Create a signal datastore that
points to the specified folder and display the names of the files in the datastore.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo');
sds = signalDatastore(folder);
[~,c1] = fileparts(sds.Files)

c1 = 7x1 cell
 {'chirp' }
 {'gong' }
 {'handel' }
 {'laughter'}
 {'mtlb' }
 {'splat' }
 {'train' }

Shuffle the files to create a new datastore containing the same files in random order. Display the
names of the files in the shuffled datastore.

sdsshuffled = shuffle(sds);
[~,c2] = fileparts(sdsshuffled.Files)

c2 = 7x1 cell
 {'splat' }
 {'handel' }
 {'train' }
 {'mtlb' }
 {'chirp' }
 {'gong' }
 {'laughter'}

1 Functions

1-2066

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

Output Arguments
shuffledsds — Shuffled signal datastore
signalDatastore object

Shuffled signal datastore, returned as a signalDatastore object containing randomly ordered files
or members from sds.

More About
Deep Copy

A deep copy refers to a copy in which all levels of data are copied. For example, a deep copy of a
structure copies each field and the contents of each field, if any.

See Also
signalDatastore | subset

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 shuffle

1-2067

subset
Create datastore with subset of signals

Syntax
sdssubset = subset(sds,indices)

Description
sdssubset = subset(sds,indices) returns a signal datastore sdssubset containing a subset
of the signals in sds.

Examples

Create Signal Datastore with Subset Based on File Name

Specify the file path to the example signals included with Signal Processing Toolbox™.

folder = fullfile(matlabroot,'toolbox','matlab','demos');

Create a signal datastore that points to the specified folder. List the names of the first ten files in the
datastore.

sds = signalDatastore(folder);
[~,c] = fileparts(sds.Files(1:10))

c = 10x1 cell
 {'accidents' }
 {'airfoil' }
 {'airlineResults'}
 {'cape' }
 {'census' }
 {'clown' }
 {'detail' }
 {'dmbanner' }
 {'durer' }
 {'earth' }

Create a logical vector indicating whether the file names in the signal datastore start with 'air'.

fileContainsAir = cellfun(@(c)startsWith(c,'air'),c);

Call the subset function on the signal datastore and the indices corresponding to the files starting
with 'air'.

sdssubset = subset(sds,fileContainsAir)

sdssubset =
 signalDatastore with properties:

1 Functions

1-2068

 Files:{
 'B:\matlab\toolbox\matlab\demos\airfoil.mat';
 'B:\matlab\toolbox\matlab\demos\airlineResults.mat'
 }
 Folders: {'B:\matlab\toolbox\matlab\demos'}
 AlternateFileSystemRoots: [0x0 string]
 ReadSize: 1

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object.

indices — Indices of files in subset
vector of indices | logical vector

Specify indices as:

• A vector containing the indices of files or members to be included in sdssubset. The subset
function accepts nonunique indices.

• A logical vector the same length as the number of files or members in sds. If indices are specified
as a logical vector, true indicates that the corresponding files or members are to be included in
sdssubset.

Data Types: double | logical

Output Arguments
sdssubset — Subset of signal datastore
signalDatastore object

Subset of signal datastore, returned as a signalDatastore object.

See Also
signalDatastore | shuffle | numpartitions | partition

Topics
“Waveform Segmentation Using Deep Learning”

Introduced in R2020a

 subset

1-2069

transform
Transform signal datastore

Syntax
transformDatastore = transform(sds,@fcn)
transformDatastore = transform(sds,@fcn,'IncludeInfo',infoIn)

Description
transformDatastore = transform(sds,@fcn) creates a new datastore that transforms output
from the read function.

transformDatastore = transform(sds,@fcn,'IncludeInfo',infoIn) includes the info
returned by the read of sds.

Examples

Find Spectrogram of Chirps

Specify the path to four files included with Signal Processing Toolbox™. Each file contains a chirp and
a random sample rate, fs, ranging from 100 to 150 Hz. Create a signal datastore that points to the
specified folder.

folder = fullfile(matlabroot,'examples','signal','data','sample_chirps', ...
 ["chirp_1.mat","chirp_4.mat","chirp_9.mat","chirp_10.mat"]);
sds = signalDatastore(folder,'SampleRateVariableName','fs');

Define a function that takes the output of the read function and computes and returns:

• The spectrograms of the chirps.
• The vector of time instants corresponding to the centers of the windowed segments.
• The frequencies corresponding to the estimates.

function [dataOut,infoOut] = extractSpectrogram(dataIn,info)
 [dataOut,F,T] = pspectrum(dataIn,info.SampleRate,'spectrogram',...
 'TimeResolution',0.25,...
 'OverlapPercent',40,'Leakage',0.8);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call the transform function to create a datastore that computes the spectrogram of each chirp
using the function you defined.

sdsNew = transform(sds,@extractSpectrogram,'IncludeInfo',true);

While the transformed datastore has unread files, read from the new datastore and visualize the
spectrograms in three-dimensional space.

1 Functions

1-2070

t = tiledlayout('flow');
while hasdata(sdsNew)
 nexttile
 [sig,infoOut] = read(sdsNew);
 waterfall(infoOut.TimeInstants,infoOut.CenterFrequencies,sig)
 xlabel('Frequency (Hz)')
 ylabel('Time (S)')
 view([30 70])
end

Compute Envelopes of Signals

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird chirp, a
gong, a train, and a splat. All signals are sampled at 8192 Hz.

folder = fullfile(matlabroot,'toolbox','matlab','audiovideo', ...
 ["chirp.mat","gong.mat","train.mat","splat.mat"]);

Create a signal datastore that points to the specified files. Each file contains the variable Fs that
denotes the sample rate.

sds1 = signalDatastore(folder,'SampleRateVariableName','Fs');

 transform

1-2071

Define a function that takes the output of the read function and calculates the upper and lower
envelopes of the signals using spline interpolation over local maxima separated by at least 80
samples. The function also returns the sample times for each signal.

function [dataOut,infoOut] = signalEnvelope(dataIn,info)
 [dataOut(:,1),dataOut(:,2)] = envelope(dataIn,80,'peak');
 infoOut = info;
 infoOut.TimeInstants = (0:length(dataOut)-1)/info.SampleRate;
end

Call the transform function to create a second datastore, sds2, that computes the envelopes of the
signals using the function you defined.

sds2 = transform(sds1,@signalEnvelope,"IncludeInfo",true);

Combine sds1 and sds2 create a third datastore. Each call to the read function from the combined
datastore returns a matrix with three columns:

• The first column corresponds to the original signal.
• The second and third columns correspond to the upper and lower envelopes, respectively.

sdsCombined = combine(sds1,sds2);

Read and display the original data and the upper and lower envelopes from the combined datastore.
Use the extractBetween function to extract the file name from the file path.

tiledlayout('flow')
while hasdata(sdsCombined)
 [dataOut,infoOut] = read(sdsCombined);
 ts = infoOut{2}.TimeInstants;
 nexttile
 hold on
 plot(ts,dataOut(:,1),'Color','#DCDCDC','LineStyle',':')
 plot(ts,dataOut(:,2:3),'Linewidth',1.5)
 hold off
 xlabel('Time (s)')
 ylabel('Signal')
 title(extractBetween(infoOut{:,2}.FileName,'audiovideo\','.mat'))
end

1 Functions

1-2072

Input Arguments
sds — Signal datastore
signalDatastore object

Specify sds as a signalDatastore object.

@fcn — Function that transforms data
function handle

Function that transforms data, specified as a function handle. The signature of the function depends
on the IncludeInfo parameter.

• If IncludeInfo is set to false (default), the function transforms the signal output from read.
The info output from read is unaltered.

The transform function must have this signature:

function dataOut = fcn(dataIn)
...
end

• If IncludeInfo is set to true, the function transforms the signal output from read, and can use
or modify the information returned from read.

The transform function must have this signature:

 transform

1-2073

function [dataOut,infoOut] = fcn(signal,infoIn)
...
end

infoIn — Pass info through customized read function
false (default) | true

Pass info through the customized read function, specified as true or false. If true, the transform
function can use or modify the information it gets from read. If unspecified, IncludeInfo defaults
to false.
Data Types: logical

Output Arguments
transformDatastore — New datastore with customized read
TransformedDatastore

New datastore with customized read, returned as a TransformedDatastore with
UnderlyingDatastore set to sds, TransformSet set to fcn, and IncludeInfo set to true or false.

See Also
signalDatastore | subset | hasdata | progress

Introduced in R2020a

1 Functions

1-2074

writeall
Write datastore to files

Syntax
writeall(sds,outputLocation)
writeall(sds,outputLocation,Name,Value)

Description
writeall(sds,outputLocation) writes the data from the input datastore sds to output files at
the location specified in outputLocation. The number of output files is the same as the number of
files referenced by the datastore.

writeall(sds,outputLocation,Name,Value) writes data with additional options specified by
one or more name-value arguments. For example, 'FilenameSuffix','norm' adds the descriptive
text 'norm' at the end of all output files.

Examples

Write In-Memory Signal Datastore to Files

Create a signal datastore to iterate through the elements of an in-memory cell array of signal data.
The array contains:

• A sinusoidally modulated linear chirp
• A concave quadratic chirp
• A voltage controlled oscillator
• A set of pulses of decreasing duration separated by regions of oscillating amplitude and
fluctuating frequency with an increasing trend

The signals are sampled at 3000 Hz.

fs = 3000;
t = 0:1/fs:3-1/fs;
data = {chirp(t,300,t(end),800).*exp(2j*pi*10*cos(2*pi*2*t)); ...
 2*chirp(t,200,t(end),1000,'quadratic',[],'concave'); ...
 vco(sin(2*pi*t),[0.1 0.4]*fs,fs);
 besselj(0,600*(sin(2*pi*(t+1).^3/30).^5));};
sds = signalDatastore(data,'SampleRate',fs);

Create a folder called Files in the current folder. Write the contents of the datastore to files. List the
contents of the folder. The writeall function uses the MemberNames property of
signalDatastore to name the files and the signals in the files.

fname = 'Files';
mkdir(fname)

writeall(sds,fname)

 writeall

1-2075

dir(fname)

. Member1.mat Member3.mat

.. Member2.mat Member4.mat

Create a datastore that points to the files in Files. Read the data one file at a time. Compute and
display the short-time Fourier transform of each signal.

sdfs = signalDatastore(fname,'SampleRate',fs);
tiledlayout flow
while hasdata(sdfs)
 nexttile
 [sg,nf] = read(sdfs);
 stft(sg,nf.SampleRate)
end

Remove the Files directory you created earlier in the example.

rmdir(fname,'s')

Write Datastore Spectrograms to Files

Specify the path to four signals included with MATLAB®. The signals are recordings of a bird
chirping, a train, a splat, and a female voice saying the word "MATLAB." The first three signals are

1 Functions

1-2076

sampled at 8192 Hz and the fourth at 7418 Hz. Create a signal datastore that points to the specified
files.

fls = ["chirp" "train" "splat" "mtlb"];
folder = fullfile(matlabroot,"toolbox","matlab","audiovideo",append(fls,".mat"));

sds = signalDatastore(folder,'SampleRateVariableName','Fs');

Write the spectrograms of the signals to text files in the current folder using the writeall and
writeSpectrogram on page 1-0 functions. writeall uses the MemberNames property of
signalDatastore to name the files and the signals in the files. Create a datastore that points to the
files in the current folder.

writeall(sds,'.','WriteFcn',@writeSpectrogram)

sdfs = signalDatastore('.');

Read the data one file at a time. Display the spectrogram of each signal.

tiledlayout flow
while hasdata(sdfs)
 nexttile

 [d,info] = read(sdfs);
 waterfall(d(2:end,1),d(1,2:end),d(2:end,2:end)')

 wtf = gca;
 wtf.XDir = 'reverse';
 view(30,45)
 xlabel("{\it f} (Hz)")
 ylabel("{\it t} (s)")

 [~,k] = fileparts(info.FileName);
 title(k)
end

 writeall

1-2077

The writeSpectrogram function computes the spectrogram of the input signal using pspectrum
and writes it to a MAT-file in the current folder. The function specifies 80% of overlap between
adjoining segments, a time resolution of 0.15 second, and a spectral leakage of 0.8.

function writeSpectrogram(data,info,~)

 [s,f,t] = pspectrum(data,info.ReadInfo.SampleRate,'spectrogram', ...
 'TimeResolution',0.15,'OverlapPercent',80,'Leakage',0.8);
 d = [NaN t'; f s];

 [~,q] = fileparts(info.SuggestedOutputName);
 save(q,"d")

end

Input Arguments
sds — Signal datastore
signalDatastore object

Signal datastore, specified as a signalDatastore object. By default, when sds contains in-memory
data, the writeall function writes the input data to MAT-files.
Example: signalDatastore({randn(100,1)},'SampleRate',100) specifies a signal datastore
containing one member, a random signal, sampled at 100 Hz.

1 Functions

1-2078

outputLocation — Folder location to write data
character vector | string scalar

Folder location to write data, specified as a character vector or string scalar. outputLocation can
specify a full or relative path.
Example: outputLocation = '../../dir/data'
Example: outputLocation = "C:\Users\MyName\Desktop"
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: writeall(sds,outputLocation,'FolderLayout','flatten')

FolderLayout — Layout of files in output folder
'duplicate' (default) | 'flatten'

Layout of files in the output folder, specified as either 'duplicate' or 'flatten'.

• 'duplicate' — Replicate the folder structure of the data that the signal datastore points to.
Specify the 'FolderLayout' as 'duplicate' to maintain correspondence between the input
and output datasets.

• 'flatten' — Write all the files from the input to the specified output folder without any
subfolders.

'FolderLayout' does not apply when sds contains in-memory data.
Data Types: char | string

FilenamePrefix — Prefix to file name
character vector | string scalar

Prefix to file name, specified as a character vector or string scalar.

The writeall function adds the specified prefix to the output file names. For example, this code
adds today’s date to the beginning of all output file names from the datastore.

prefixText = string(datetime('today'))
writeall(imds,'C:\myFolder','FilenamePrefix',prefixText);

Data Types: char | string

FilenameSuffix — Suffix to file name
character vector | string scalar

Suffix to file name, specified as a character vector or string scalar.

The writeall function adds the specified suffix to the output file names. For example, this code adds
the descriptive text 'jpeg_70per' at the end of all output file names from the datastore.

writeall(imds,'C:\myFolder','FilenameSuffix','jpeg_70per');

 writeall

1-2079

Data Types: char | string

UseParallel — Indicator to write in parallel
false or 0 (default) | true or 1

Indicator to write in parallel, specified as either false or true.

By default writeall writes in serial. If you set UseParallel to true, then writeall divides the
writing operations into separate groups and runs the groups in parallel if:

• Parallel Computing Toolbox is installed.
• An open parallel pool exists or automatic pool creation is enabled in the Parallel Preferences.

Otherwise, writeall writes in serial regardless of the value for UseParallel.

Note Parallel writing is not supported for CombinedDatastore objects or datastores resulting from
the transform applied to a CombinedDatastore.

Data Types: logical

WriteFcn — Custom writing function
function handle

Custom writing function, specified as a function handle. The specified function is responsible for
creating the output files. You can use the 'WriteFcn' name-value argument to transform data or
write data to a file format different from the default, even if writeall does not directly support the
output format.

Function Signature

The custom writing function must accept at least three input arguments, data, writeInfo, and
suggestedOutputType.

function myWriteFcn(data,writeInfo,suggestedOutputType)

The function can also accept additional inputs, such as name-value arguments, after the first three
required inputs.

• data contains the output of the read method operating on the datastore.
• writeInfo is an object of type matlab.io.datastore.WriteInfo with fields listed in the

table.

Field Description Type
ReadInfo The second output of the

read method of the
signalDatastore

struct

SuggestedOutputName A fully qualified, globally
unique file name that meets
the location and naming
requirements

string

1 Functions

1-2080

Field Description Type
Location The specified

outputLocation passed to
writeall

string

• suggestedOutputType is the suggested output file type.

Example Function

A simple write function that computes the spectrogram of the input signal using pspectrum and
writes it to a text file in the current folder using the MATLAB function writematrix. The function
specifies 80% of overlap between adjoining segments, a time resolution of 0.15 second, and a spectral
leakage of 0.8.

function writeSpectrogram(data,info,~)

 [s,f,t] = pspectrum(data,info.ReadInfo.SampleRate,'spectrogram', ...
 'TimeResolution',0.15,'OverlapPercent',80,'Leakage',0.8);
 d = [NaN t'; f s];

 [~,q] = fileparts(info.SuggestedOutputName);
 writematrix(d,append(q,".txt"))

end

To use writeSpectrogram as the writing function for the signalDatastore object sds, use this
command.

writeall(sds,'.','WriteFcn',@writeSpectrogram)

Data Types: function_handle

See Also
signalDatastore | read | preview

Introduced in R2021a

 writeall

1-2081

signalMask
Modify and convert signal masks and extract signal regions of interest

Description
Use signalMask to store the locations of regions of interest of a signal together with the label or
category values for each region.

Using signalMask, you can:

• Represent a signal mask as a table, a categorical sequence, or a matrix of binary sequences.
• Modify regions of interest by extending or shortening their duration, merge same-category

regions that are sufficiently close, or remove regions that are not long enough.
• Extract signal regions of interest from a signal vector.
• Plot a signal with color-coded regions of interest.

Creation

Syntax
msk = signalMask(src)
msk = signalMask(src,Name,Value)

Description

msk = signalMask(src) creates a signal mask for the input data source src. A mask defines the
locations of regions of interest of a signal together with the label or category values for each region.

msk = signalMask(src,Name,Value) sets “Properties” on page 1-2083 using name-value
arguments. You can specify multiple name-value arguments. Enclose each property name in quotes.

Input Arguments

src — Input data source
table | categorical vector sequence | matrix of binary sequences

Input data source, specified as a region-of-interest (ROI) table, a categorical vector sequence, or a
matrix of binary sequences.

• When src is an ROI table, it must contain two variables:

• The first variable is a two-column matrix. Each row of the matrix contains the beginning and
end limits of a signal region of interest.

• If SampleRate is specified, signalMask interprets the limits as time values expressed in
seconds.

1 Functions

1-2082

• If SampleRate is not specified, signalMask interprets the limits as sample indices. If the
matrix elements are not integers, signalMask rounds their values to the nearest integer
greater than zero.

• The second variable contains the region labels, specified as a categorical array or a string.
• When src is a categorical vector sequence, groups of contiguous same-value category elements

indicate a signal region of interest labeled with that particular category. Elements that belong to
no category (and hence have no label value) should be specified as the missing categorical,
displayed as <undefined>. For more information, see categorical.

• When src is a P-column matrix of binary sequences, each column is interpreted as a signal mask
with true elements marking regions of interest for each of P different categories, labeled with
integers from 1 to P. If you prefer, you can specify a list of P category names using the
Categories property.

Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | table | categorical

Properties
SourceType — Type of input source
"roiTable" | "categoricalSequence" | "binarySequences"

This property is read-only.

Type of input source, returned as "roiTable", "categoricalSequence", or
"binarySequences". This property is inferred from src and cannot be set.
Example: signalMask(table([2 4;6 7],["male" "female"]')) has SourceType returned as
"roiTable".
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) has SourceType returned as "categoricalSequence".
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) has SourceType returned as "binarySequences".
Data Types: string

SampleRate — Sample rate value
positive numeric scalar

This property is read-only.

Sample rate value, specified as a positive numeric scalar. If src is specified as an ROI table,
signalMask assumes that the table contains region limits expressed in seconds. If you omit this
property, the object treats all region limits as sample indices.

 signalMask

1-2083

Data Types: single | double

Categories — Category names
string vector | cell array of character vectors

Category names, specified as a string vector or a cell array of character vectors. This property can be
set only when src is a matrix of binary sequences. For all other input src types, signalMask infers
category names directly from src and this property is read-only. The vector has a number of elements
equal to the number of columns of src, and its ith category corresponds to the ith column of src. If
src has P columns and this property is not specified, signalMask sets the category names to ["1"
"2" ... "P"].
Data Types: string | char

SpecifySelectedCategories — Option to select a subset of categories
false (default) | true

Option to select a subset of categories, specified as a logical value. If this property is set to false
after creating the mask, then all categories in Categories are selected.
SpecifySelectedCategories can only be used on an existing object and cannot be specified as a
name-value argument.
Data Types: logical

SelectedCategories — Indices of selected categories
vector of integer index values

Indices of selected categories, specified as a vector of integer index values pointing to category
elements in Categories. Categories not listed in this property are filtered out from the mask input
when calling the object functions of signalMask. The category indices must be sorted in ascending
order. This property applies only when SpecifySelectedCategories is true.
SelectedCategories can only be used on an existing object and cannot be specified as a name-
value argument.
Example: Given a set of categories ["woman" "girl" "man" "boy"], specifying
SelectedCategories as [1 2 4] selects ["woman" "girl" "boy"] and filters out the rest.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LeftExtension — Number of samples to extend regions to the left
0 (default) | positive integer

Number of samples to extend regions to the left, specified as a positive integer. The number of
extended samples is truncated when the beginning of the sequence is reached. For more information,
see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RightExtension — Number of samples to extend regions to the right
0 (default) | positive integer

Number of samples to extend regions to the right, specified as a positive integer. For more
information, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LeftShortening — Number of samples to shorten regions from the left
0 (default) | positive integer

1 Functions

1-2084

Number of samples to shorten regions from the left, specified as a positive integer. signalMask
removes regions that are shortened by a number of samples equal to or greater than their length. For
more information, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RightShortening — Number of samples to shorten regions from the right
0 (default) | positive integer

Number of samples to shorten regions from the right, specified as a positive integer. signalMask
removes regions that are shortened by a number of samples equal to or greater than their length. For
more information, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MergeDistance — Distance between regions to be merged
0 (default) | positive integer

Distance between regions to be merged, specified as a positive integer. When this property is
specified, signalMask merges regions of the same category that are separated by the specified
number of samples or less. For more information, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

MinLength — Minimum length of regions to keep
1 (default) | positive integer

Minimum length of regions to keep, specified as a positive integer. When this property is specified,
signalMask removes regions shorter than the specified number of samples. For more information,
see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
binmask Get matrix of binary sequences mask
catmask Get categorical sequence mask
extractsigroi Extract regions of interest based on signal mask
plotsigroi Plot signal regions based on signal mask
roimask Get ROI table mask

Examples

Regions of Interest in Audio File

Load a speech signal sampled at Fs = 7418 Hz. The file contains a recording of a female voice saying
the word "MATLAB®."

load mtlb
t = (0:length(mtlb)-1)/Fs;

Discern the vowels and consonants in the word by finding the points at which the variance of the
signal changes significantly. Limit the number of changepoints to five.

q = findchangepts(mtlb,"Statistic","rms","MaxNumChanges",5);

 signalMask

1-2085

Plot the signal and display the changepoints.

findchangepts(mtlb,"Statistic","rms","MaxNumChanges",5)
axis tight

Define regions of interest that correspond to each letter in the word.

roitable = t([[1;q] [q;length(mtlb)]]);

Assign region labels and preserve their order.

x = ["M" "A" "T" "L" "A" "B"]';
y = unique(x,"stable");
c = categorical(x,y);

Create a signal mask for the regions of interest and corresponding labels. Shorten each region by one
sample from the right to avoid contiguity. Display the region-of-interest table mask.

src = table(roitable,c);
msk = signalMask(src,"SampleRate",Fs,"RightShortening",1);
roimask(msk)

ans=6×2 table
 roitable c
 ___________________ _

 0 0.017525 M
 0.01766 0.10461 A

1 Functions

1-2086

 0.10475 0.22162 T
 0.22176 0.33675 L
 0.33688 0.46535 A
 0.46549 0.53909 B

Introduce gaps in the signal where the letter "A" is vocalized.

m = mtlb;

seq = catmask(msk,length(mtlb));
m(seq == "A") = NaN;

Reconstruct the signal using an autoregressive process. Extract each region of interest from the
reconstructed signal.

p = fillgaps(m);

w = extractsigroi(msk,p);

To play the sound with a pause after each region, uncomment these lines:

% for k = 1:length(w)
% sound(cell2mat(w{k}),Fs)
% pause(0.5)
% end

Plot the reconstructed signal and visualize the regions of interest.

figure
plotsigroi(msk,p)

 signalMask

1-2087

More About
Region Limit Modification

You can use signalMask to modify regions of interest by extending or shortening their duration,
merge same-category regions that are sufficiently close, or remove regions that are not long enough.

signalMask first converts the region limits of src to a matrix and, depending on the specified
“Properties” on page 1-2083, modifies the limits in this order:

1 Extends regions to the left or right based on LeftExtension and RightExtension.
2 Shortens regions from the left or right based on LeftShortening and RightShortening.
3 Merges close-enough regions based on MergeDistance. signalMask always merges

contiguous, overlapping, or repeated regions. Think of these regions as being separated by zero
samples, or a negative number of samples.

4 Removes short regions based on MinLength.

See Also
Apps
Signal Labeler

1 Functions

1-2088

Functions
binmask2sigroi | extendsigroi | extractsigroi | mergesigroi | removesigroi |
shortensigroi | sigroi2binmask | categorical

Objects
labeledSignalSet | signalLabelDefinition

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

 signalMask

1-2089

binmask
Get matrix of binary sequences mask

Syntax
seqs = binmask(msk)
seqs = binmask(msk,len)

[seqs,numroi,cats] = binmask(___)

Description
seqs = binmask(msk) returns a matrix of binary sequences mask, seqs, based on the source and
properties in msk.

seqs = binmask(msk,len) specifies the lengths of the sequences in seqs.

[seqs,numroi,cats] = binmask(___) also returns numroi, a vector containing the number of
regions found for each of the categories listed in cats.

Examples

Binary Sequences Mask from ROI Table

Consider a region-of-interest (ROI) table mask with four regions of interest spanning samples
numbered from 2 to 19. Specify the category labels as A, B, and C. Use the mask to create a
signalMask object.

roiTbl = table([2 5; 7 10; 15 18; 17 19],["A" "B" "C" "A"]');

m = signalMask(roiTbl);

Extract a binary sequences mask from the object. Specify a sequence length of 20 samples.

binSeqs = binmask(m,20)'

binSeqs = 3x20 logical array

 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

Shorten the regions of interest by one sample from the right and extend them two samples to the left.
Extract the modified mask, specifying a sequence length of 18 samples.

m.RightShortening = 1;
m.LeftExtension = 2;

binSeqs = binmask(m,18)'

1 Functions

1-2090

binSeqs = 3x18 logical array

 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0

Input Arguments
msk — Signal mask
signalMask object

Signal mask, specified as a signalMask object.
Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.

len — Output sequence length
integer scalar

Output sequence length, specified as an integer scalar. Regions beyond len are ignored. The output
matrix of binary sequences seqs is padded with false values in these cases:

• SourceType is 'categoricalSequence' or 'binarySequences' and len is greater than the
length of the source sequence.

• SourceType is 'roiTable' and len is greater than the maximum region index.

For more information about the length of the output, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
seqs — Matrix of binary sequences mask
matrix

Matrix of binary sequences mask, returned as a matrix. The ith column of seqs contains a binary
mask sequence for the ith category listed in the SelectedCategories property of msk.

• If SourceType is 'categoricalSequence' or 'binarySequences' and len is not specified,
then seqs has the same length as the source mask sequence.

• If SourceType is 'roiTable', then len must be specified.

When RightExtension is nonzero and SourceType is 'categoricalSequence' or
'binarySequences', binmask extends regions possibly beyond the sequence length, applies all
other modifications based on LeftExtension, LeftShortening, RightShortening,

 binmask

1-2091

MergeDistance, and MinLength, and then truncates the resulting sequence to the original
sequence length, or to the specified length len.

For more information on how the properties of msk affect the length of seqs, see “Region Limit
Modification” on page 1-2088.

numroi — Number of regions
vector of integers

Number of regions found for each of the categories in cats, returned as a vector of integers.

cats — Category list
vector of strings

Category list, returned as a vector of strings.

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask | signalLabelDefinition

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

1 Functions

1-2092

binmask2sigroi
Convert binary mask to matrix of ROI limits

Syntax
roilims = binmask2sigroi(mask)

Description
roilims = binmask2sigroi(mask) converts mask, a binary mask of signal region-of-interest
(ROI) samples, to a matrix of ROI limits, roilims.

Examples

Convert Binary Sequence to ROI Limits

Consider a logical sequence that is true for samples belonging to four possible regions of interest of a
signal. Convert the sequence to a two-column matrix of ROI limits.

mask = logical([0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0]);

roilims = binmask2sigroi(mask)

roilims = 4×2

 3 6
 11 13
 19 27
 31 32

Input Arguments
mask — Binary mask
logical vector | numeric vector

Binary mask, specified as a logical vector. You can also specify mask as a numeric vector. In that case,
any nonzero element of the vector is converted to logical 1 (true) and zeros are converted to logical
0 (false).
Example: logical([0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0]) specifies a binary
mask containing four regions of interest.
Example: [0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0] specifies a binary mask
containing four regions of interest.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

 binmask2sigroi

1-2093

Output Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, returned as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

Functions
extendsigroi | extractsigroi | mergesigroi | removesigroi | shortensigroi |
sigroi2binmask

Introduced in R2020b

1 Functions

1-2094

catmask
Get categorical sequence mask

Syntax
seq = catmask(msk)
seq = catmask(msk,len)

seq = catmask(___ ,'OverlapAction',action)
seq = catmask(___ ,'OverlapAction','prioritizeByList','PriorityList',idxlist)

[seq,numroi,cats] = catmask(___)

Description
seq = catmask(msk) returns a categorical sequence mask, seq, based on the source and
properties in msk.

seq = catmask(msk,len) specifies the length of seq.

seq = catmask(___ ,'OverlapAction',action) specifies how signalMask deals with regions
having different category values that overlap.

seq = catmask(___ ,'OverlapAction','prioritizeByList','PriorityList',idxlist)
specifies the order in which msk categories are prioritized when regions with different category
values overlap.

[seq,numroi,cats] = catmask(___) also returns numroi, a vector containing the number of
regions found for each of the categories listed in cats.

Examples

Categorical Mask with Specified Length

Consider a region-of-interest (ROI) table mask with four regions of interest spanning samples
numbered from 2 to 30. Specify the category labels as A and B. Use the mask to create a
signalMask object.

roiTbl = table([2 5; 7 10; 15 25; 28 30],["A","B","B","A"]');

m = signalMask(roiTbl);

Extract a categorical mask from the object specifying a sequence length of 35. Samples beyond the
30th are returned as <undefined>.

catSeq = catmask(m,35);

catSeq(max(roiTbl.Var1(end)):end)

ans = 6x1 categorical
 A

 catmask

1-2095

 <undefined>
 <undefined>
 <undefined>
 <undefined>
 <undefined>

Extract the categorical mask again, but now specify a sequence length of 8. Samples beyond the
eighth are removed.

catSeq = catmask(m,8)

catSeq = 8x1 categorical
 <undefined>
 A
 A
 A
 A
 <undefined>
 B
 B

Categorical Mask from Overlapping Binary Sequences

Consider an 18-by-2 mask of binary sequences. Use the mask to create a signalMask object. Label
the categories with A and B, in that order.

binSeqs = logical([...
 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1;
 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0]');

m = signalMask(binSeqs);
m.Categories = ["A" "B"];

Extract a categorical mask from the object. To treat overlap between the categories, assign samples
shared by the two categories to the first one in the list, A.

seqA = catmask(m,'OverlapAction','PrioritizeByList');
seqA(binSeqs(:,1) & binSeqs(:,2))

ans = 4x1 categorical
 A
 A
 A
 A

Extract the categorical mask again, but now treat overlap between the categories by assigning the
shared samples to B with an explicit priority list.

seqB = catmask(m,'OverlapAction','PrioritizeByList', ...
 'PriorityList',[2 1]);
seqB(binSeqs(:,1) & binSeqs(:,2))

ans = 4x1 categorical
 B

1 Functions

1-2096

 B
 B
 B

Treat the overlap by removing regions with fewer than three samples. Display the modified binary-
sequence mask that results.

m.MinLength = 3;
binmask(m)'

ans = 2x18 logical array

 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0
 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

The formerly shared samples are assigned to the categories of the regions that remain.

seqM = catmask(m);
seqM(binSeqs(:,1) & binSeqs(:,2))

ans = 4x1 categorical
 B
 B
 A
 A

Input Arguments
msk — Signal mask
signalMask object

Signal mask, specified as a signalMask object.
Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.

len — Output sequence length
integer scalar

Output sequence length, specified as an integer scalar. Regions beyond len are ignored. The output
categorical sequence seq is padded with <missing> values in these cases:

• SourceType is 'categoricalSequence' or 'binarySequences' and len is greater than the
length of the source sequence.

• SourceType is 'roiTable' and len is greater than the maximum region index.

 catmask

1-2097

When RightExtension is nonzero and SourceType is 'categoricalSequence' or
'binarySequences', catmask extends regions possibly beyond the sequence length, applies all
other modifications based on LeftExtension, LeftShortening, RightShortening,
MergeDistance, and MinLength, and then truncates the resulting sequence to the original
sequence length, or to the specified length len.

As a last step, catmask manages overlap based on the value set for 'OverlapAction', if that
argument is specified.

For more information about the length of the output, see “Region Limit Modification” on page 1-2088.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

action — Way to deal with overlap
'error' (default) | 'prioritizeByList'

Way to deal with overlap, specified as 'error' or 'prioritizeByList'.

• 'error' — catmask throws an error if there are overlaps between regions with different
categories.

• 'prioritizeByList' — catmask uses the priority list specified in idxlist to deal with
overlaps between regions with different categories. The first category in the list has the highest
priority, and all its samples are kept in cases of overlap. The second category in the list follows,
and its samples are kept in overlap cases not previously resolved.

If idxlist is not specified, catmask prioritizes categories in the same order as they appear in
the Categories property of msk.

Data Types: char | string

idxlist — Category priorities in cases of overlap
msk Categories list (default) | vector of integers

Category priorities in cases of overlap, specified as a vector of integers. The indices in idxlist
correspond to entries in the Categories of msk and are ordered by the priority with which they
should be treated when regions with different category values overlap. idxlist must contain indices
for all the elements in Categories. The first category in the list has the highest priority. This means
that when regions with different categories overlap, all the values of the highest priority are kept.
Then the values with the next highest priority are kept in the remaining nonoverlapping samples, and
so on.

If idxlist is not specified, catmask prioritizes categories in the same order as they appear in the
Categories property of msk.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
seq — Categorical sequence mask
categorical array

Categorical sequence mask, returned as a categorical array. Samples in seq that do not belong to a
region of interest and have no label value are set to missing categorical values, displayed as
<undefined>. For more information, see categorical.

1 Functions

1-2098

• If SourceType is 'categoricalSequence' or 'binarySequences' and len is not specified,
then seqs has the same length as the source mask sequence.

• If SourceType is 'roiTable', then len must be specified.

For more information on how the properties of msk affect the length of seqs, see “Region Limit
Modification” on page 1-2088.

numroi — Number of regions
vector of integers

Number of regions found for each of the categories in cats, returned as a vector of integers.

cats — Category list
vector of strings

Category list, returned as a vector of strings.

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask | signalLabelDefinition

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

 catmask

1-2099

extendsigroi
Extend signal regions of interest to left and right

Syntax
roilimsout = extendsigroi(roilims,sl,sr)

Description
roilimsout = extendsigroi(roilims,sl,sr) extends the signal regions of interest specified
in roilims to the left by sl samples and to the right by sr samples.

Examples

Extend Regions of Interest

Consider a two-column matrix of integers that can represent regions of interest of a signal. Extend
the regions of interest by two samples to the left and three samples to the right. extendsigroi does
not extend regions to the left beyond the first sample.

rois = [1 8; 17 20; 27 31; 38 40];
xrois = extendsigroi(rois,2,3)

xrois = 4×2

 1 11
 15 23
 25 34
 36 43

Extend Overlapping Regions of Interest

Consider a two-column matrix of integers that can represent overlapping regions of interest of a
signal. Extend the regions of interest by two samples to the left and three samples to the right.
extendsigroi does not extend regions to the left beyond the first sample.

rois = [1 10; 17 26; 24 32; 38 40];

xrois = extendsigroi(rois,2,3)

xrois = 4×2

 1 13
 15 29
 22 35
 36 43

1 Functions

1-2100

Input Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sl — Number of samples to extend to the left
nonnegative integer

Number of samples to extend to the left, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sr — Number of samples to extend to the right
nonnegative integer

Number of samples to extend to the right, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
roilimsout — Modified region-of-interest limits
two-column matrix of positive integers

Modified region-of-interest limits, returned as a two-column matrix of positive integers. Output limits
are returned in sorted order using the sortrows function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

 extendsigroi

1-2101

Functions
binmask2sigroi | extractsigroi | mergesigroi | removesigroi | shortensigroi |
sigroi2binmask

Introduced in R2020b

1 Functions

1-2102

extractsigroi
Extract regions of interest based on signal mask

Syntax
sigroi = extractsigroi(msk,x)

sigroi = extractsigroi(msk,x,Name,Value)

[sigroi,limits] = extractsigroi(___)
[sigroi,limits,numroi,cats] = extractsigroi(___)

Description
sigroi = extractsigroi(msk,x) extracts regions of interest of the input signal vector x based
on the source and properties in msk.

sigroi = extractsigroi(msk,x,Name,Value) specifies additional options using name-value
arguments. You can choose to concatenate extracted regions and select the number of regions to
extract per category.

[sigroi,limits] = extractsigroi(___) returns an array with the locations of the extracted
region endpoints.

[sigroi,limits,numroi,cats] = extractsigroi(___) also returns numroi, a vector
containing the number of regions found for each of the categories listed in cats.

Examples

Extract Regions from ROI Table Mask

Consider a region-of-interest (ROI) table with three regions labeled A and two regions labeled B. Use
the table to create a signalMask object.

roiTbl = table([2 5; 7 10; 12 13; 15 25; 28 30],["A","B","A","B","A"]');

m = signalMask(roiTbl);

Generate an array with prime numbers smaller than 150. Use the signalMask object to extract the
primes specified in the ROI table. Display the first set of A primes and the first set of B primes.

prm = primes(150);

rgs = extractsigroi(m,prm);

AB = [rgs{1}{1} rgs{2}{1}]

AB = 4×2

 3 17

 extractsigroi

1-2103

 5 19
 7 23
 11 29

Repeat the operation, but now concatenate the regions of interest for each category. Display the first
six A primes and the last six B primes.

rgs = extractsigroi(m,prm,'ConcatenateRegions',true);

AB = [rgs{1}(1:6) rgs{2}(end-5:end)]

AB = 6×2

 3 71
 5 73
 7 79
 11 83
 37 89
 41 97

Repeat the operation, but now ignore regions with two samples or less. Display the first six A primes
and the last six B primes.

m.MinLength = 3;

rgs = extractsigroi(m,prm,'ConcatenateRegions',true);

AB = [rgs{1}(1:6) rgs{2}(end-5:end)]

AB = 6×2

 3 71
 5 73
 7 79
 11 83
 107 89
 109 97

Input Arguments
msk — Signal mask
signalMask object

Signal mask, specified as a signalMask object.
Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.

1 Functions

1-2104

x — Input signal
vector

Input signal, specified as a vector.
Example: chirp(0:1/1e3:1,25,1,50) specifies a chirp sampled at 1 kHz.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ConcatenateRegions',true,'SelectedRegions',[2 4] specifies that the function
extract the second and fourth regions of each category and concatenate them.

ConcatenateRegions — Option to concatenate extracted signal regions
false (default) | true

Option to concatenate extracted signal regions, specified as a logical value.

• If this argument is set to false, then each cell of sigroi is a cell array corresponding to an
individual signal region.

• If this argument is set to true, then each cell of sigroi is a vector of concatenated extracted
signal regions for each category contained in msk.

Data Types: logical

SelectedRegions — Regions selected for extraction
vector of integers

Regions selected for extraction, specified as a vector of integers.

• If this argument is set to 1, then extractsigroi extracts only the first region of each category
and returns it in sigroi.

• If this argument is set to [i j k ...], then extractsigroi extracts the ith, jth, kth, and
successive regions of each category and returns them in sigroi.

The function ignores indices larger than the number of regions present for a given category.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
sigroi — Signal regions of interest
cell array

Signal regions of interest, returned as a cell array. Each cell of sigroi contains a cell array with the
signal regions extracted for each category in msk.

• If “ConcatenateRegions” on page 1-0 is set to false, then each cell of sigroi is a cell
array corresponding to an individual signal region.

• If “ConcatenateRegions” on page 1-0 is set to true, then each cell of sigroi is a
vector of concatenated extracted signal regions for each category contained in msk.

 extractsigroi

1-2105

limits — Extracted region limits
cell array of two-column matrices

Extracted region limits, returned as a cell array of two-column matrices. If msk specifies a
SampleRate, the region limits are expressed in seconds. If msk does not specify a sample rate, the
region limits are integers corresponding to signal sample indices.

numroi — Number of regions
vector of integers

Number of regions found for each of the categories in cats, returned as a vector of integers.

cats — Category list
vector of strings

Category list, returned as a vector of strings.

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask | signalLabelDefinition

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

1 Functions

1-2106

extractsigroi
Extract signal regions of interest

Syntax
sigroi = extractsigroi(x,roilims)
sigroi = extractsigroi(x,roilims,concat)

Description
sigroi = extractsigroi(x,roilims) extracts regions of interest (ROIs) of the input signal
vector x based on the ROI limits specified in roilims.

sigroi = extractsigroi(x,roilims,concat) with concat specified as true extracts regions
of interest and concatenates them.

Examples

Extract Signal Regions of Interest

Consider a two-column matrix representing possible regions of interest of a 45-sample random signal.
Extract the signal samples corresponding to the regions of interest.

x = randn(45,1);

roilims = [5 10; 15 25; 30 35];

sigroi = extractsigroi(x,roilims);

Plot the signal and highlight the regions of interest.

plot(x)

hold on
for kj = 1:length(sigroi)
 plot(roilims(kj,1):roilims(kj,2),sigroi{kj})
end
hold off

 extractsigroi

1-2107

Extract Regions of Interest from Data Set

Consider a set of temperature data collected by a thermometer inside an office building for about four
months. The device takes a reading every half hour. The sample rate is thus 48 measurements/day.
Convert the temperature to degrees Celsius and plot the data.

load officetemp

tempC = (temp-32)*5/9;

fs = 48;
t = (0:length(tempC) - 1)/fs;

plot(t,tempC)
xlabel('Time (days)')
ylabel('Temperature ({}^\circC)')

1 Functions

1-2108

Create region-of-interest limits that separate the temperature data into 29-day periods.

roilims = [1 29; 30 58; 59 87; 88 116];

Extract the regions of interest. Compute the mean temperature of each period and display the values.

sigroi = extractsigroi(tempC,roilims*fs);

cellfun(@mean,sigroi)'

ans = 1×4

 22.8819 22.3073 22.7633 23.0066

Extract and Concatenate Signal Regions of Interest

Consider a two-column matrix representing possible regions of interest of a 45-sample random signal.
Extract the signal samples corresponding to the regions of interest. Concatenate the samples into a
single vector.

x = randn(45,1);

roilims = [5 10; 15 25; 30 35];

 extractsigroi

1-2109

sigroi = extractsigroi(x,roilims,true);

Plot the signal and highlight the regions of interest.

plot(x)

y = NaN(size(x));

for kj = 1:size(roilims,1)
 roi = roilims(kj,1):roilims(kj,2);
 y(roi) = sigroi(1:length(roi));
 sigroi(1:length(roi)) = [];
end

hold on
plot(y)
hold off

Extract and Concatenate Regions of Interest From Data Set

Consider a set of temperature data collected by a thermometer inside an office building for four
months. The device takes a reading every half hour. The sample rate is thus 48 measurements/day.
Convert the temperature to degrees Celsius.

1 Functions

1-2110

load officetemp

tempC = (temp-32)*5/9;

fs = 48;

Create region-of-interest (ROI) limits that correspond to five random two-week periods separated by
at least 24 hours. Use the temperature readings from these days for an audit.

r = 5;
w = 14*fs;
s = 1*fs;

hq = histcounts(randi(r+1,1,length(tempC)-r*w-(r-1)*s),(1:r+2)-1/2);
t = (1 + (0:r-1)*(w+s) + cumsum(hq(1:r)))';

roilims = [t t+w-1];

Extract the regions of interest. Compute the mean temperature of each audited region of interest and
display the values.

sigroi = extractsigroi(tempC,roilims);

cellfun(@mean,sigroi)'

ans = 1×5

 22.8075 22.2586 22.4256 22.9018 23.1457

Extract the regions of interest again, but now concatenate the samples into a single vector. Compute
the mean temperature across the audited regions.

sigroic = extractsigroi(tempC,roilims,true);

avgTFc = mean(sigroic)

avgTFc = 22.7078

Convert the ROI limits to a binary sequence and create a mask. Express time in weeks.

m = sigroi2binmask(roilims,length(tempC));

msk = signalMask(m,'SampleRate',fs*7,'Categories',"Audit");

Plot the data and visualize the regions of interest with rectangular patches.

plotsigroi(msk,tempC,true)
xlabel('Time (weeks)')
ylabel('Temperature ({}^\circC)')

 extractsigroi

1-2111

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Example: chirp(0:1/1e3:1,25,1,50) specifies a chirp sampled at 1 kHz.
Data Types: single | double

roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

concat — Option to concatenate extracted signal regions
false (default) | true

Option to concatenate extracted signal regions, specified as a logical value.

1 Functions

1-2112

Data Types: logical

Output Arguments
sigroi — Signal regions of interest
cell array | vector

Signal regions of interest, returned as a cell array or a vector.

• If concat is set to false, sigroi is a cell array. The ith cell of sigroi contains the signal
samples corresponding to the ith region of interest specified in roilims.

• If concat is set to true, sigroi is a vector that concatenates all extracted signal samples.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If supplied, concat must be a constant.

See Also
Objects
signalMask

Functions
binmask2sigroi | extendsigroi | mergesigroi | removesigroi | shortensigroi |
sigroi2binmask

Introduced in R2020b

 extractsigroi

1-2113

mergesigroi
Merge signal regions of interest

Syntax
roilimsout = mergesigroi(roilims,s)

Description
roilimsout = mergesigroi(roilims,s) merges the signal regions of interest specified in
roilims if they are separated by s samples or less.

Examples

Merge Regions of Interest

Consider a two-column matrix of integers that can represent regions of interest of a signal. Merge
any regions that are separated by four samples or less.

rois = [1 10; 17 26; 28 43; 47 57; 64 66];

xrois = mergesigroi(rois,4)

xrois = 3×2

 1 10
 17 57
 64 66

Specify the maximum separation as zero to merge contiguous or repeated regions.

nrois = [rois; 57 65; 1 10];

xrois = mergesigroi(rois,0)

xrois = 5×2

 1 10
 17 26
 28 43
 47 57
 64 66

1 Functions

1-2114

Merge Overlapping Regions of Interest

Consider a two-column matrix of integers that can represent regions of interest of a signal. Merge
any regions that are separated by four samples or less. The function merges overlapping regions in
all cases.

rois = [1 10; 17 26; 24 32; 36 40];

xrois = mergesigroi(rois,4)

xrois = 2×2

 1 10
 17 40

Specify the maximum separation as zero to merge contiguous or repeated regions.

nrois = [rois; 41 45; 1 10];

xrois = mergesigroi(rois,0)

xrois = 3×2

 1 10
 17 32
 36 40

Input Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

s — Maximum separation between regions of interest to merge
nonnegative integer

Maximum separation between regions of interest to merge, specified as a nonnegative integer.

If you specify s as 0, mergesigroi merges contiguous, overlapping, or repeated regions specified in
roilims.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 mergesigroi

1-2115

Output Arguments
roilimsout — Modified region-of-interest limits
two-column matrix of positive integers

Modified region-of-interest limits, returned as a two-column matrix of positive integers. Output limits
are returned in sorted order using the sortrows function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

Functions
binmask2sigroi | extendsigroi | extractsigroi | removesigroi | shortensigroi |
sigroi2binmask

Introduced in R2020b

1 Functions

1-2116

plotsigroi
Plot signal regions based on signal mask

Syntax
plotsigroi(msk,x)
plotsigroi(msk,x,patchflag)

h = plotsigroi(msk,x)

Description
plotsigroi(msk,x) plots signal x with color-coded regions based on the source and properties in
msk. If x is complex-valued, the function plots its magnitude.

plotsigroi(msk,x,patchflag) plots regions of interest using rectangular patches if patchflag
is true.

h = plotsigroi(msk,x) returns the figure handle of the color-coded plot. You can use the figure
handle to query and modify figure properties.

Examples

Plot Regions of Interest from Binary Sequences Mask

Consider a mask of binary sequences for two categories, ran and dom. Use the sequences to generate
a signalMask object. Discard regions with fewer than 3 samples.

rng default

sq = randi(2,200,2)-1;

m = signalMask(sq,"MinLength",3,"Categories",["ran" "dom"]);

Generate a sequence of 200 random numbers. Plot the regions of interest.

x = rand(200,1);

plotsigroi(m,x)

 plotsigroi

1-2117

Plot the regions of interest using rectangular patches.

plotsigroi(m,x,true)

1 Functions

1-2118

Input Arguments
msk — Signal mask
signalMask object

Signal mask, specified as a signalMask object.
Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.

x — Input signal
vector

Input signal, specified as a vector.
Example: chirp(0:1/1e3:1,25,1,50) specifies a chirp sampled at 1 kHz.
Data Types: single | double

 plotsigroi

1-2119

patchflag — Rectangular patch option
false (default) | true

Rectangular patch option, specified as a logical value. plotsigroi uses rectangular patches to plot
regions of interest if patchflag is true.
Data Types: logical

Output Arguments
h — Figure handle
integer scalar

Figure handle, returned as an integer scalar.

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask | signalLabelDefinition

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

1 Functions

1-2120

removesigroi
Remove signal regions of interest

Syntax
roilimsout = removesigroi(roilims,s)

Description
roilimsout = removesigroi(roilims,s) removes signal regions of interest specified in
roilims that have a length of s samples or less.

Examples

Remove Regions of Interest

Create a two-column matrix of integers that can represent regions of interest of a signal. Remove any
regions that are six samples in length or shorter.

rois = [1 6; 17 26; 24 32; 36 40];

xrois = removesigroi(rois,6)

xrois = 2×2

 17 26
 24 32

Input Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

s — Maximum length of regions of interest to remove
nonnegative integer

Maximum length of regions of interest to remove, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 removesigroi

1-2121

Output Arguments
roilimsout — Modified region-of-interest limits
two-column matrix of positive integers

Modified region-of-interest limits, returned as a two-column matrix of positive integers. Output limits
are returned in sorted order using the sortrows function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

Functions
binmask2sigroi | extendsigroi | extractsigroi | mergesigroi | shortensigroi |
sigroi2binmask

Introduced in R2020b

1 Functions

1-2122

roimask
Get ROI table mask

Syntax
tbl = roimask(msk)

[tbl,numroi,cats] = roimask(msk)

Description
tbl = roimask(msk) returns a region-of-interest (ROI) table mask, tbl, based on the source and
properties in msk.

[tbl,numroi,cats] = roimask(msk) also returns numroi, a vector containing the number of
regions found for each of the categories listed in cats.

Examples

ROI Table Mask from Binary Sequences

Generate an 18-by-2 mask of binary sequences. Use the mask to create a signalMask object and
label the categories as A and B. Extract an ROI table mask from the object.

binSeqs = logical([...
 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1;
 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0]');

m = signalMask(binSeqs,'Categories',["A" "B"]);

roiTbl = roimask(m)

roiTbl=4×2 table
 ROILimits Value
 _________ _____

 1 2 B
 5 7 A
 10 12 B
 15 18 A

Extend the regions of interest by one sample to the left and right.

m.RightExtension = 1;
m.LeftExtension = 1;

roiTbl = roimask(m)

roiTbl=4×2 table
 ROILimits Value

 roimask

1-2123

 _________ _____

 1 3 B
 4 8 A
 9 13 B
 14 19 A

ROI Table Mask from Categorical Sequence

Generate a 16-sample categorical sequence mask with two categories, A and B. Specify as missing
those samples that do not belong to A or B. Use the mask to create a signalMask object. Extract an
ROI table mask from the object.

catSeq = categorical(["A" "A" "A" missing missing "B" "B" ...
 missing missing "B" "B" missing "B" "A" "A" "A"]);

m = signalMask(catSeq);

roiTbl = roimask(m)

roiTbl=5×2 table
 ROILimits Value
 _________ _____

 1 3 A
 6 7 B
 10 11 B
 13 13 B
 14 16 A

Output a list of categories and the number of regions belonging to each category.

[~,nroi,cats] = roimask(m)

nroi = 2×1

 2
 3

cats = 2x1 string
 "A"
 "B"

Merge same-category regions separated by only one sample.

m.MergeDistance = 1;

roiTbl = roimask(m)

roiTbl=4×2 table
 ROILimits Value
 _________ _____

1 Functions

1-2124

 1 3 A
 6 7 B
 10 13 B
 14 16 A

Input Arguments
msk — Signal mask
signalMask object

Signal mask, specified as a signalMask object.
Example: signalMask(table([2 4;6 7],["male" "female"]')) specifies a signal mask with a
three-sample male region and a two-sample female region.
Example: signalMask(categorical(["" "male" "male" "male" "" "female" "female"
""]',["male" "female"])) specifies a signal mask with a three-sample male region and a two-
sample female region.
Example: signalMask([0 1 1 1 0 0 0 0;0 0 0 0 0 1 1 0]','Categories',["male"
"female"]) specifies a signal mask with a three-sample male region and a two-sample female
region.

Output Arguments
tbl — ROI table mask
table

ROI table mask, returned as a table.

• If SampleRate is specified, the region limits in tbl are expressed in seconds.
• If RightExtension is greater than zero and SourceType is specified as

'categoricalSequence' or 'binarySequences', the region limits in tbl may go beyond the
length of the sequence.

numroi — Number of regions
vector of integers

Number of regions found for each of the categories in cats, returned as a vector of integers.

cats — Category list
vector of strings

Category list, returned as a vector of strings.

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask | signalLabelDefinition

 roimask

1-2125

Topics
“Label Definitions for Whale Songs” on page 1-1199
“Automate Signal Labeling with Custom Functions”
“Label Spoken Words in Audio Signals Using External API”
“Label Signal Attributes, Regions of Interest, and Points”
“Examine Labeled Signal Set”

Introduced in R2020b

1 Functions

1-2126

shortensigroi
Shorten signal regions of interest from left and right

Syntax
roilimsout = shortensigroi(roilims,sl,sr)

Description
roilimsout = shortensigroi(roilims,sl,sr) shortens the signal regions of interest specified
in roilims from the left by sl samples and from the right by sr samples. The function removes all
regions of length sl + sr or less.

Examples

Shorten Regions of Interest

Create a two-column matrix of integers that can represent regions of interest of a signal. Shorten the
regions of interest by three samples from the left and two samples from the right. shortensigroi
removes regions of interested that are shortened by more than their length.

rois = [1 10; 17 26; 24 32; 38 40];

xrois = shortensigroi(rois,3,2)

xrois = 3×2

 4 8
 20 24
 27 30

Input Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sl — Number of samples to shorten from the left
nonnegative integer

Number of samples to shorten from the left, specified as a nonnegative integer.

 shortensigroi

1-2127

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sr — Number of samples to shorten from the right
nonnegative integer

Number of samples to shorten from the right, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
roilimsout — Modified region-of-interest limits
two-column matrix of positive integers

Modified region-of-interest limits, returned as a two-column matrix of positive integers. Output limits
are returned in sorted order using the sortrows function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

Functions
binmask2sigroi | extendsigroi | extractsigroi | mergesigroi | removesigroi |
sigroi2binmask

Introduced in R2020b

1 Functions

1-2128

sigroi2binmask
Convert matrix of ROI limits to binary mask

Syntax
mask = sigroi2binmask(roilims)
mask = sigroi2binmask(roilims,len)

Description
mask = sigroi2binmask(roilims) converts roilims, a matrix of signal region-of-interest (ROI)
limits, to a binary sequence, mask, with true values indicating samples that belong to regions of
interest.

mask = sigroi2binmask(roilims,len) specifies the length of the output binary sequence.

Examples

Convert ROI Limits to Binary Sequence

Consider a two-column matrix of beginning and end samples of four possible regions of interest of a
signal. Convert the ROI limits to a logical sequence and display the sequence.

roilims = [5 10; 15 18; 25 32; 36 38];

mask = sigroi2binmask(roilims);

stem(mask,'filled')
ylim([0 2]-0.5)

 sigroi2binmask

1-2129

Specify the length of the output sequence as 48. sigroi2binmask pads the sequence with false
values.

mask = sigroi2binmask(roilims,48);

stem(mask,'filled')
ylim([0 2]-0.5)

1 Functions

1-2130

Specify the length of the output sequence as 36. sigroi2binmask ignores samples beyond the
specified sequence length.

mask = sigroi2binmask(roilims,36);

stem(mask,'filled')
ylim([0 2]-0.5)

 sigroi2binmask

1-2131

Input Arguments
roilims — Region-of-interest limits
two-column matrix of positive integers

Region-of-interest limits, specified as a two-column matrix of positive integers. The ith row of
roilims contains nondecreasing indices corresponding to the beginning and end samples of the ith
region of interest of a signal.
Example: [5 8; 12 20; 18 25] specifies a two-column region-of-interest matrix with three
regions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

len — Output sequence length
max(roilims(:,2)) (default) | integer scalar

Output sequence length, specified as an integer scalar. Regions with indices larger than len are
ignored or truncated. If len is greater than max(roilims(:,2)), then sigroi2binmask pads
mask with false values.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

1 Functions

1-2132

Output Arguments
mask — Binary mask
logical vector

Binary mask, returned as a logical vector with true values indicating samples that belong to a region
of interest.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Objects
signalMask

Functions
binmask2sigroi | extendsigroi | extractsigroi | mergesigroi | removesigroi |
shortensigroi

Introduced in R2020b

 sigroi2binmask

1-2133

signalFrequencyFeatureExtractor
Streamline signal frequency feature extraction

Description
Use signalFrequencyFeatureExtractor to extract frequency-domain features from a signal. You
can use the extracted features to train a machine learning model or a deep learning network.

Creation

Syntax
sFE = signalFrequencyFeatureExtractor
sFE = signalFrequencyFeatureExtractor(Name,Value)

Description

sFE = signalFrequencyFeatureExtractor creates a signalFrequencyFeatureExtractor
object with default property values.

sFE = signalFrequencyFeatureExtractor(Name,Value) specifies nondefault property values
of the signalFrequencyFeatureExtractor object. For example,
signalFrequencyFeatureExtractor(FrameSize=30,FrameOverlapLength=6) divides the
signal into overlapping 30-sample frames and extracts features from each frame.

Properties
Main Properties

FrameSize — Number of samples in a frame
positive integer

Number of samples in a frame, specified as a positive integer. The object divides the signal into
frames of the specified length and extracts features for each frame. If you do not specify FrameSize,
or if you specify FrameSize as empty, the object extracts features for the whole signal.
Data Types: single | double

FrameRate — Number of samples between start of frames
positive integer

Number of samples between the start of frames, specified as a positive integer. The frame rate
determines the distance in samples between the starting points of frames. If you specify FrameRate,
then you must also specify FrameSize. If you do not specify FrameRate or FrameOverlapLength,
then FrameRate is assumed to be equal to FrameSize. You cannot specify FrameRate and
FrameOverlapLength simultaneously.
Data Types: single | double

1 Functions

1-2134

FrameOverlapLength — Number of overlapping samples between consecutive frames
positive integer

Number of overlapping samples between consecutive frames, specified as a positive integer.
FrameOverlapLength must be less than or equal to the frame size. If you specify
FrameOverlapLength, then you must also specify FrameSize. You cannot specify
FrameOverlapLength and FrameRate simultaneously.
Data Types: single | double

SampleRate — Sample rate
[] (default) | positive scalar

Input sample rate, specified as a positive scalar in hertz.
Data Types: single | double

FeatureFormat — Format of generated features
"matrix" (default) | "table"

Format of generated features, specified as "matrix" or "table". The extract function returns
features as one of these:

• matrix — Matrix with columns corresponding to feature values.
• table — Table with each table variable corresponding to a feature value.

Data Types: char | string

IncompleteFrameRule — Rule to handle incomplete frames
"drop" (default) | "zeropad"

Rule to handle incomplete frames, specified as "drop" or "zeropad". This rule applies when the
current frame size is less than the specified FrameSize property.

• drop — Drop the incomplete frame and do not use it to compute features.
• zeropad — Zero-pad the incomplete frame and use it to compute features.

Data Types: char | string

Features to Extract

MeanFrequency — Option to extract mean frequency
false (default) | true

Option to extract the mean frequency of the power spectrum, specified as true or false. If you
specify MeanFrequency as true, the object extracts the mean frequency of the power spectrum and
appends it to the features returned by the extract function.
Data Types: logical

MedianFrequency — Option to extract median frequency
false (default) | true

Option to extract the median frequency of the power spectrum, specified as true or false. If you
specify MedianFrequency as true, the object extracts the median frequency of the power spectrum
and appends it to the features returned by the extract function.

 signalFrequencyFeatureExtractor

1-2135

Data Types: logical

BandPower — Option to extract average band power
false (default) | true

Option to extract the average band power, specified as true or false. If you specify BandPower as
true, the object extracts the band power and appends it to the features returned by the extract
function.
Data Types: logical

OccupiedBandwidth — Option to extract occupied bandwidth
false (default) | true

Option to extract the 99% occupied bandwidth, specified as true or false. If you specify
OccupiedBandwidth as true, the object extracts the 99% occupied bandwidth and appends it to the
features returned by the extract function.

To set parameters of the occupied bandwidth extraction, use setExtractorParameters.

setExtractorParameters(sFE,"OccupiedBandwidth",Name=Value)

Settable parameters for the occupied bandwidth extraction are:

• Percentage — Power percentage, specified as a positive integer between 0 and 100.

Data Types: logical

PowerBandwidth — Option to extract half-power bandwidth
false (default) | true

Option to extract the 3 dB (half-power) bandwidth, specified as true or false. If you specify
PowerBanwidth as true, the object extracts the 3 dB bandwidth value and appends it to the features
returned by the extract function.

To set parameters of the half-power bandwidth extraction, use setExtractorParameters.

setExtractorParameters(sFE,"PowerBandwidth",Name=Value)

Settable parameters for the half-power bandwidth extraction are:

• RelativeAmplitude — Relative amplitude, specified as an integer.

Data Types: logical

WelchPSD — Option to extract power spectral density estimate
false (default) | true

Option to extract the power spectral density (PSD) estimate, specified as true or false. If you
specify WelchPSD as true, the object extracts the PSD estimate using Welch's method and appends it
to the features returned by the extract function.

To set parameters of the Welch's PSD estimate, use setExtractorParameters.

setExtractorParameters(sFE,"WelchPSD",Name=Value)

Settable parameters for the Welch's PSD estimate extraction are:

1 Functions

1-2136

• FFTLength — Number of DFT points, specified as a positive integer.
• FrequencyVector — Frequencies at which the PSD is estimated, specified as a vector with at

least two elements. You can specify FrequencyVector only when FFTLength is not specified.
• OverlapLength — Number of overlapping samples, specified as a positive integer.
• Window — Window, specified as a scalar or vector.

Data Types: logical

PeakAmplitude — Option to extract peak amplitude
false (default) | true

Option to extract the peak spectral amplitudes, specified as true or false. If you specify
PeakAmplitude as true, the object extracts the peak amplitudes of the computed Welch PSD
estimate and appends them to the features returned by the extract function.

To set parameters of the peak amplitude extraction, use setExtractorParameters.

setExtractorParameters(sFE,"PeakAmplitude",Name=Value)

Settable parameters for the peak amplitude extraction are:

• PeakType — Type of peak, specified as "minima" or "maxima".
• MaxNumExtrema — Maximum number of peaks, specified as a positive integer scalar.
• MinProminence — Minimum prominence, specified as a positive scalar. The object returns only

peaks whose prominence is at least the value specified.
• MinSeparation — Minimum separation between peaks, specified as a positive scalar.
• FlatSelection — Flat region indicator, specified as one of these:

• "center" — Indicate only the center element of a flat region as the peak.
• "first" — Indicate only the first element of a flat region as the peak.
• "last" — Indicate only the last element of a flat region as the peak.
• "all" — Indicate all elements of a flat region as the peak.

Data Types: logical

PeakLocation — Option to extract peak location
false (default) | true

Option to extract the spectral peak locations, specified as true or false. If you specify
PeakLocation as true, the object extracts the peak locations of the computed Welch PSD estimate
and appends them to the features returned by the extract function.

To set parameters of the peak location extraction, use setExtractorParameters.

setExtractorParameters(sFE,"PeakLocation",Name=Value)

Settable parameters for the peak location extraction are:

• PeakType — Type of peak, specified as "minima" or "maxima".
• MaxNumExtrema — Maximum number of peaks, specified as a positive integer scalar.

 signalFrequencyFeatureExtractor

1-2137

• MinProminence — Minimum prominence, specified as a positive scalar. The
setExtractorParameters function returns only peaks whose prominence is at least the value
specified.

• MinSeparation — Minimum separation between peaks, specified as a positive scalar.
• FlatSelection — Flat region indicator, specified as one of these:

• "center" — Indicate only the center element of a flat region as the peak.
• "first" — Indicate only the first element of a flat region as the peak.
• "last" — Indicate only the last element of a flat region as the peak.
• "all" — Indicate all elements of a flat region as the peak.

Data Types: logical

Note To compute frequency features, signalFrequencyFeatureExtractor first estimates the
PSD of the input time-domain signal using Welch's method. The object uses the computed Welch PSD
and corresponding frequency vector to compute the specified features. You can configure the
computed Welch PSD estimate using the setExtractorParameters function.

Object Functions
extract Extract time-domain or frequency-domain features
generateMATLABFunction Create MATLAB function compatible with C/C++ code generation
getExtractorParameters Get current parameter values of feature extractor object
setExtractorParameters Set nondefault values for feature extractor object

Examples

Extract Frequency-Domain Features From Signal

Generate 1024 samples of a chirp sampled at 1024 kHz. The chirp has an initial frequency of 50 kHz
and reaches 100 kHz at the end of the sampling. Add white Gaussian noise such that the signal-to-
noise ratio is 40 dB. Plot the power spectral density (PSD) and annotate the mean frequency.

nSamp = 1024;
Fs = 1024e3;
SNR = 40;

t = (0:nSamp-1)'/Fs;

x = chirp(t,50e3,nSamp/Fs,100e3);
x = x+randn(size(x))*std(x)/db2mag(SNR);
meanfreq(x,Fs)

1 Functions

1-2138

ans = 7.5032e+04

Create a signalFrequencyFeatureExtractor object to extract the mean frequency, 99%
occupied bandwidth, and 3 dB bandwidth of the signal.

sFE = signalFrequencyFeatureExtractor(SampleRate=Fs,MeanFrequency=true,OccupiedBandwidth=true,PowerBandwidth=true)

sFE =
 signalFrequencyFeatureExtractor with properties:

 Properties
 FrameSize: []
 FrameRate: []
 SampleRate: 1024000
 IncompleteFrameRule: "drop"
 FeatureFormat: "matrix"

 Enabled Features
 MeanFrequency, OccupiedBandwidth, PowerBandwidth

 Disabled Features
 MedianFrequency, BandPower, WelchPSD, PeakAmplitude, PeakLocation

Call the extract function to extract the specified features.

 signalFrequencyFeatureExtractor

1-2139

[features,info] = extract(sFE,x)

features = 1×3
104 ×

 7.2252 4.3783 3.7773

info = struct with fields:
 MeanFrequency: 1
 OccupiedBandwidth: 2
 PowerBandwidth: 3

To view the extracted features in a table, modify the FeatureFormat property of the object.

sFE.FeatureFormat = "table";
features = extract(sFE,x)

features=1×5 table
 FrameStartTime FrameEndTime MeanFrequency OccupiedBandwidth PowerBandwidth
 ______________ ____________ _____________ _________________ ______________

 1 1024 72252 43783 37773

You can use the getExtractorParameters function to view parameters used to compute a
specified feature. The occupied bandwidth measures the bandwidth containing 99% of the total
power for the input signal by default. Use the setExtractorParameters function to change the
percentage to 95% and extract the specified features again.

params = getExtractorParameters(sFE,'OccupiedBandwidth')

params = struct with fields:
 Percentage: []

params.Percentage = 95;
setExtractorParameters(sFE,'OccupiedBandwidth',params)
features2 = extract(sFE,x)

features2=1×5 table
 FrameStartTime FrameEndTime MeanFrequency OccupiedBandwidth PowerBandwidth
 ______________ ____________ _____________ _________________ ______________

 1 1024 72252 39840 37773

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
islocalmax | islocalmin | obw | powerbw | pwelch

1 Functions

1-2140

Objects
signalTimeFeatureExtractor

Introduced in R2021b

 signalFrequencyFeatureExtractor

1-2141

signalTimeFeatureExtractor
Streamline signal time feature extraction

Description
Use signalTimeFeatureExtractor to extract time-domain features from a signal. You can use the
extracted features to train a machine learning model or a deep learning network.

Creation

Syntax
sFE = signalTimeFeatureExtractor
sFE = signalTimeFeatureExtractor(Name,Value)

Description

sFE = signalTimeFeatureExtractor creates a signalTimeFeatureExtractor object with
default property values.

sFE = signalTimeFeatureExtractor(Name,Value) specifies nondefault property values of the
signalTimeFeatureExtractor object. For example,
signalTimeFeatureExtractor(FeatureFormat="table") sets the output format of the
generated features to a table.

Properties
Main Properties

FrameSize — Number of samples in a frame
positive integer

Number of samples in a frame, specified as a positive integer. The object divides the signal into
frames of the specified length and extracts features for each frame. If you do not specify FrameSize,
or if you specify FrameSize as empty, the object extracts features for the whole signal.
Data Types: single | double

FrameRate — Number of samples between start of frames
positive integer

Number of samples between the start of frames, specified as a positive integer. The frame rate
determines the distance in samples between the starting points of frames. If you specify FrameRate,
then you must also specify FrameSize. If you do not specify FrameRate or FrameOverlapLength,
then FrameRate is assumed to be equal to FrameSize. You cannot specify FrameRate and
FrameOverlapLength simultaneously.
Data Types: single | double

1 Functions

1-2142

FrameOverlapLength — Number of overlapping samples between consecutive frames
positive integer

Number of overlapping samples between consecutive frames, specified as a positive integer.
FrameOverlapLength must be less than or equal to the frame size. If you specify
FrameOverlapLength, then you must also specify FrameSize. You cannot specify
FrameOverlapLength and FrameRate simultaneously.
Data Types: single | double

SampleRate — Sample rate
[] (default) | positive scalar

Input sample rate, specified as a positive scalar in hertz.
Data Types: single | double

FeatureFormat — Format of generated features
"matrix" (default) | "table"

Format of generated features, specified as "matrix" or "table". The extract function returns
features as one of these:

• matrix — Matrix with columns corresponding to feature values.
• table — Table with each table variable corresponding to a feature value.

Data Types: char | string

IncompleteFrameRule — Rule to handle incomplete frames
"drop" (default) | "zeropad"

Rule to handle incomplete frames, specified as "drop" or "zeropad". This rule applies when the
current frame size is less than the specified FrameSize property.

• drop — Drop the incomplete frame and do not use it to compute features.
• zeropad — Zero-pad the incomplete frame and use it to compute features.

Data Types: char | string

Features to Extract

Mean — Option to extract mean
false (default) | true

Option to extract the mean, specified as true or false. If you specify Mean as true, the object
extracts the mean and appends the value to the features returned by the extract function.
Data Types: logical

RMS — Option to extract root mean square
false (default) | true

Option to extract the root mean square (RMS), specified as true or false. If you specify RMS as true,
the object extracts the RMS and appends the value to the features returned by the extract function.
Data Types: logical

 signalTimeFeatureExtractor

1-2143

StandardDeviation — Option to extract standard deviation
false (default) | true

Option to extract the standard deviation, specified as true or false. If you specify
StandardDeviation as true, the object extracts the standard deviation and appends the value to
the features returned by the extract function.
Data Types: logical

ShapeFactor — Option to extract shape factor
false (default) | true

Option to extract the shape factor, specified as true or false. The shape factor is equal to the RMS
value divided by the mean absolute value of the signal. If you specify ShapeFactor as true, the
object extracts the shape factor and appends the value to the features returned by the extract
function.
Data Types: logical

SNR — Option to extract signal-to-noise ratio
false (default) | true

Option to extract the signal-to-noise ratio (SNR), specified as true or false. If you specify SNR as
true, the object extracts the SNR and appends the value to the features returned by the extract
function.
Data Types: logical

THD — Option to extract total harmonic distortion
false (default) | true

Option to extract the total harmonic distortion (THD), specified as true or false. If you specify THD
as true, the object extracts the THD and appends the value to the features returned by the extract
function.
Data Types: logical

SINAD — Option to extract signal to noise and distortion ratio
false (default) | true

Option to extract the signal to noise and distortion ratio (SINAD) in decibels, specified as true or
false. If you specify Sinad as true, the object extracts the SINAD and appends the value to the
features returned by the extract function.
Data Types: logical

PeakValue — Option to extract peak value
false (default) | true

Option to extract the peak value, specified as true or false. The peak value corresponds to the
maximum absolute value of the signal. If you specify PeakValue as true, the object extracts the peak
and appends the value to the features returned by the extract function.
Data Types: logical

CrestFactor — Option to extract crest factor
false (default) | true

1 Functions

1-2144

Option to extract the crest factor, specified as true or false. The crest factor is equal to the peak
value divided by the RMS. If you specify CrestFactor as true, the object extracts the crest factor
and appends the value to the features returned by the extract function.
Data Types: logical

ClearanceFactor — Option to extract clearance factor
false (default) | true

Option to extract the clearance factor, specified as true or false. The clearance factor is equal to
the peak value divided by the squared mean of the square roots of the absolute amplitude. If you
specify ClearanceFactor as true, the object extracts the clearance factor and appends the value to
the features returned by the extract function.
Data Types: logical

ImpulseFactor — Option to extract impulse factor
false (default) | true

Option to extract the impulse factor, specified as true or false. The impulse factor is equal to the
peak value divided by the mean of the absolute amplitude. If you specify ImpulseFactor as true, the
object extracts the impulse factor and appends the value to the features returned by the extract
function.
Data Types: logical

Object Functions
extract Extract time-domain or frequency-domain features
generateMATLABFunction Create MATLAB function compatible with C/C++ code generation

Examples

Extract Time-Domain Features from Data Set

Extract time-domain features from electromyographic (EMG) data for later use in a machine learning
workflow to classify forearm motions. The files are available at this location: https://
ssd.mathworks.com/supportfiles/SPT/data/MyoelectricData.zip.

This example uses EMG signals collected from the forearms of 30 subjects [1]. The data set consists
of 720 files. Each subject participated in four testing sessions, and performed six trials of different
forearm motions per session. Download and unzip the files into your temporary directory.

localfile = matlab.internal.examples.downloadSupportFile('SPT','data/MyoelectricData.zip');
datasetFolder = fullfile(tempdir,'MyoelectricData');
unzip(localfile,datasetFolder)

Each file contains an eight-channel EMG signal that represents the activation of eight forearm
muscles during a series of motions. The sample rate is 1000 Hz. Create a signalDatastore that
points to the data set folder.

fs = 1000;
sds = signalDatastore(datasetFolder,IncludeSubfolders=true);

For this example, analyze only the last (sixth) trial of each session. Use the endsWith function to find
the indices that correspond to these files. Create a new datastore that contains this subset of signals.

 signalTimeFeatureExtractor

1-2145

https://ssd.mathworks.com/supportfiles/SPT/data/MyoelectricData.zip
https://ssd.mathworks.com/supportfiles/SPT/data/MyoelectricData.zip

p = endsWith(sds.Files,'6d.mat');
sdssub = subset(sds,p);
data = readall(sdssub);

Create a signalTimeFeatureExtractor object to extract the mean, root mean square (RMS), and
peak values from the EMG signals. Call the extract function to extract the specified features. Plot
the peak values for the second and eighth EMG channels.

sFE = signalTimeFeatureExtractor(SampleRate=fs,Mean=true,RMS=true,PeakValue=true);

M = [];
F = [];

for i = 1:length(sdssub.Files)
 M{i,1} = extract(sFE,data{i});
end

for k = 1:30
 peak2 = M{k,1}(:,3,2);
 peak8 = M{k,1}(:,3,8);
 F(k,1) = peak2;
 F(k,2) = peak8;
end

bar(F)
xlabel('Subject')
ylabel('EMG Peak values (mV)')
legend(['Channel 2';'Channel 8'])

1 Functions

1-2146

References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox."

Paper presented at 30th Conference of the Canadian Medical & Biological Engineering
Society, Toronto, Canada, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
signalFrequencyFeatureExtractor

Introduced in R2021a

 signalTimeFeatureExtractor

1-2147

extract
Extract time-domain or frequency-domain features

Syntax
features = extract(sFE,x)
[features,info] = extract(sFE,x)
[features,info,framelimits] = extract(sFE,x)

Description
features = extract(sFE,x) returns a matrix or a table containing features extracted from input
x. The output depends on the settings of the feature extractor object sFE.

[features,info] = extract(sFE,x) returns a structure info that maps a specific feature to its
column location in the output feature matrix features. This syntax is valid only when you set the
FeatureFormat property of the feature extractor object to "matrix".

[features,info,framelimits] = extract(sFE,x) returns a matrix framelimits whose i-th
row contains the beginning and end limits of the i-th frame. This syntax is valid only when you set the
FeatureFormat property of the feature extractor object to "matrix".

Examples

Extract Daily Peaks from Temperature Data

Load a set of temperature readings in Celsius taken every hour at Logan Airport in Boston for 31
days. Plot the data.

load bostemp
days = (1:31*24)/24;
plot(days, tempC)
axis tight
ylabel('Temp (\circC)')
xlabel('Time elapsed from Jan 1, 2011 (days)')
title('Logan Airport Dry Bulb Temperature (source: NOAA)')

1 Functions

1-2148

Create a signalTimeFeatureExtractor object and enable the PeakValue feature. To obtain the
maximum absolute temperature reading per day, set the frame size to 24 samples and the frame
overlap to 0 samples.

sFE = signalTimeFeatureExtractor(FrameSize=24,FrameOverlapLength=0,PeakValue=true);

Call the extract function on the object to extract the daily absolute maximum temperatures in the
data set.

peaktemps = extract(sFE,tempC)

peaktemps = 31×1

 2.8000
 6.1000
 8.3000
 3.3000
 2.8000
 4.4000
 4.4000
 6.1000
 10.6000
 11.7000
 ⋮

 extract

1-2149

Confirm the extracted peak values. Divide the signal into 24-sample segments representing
temperature readings per day and compute the maximum absolute value of each segment. Compare
the resulting vector to peaktemps.

y = buffer(tempC,24);
[mx,idx] = max(abs(y));

tf = isequal(peaktemps,mx')

tf = logical
 1

Extract Features from Signal

Consider a quadratic chirp sampled at 1 kHz for 2 seconds. The chirp has an initial frequency of 100
Hz that increases to 200 Hz at t = 1 second. Compute and display the spectrogram.

fs = 1e3;
t = 0:1/fs:2;
y = chirp(t,100,1,200,'quadratic');
pspectrum(y,fs,'spectrogram')

Create a signalFrequencyFeatureExtractor object to obtain the mean and median frequencies
from the signal. Specify the sample rate.

1 Functions

1-2150

sFE = signalFrequencyFeatureExtractor(SampleRate=fs,MeanFrequency=true,MedianFrequency=true);

Extract the features. info returns the column index in features of each extracted feature.

[features,info] = extract(sFE,y)

features = 1×2

 226.0160 199.7034

info = struct with fields:
 MeanFrequency: 1
 MedianFrequency: 2

Set the FrameSize and FrameRate properties of the feature extractor object to divide the signal
into two frames. The first frame represents the chirp oscillating at the initial frequency of 100 Hz and
the second frame represents the chirp oscillating at 200 Hz. Extract the mean and median
frequencies for each frame and include the frame limits in the output.

sFE.FrameSize = round(length(y)/2);
sFE.FrameRate = 1000;
[features,info,framelimits] = extract(sFE,y)

features = 2×2

 131.4921 124.9820
 331.2664 324.6992

info = struct with fields:
 MeanFrequency: 1
 MedianFrequency: 2

framelimits = 2×2

 1 1001
 1001 2001

Input Arguments
sFE — Feature extractor object
signalFrequencyFeatureExtractor object | signalTimeFeatureExtractor object

Feature extractor object, specified as a signalFrequencyFeatureExtractor object or a
signalTimeFeatureExtractor object.

x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Data Types: single | double

 extract

1-2151

Output Arguments
features — Extracted features
3-D array

Extracted features, returned as an L-by-M-by-N array:

• L — Number of frames
• M — Number of features extracted per frame
• N — Number of channels

When you set the FeatureFormat property of the input feature extractor object to "table", the
function returns the extracted features in a table with the frame limits listed in the first two table
variables. When you set the FeatureFormat property of the input feature extractor object to
"matrix", the function returns the extracted features in a matrix.

info — Feature information
structure

Feature information, returned as a structure. The function maps each feature to its column location in
the output matrix features. This argument applies only when you set the FeatureFormat property
of the input feature extractor object to "matrix".

framelimits — Frame limits
matrix

Frame limits, returned as a matrix. The i-th row in framelimits contains the beginning and end
limits of the i-th frame. This argument applies only when you set the FeatureFormat property of the
input feature extractor object to "matrix".

See Also
Objects
signalFrequencyFeatureExtractor | signalTimeFeatureExtractor

Functions
getExtractorParameters | setExtractorParameters

Introduced in R2021b

1 Functions

1-2152

generateMATLABFunction
Create MATLAB function compatible with C/C++ code generation

Syntax
generateMATLABFunction(sFE)

Description
generateMATLABFunction(sFE) generates code based on the input feature extractor object sFE
and opens an untitled file containing the function extractSignalFeatures. The function signature
depends on how you set the FeatureFormat property of the input feature extractor object.

• When you specify FeatureFormat as "matrix", the generated MATLAB function has this
signature:

[features,info,framelimits] = extractSignalFeatures(x)

The signature is equivalent to:

[features,info,framelimits] = extract(sFE,x)
• When you specify FeatureFormat as "table", the generated MATLAB function has this

signature:

features = extractSignalFeatures(x)

The signature is equivalent to:

features = extract(sFE,x)

Examples

Generate Equivalent MATLAB Function for Feature Extraction

Create a signalTimeFeatureExtractor object to extract the mean, standard deviation, and peak
value of a random signal.

x = randn(1000,1);
sFE = signalTimeFeatureExtractor(FrameSize=100, ...
 FrameOverlapLength=10,Mean=true,StandardDeviation=true, ...
 PeakValue=true)

sFE =
 signalTimeFeatureExtractor with properties:

 Properties
 FrameSize: 100
 FrameOverlapLength: 10
 SampleRate: []
 IncompleteFrameRule: "drop"
 FeatureFormat: "matrix"

 generateMATLABFunction

1-2153

 Enabled Features
 Mean, StandardDeviation, PeakValue

 Disabled Features
 RMS, ShapeFactor, SNR, THD, SINAD, CrestFactor
 ClearanceFactor, ImpulseFactor

Call generateMATLABFunction on the object. The generated function extractSignalFeatures
is equivalent to calling the extract function on sFE. Save the function to your current folder and
view the function script.

generateMATLABFunction(sFE)
type extractSignalFeatures

function [features,info,frameLimits] = extractSignalFeatures(x)
% EXTRACTSIGNALFEATURES Extract signal features
% [FEATURES,INFO,FRAMELIMITS] = extractSignalFeatures(X) returns a matrix
% containing features extracted from input X, INFO, a structure that maps
% a specific feature to its column location in the output feature matrix
% and FRAMELIMITS, whose i-th row contains the beginning and end limits
% of the i-th frame.
%
% Parameters of the signalTimeFeatureExtractor used to generate this
% function must be honored when calling this function.

% Generated by MATLAB(R) 9.11 and Signal Processing Toolbox 8.7.
% Generated on: 10-Jun-2021 08:25:02.

%#codegen

if istimetable(x)
 xInTT = x{:,:};
else
 xInTT = x;
end
if isrow(xInTT)
 xIn = xInTT(:);
else
 xIn = xInTT;
end
dataType = class(xIn);
signalLength = size(xIn,1);
numChannels = size(xIn,2);
frameSize = 100;
frameOverlapLength = 10;
frameRate = frameSize - frameOverlapLength;
featureMatrix = zeros(0,1,dataType);
numFeatureCols = 0;
numFeatureRows = 0;
frameLimits = zeros(0,2,dataType);
info = struct('Mean',0,'StandardDeviation',0,'PeakValue',0);
for idx = 1:numChannels
 if numChannels == 1
 xChannel = xIn;
 else
 xChannel = xIn(:,idx);
 end

1 Functions

1-2154

 startIdx = 1;
 endIdx = frameSize;
 while startIdx <= signalLength
 if endIdx > signalLength
 break;
 end
 featureIndex = 1;
 xFrame = xChannel(startIdx:endIdx,1);
 meanValue = mean(xFrame);
 numCurrentFeature = numel(meanValue);
 info.Mean = featureIndex;
 featureIndex = featureIndex+numCurrentFeature;

 standardDeviation = std(xFrame);
 numCurrentFeature = numel(standardDeviation);
 info.StandardDeviation = featureIndex;
 featureIndex = featureIndex+numCurrentFeature;

 peakValue = max(abs(xFrame));
 info.PeakValue = featureIndex;

 featureVector = [meanValue(:);standardDeviation(:);peakValue(:)];
 featureMatrix = [featureMatrix;featureVector];
 if startIdx == 1
 numFeatureCols = size(featureVector,1);
 end
 if idx == 1
 numFeatureRows = numFeatureRows+1;
 frameLimits = [frameLimits;[startIdx endIdx]];
 end
 startIdx = startIdx+frameRate;
 endIdx = startIdx+frameSize-1;
 end
end
tempFeatureMatrix = reshape(featureMatrix,numFeatureCols,numFeatureRows,numChannels);
features = permute(tempFeatureMatrix,[2,1,3]);
end

You can replace calls to extract with calls to the generated function in your code. The outputs are
identical.

features1 = extract(sFE,x)

features1 = 11x3
 0.0842 1.0690 2.7526
 0.0500 1.0516 2.9491
 0.1901 1.0356 2.7304
 0.1209 0.9171 2.4366
 0.0443 0.9399 2.4247
 -0.1153 1.0490 3.5699
 -0.1001 0.9530 2.4124
 0.0616 0.9959 2.7485
 -0.0263 0.9482 2.4868
 -0.0234 0.9876 3.1585
 .
 .
 .

features2 = extractSignalFeatures(x)

 generateMATLABFunction

1-2155

features2 = 11x3
 0.0842 1.0690 2.7526
 0.0500 1.0516 2.9491
 0.1901 1.0356 2.7304
 0.1209 0.9171 2.4366
 0.0443 0.9399 2.4247
 -0.1153 1.0490 3.5699
 -0.1001 0.9530 2.4124
 0.0616 0.9959 2.7485
 -0.0263 0.9482 2.4868
 -0.0234 0.9876 3.1585
 .
 .
 .

Copyright 2020 The MathWorks, Inc.

Input Arguments
sFE — Feature extractor object
signalFrequencyFeatureExtractor object | signalTimeFeatureExtractor object

Feature extractor object, specified as a signalFrequencyFeatureExtractor object or a
signalTimeFeatureExtractor object.

See Also
Objects
signalFrequencyFeatureExtractor | signalTimeFeatureExtractor

Functions
extract

Introduced in R2021b

1 Functions

1-2156

getExtractorParameters
Get current parameter values of feature extractor object

Syntax
getExtractorParameters(sFE,featurename)

Description
getExtractorParameters(sFE,featurename) gets the parameters used to extract
featurename.

Examples

Get Parameter Values for Feature Extraction

Create a signalFrequencyFeatureExtractor object and enable the mean frequency, band power,
and peak amplitude features.

sFE = signalFrequencyFeatureExtractor(MeanFrequency=true,BandPower=true,PeakAmplitude=true)

sFE =
 signalFrequencyFeatureExtractor with properties:

 Properties
 FrameSize: []
 FrameRate: []
 SampleRate: []
 IncompleteFrameRule: "drop"
 FeatureFormat: "matrix"

 Enabled Features
 MeanFrequency, BandPower, PeakAmplitude

 Disabled Features
 MedianFrequency, OccupiedBandwidth, PowerBandwidth, WelchPSD, PeakLocation

Get the current parameters for the peak amplitude. Note that not all features have parameters for
feature computation.

params = getExtractorParameters(sFE,'PeakAmplitude')

params = struct with fields:
 PeakType: "maxima"
 MaxNumExtrema: 1
 MinProminence: []
 MinSeparation: []
 FlatSelection: []

 getExtractorParameters

1-2157

You can also modify feature parameters. Set the maximum number of peaks to 2 and the minimum
peak separation to 3 samples.

params.MaxNumExtrema = 2;
params.MinSeparation = 3

params = struct with fields:
 PeakType: "maxima"
 MaxNumExtrema: 2
 MinProminence: []
 MinSeparation: 3
 FlatSelection: []

Input Arguments
sFE — Feature extractor object
signalFrequencyFeatureExtractor object

Feature extractor object, specified as a signalFrequencyFeatureExtractor object.

featurename — Extracted feature
string scalar | character vector

Extracted feature, specified as a string scalar or a character vector.
Data Types: char | string

See Also
Objects
signalFrequencyFeatureExtractor

Functions
extract | setExtractorParameters

Introduced in R2021b

1 Functions

1-2158

setExtractorParameters
Set nondefault values for feature extractor object

Syntax
setExtractorParameters(sFE,featurename,params)
setExtractorParameters(sFE,featurename)

Description
setExtractorParameters(sFE,featurename,params) specifies the parameters used to extract
featurename.

setExtractorParameters(sFE,featurename) sets the parameters used to extract
featurename to their default values.

Examples

Set Parameter Values for Feature Extraction

Create a signalFrequencyFeatureExtractor object to extract the Welch power spectral density
(PSD) estimate of a signal consisting of a 100 Hz sinusoid in additive N(0,1) white noise. The sample
rate is 1 kHz and the signal has a duration of 5 seconds.

fs = 1000;
t = 0:1/fs:5-1/fs;
x = cos(2*pi*100*t) + randn(size(t));

sFE = signalFrequencyFeatureExtractor(SampleRate=fs,WelchPSD=true);

For the PSD computation, set the OverlapLength to 25 samples and the FFTLength to 512
samples. Call the getExtractorParameters function on the object to view the PSD parameters.

setExtractorParameters(sFE,"WelchPSD",OverlapLength=25,FFTLength=1024)
params = getExtractorParameters(sFE,"WelchPSD")

params = struct with fields:
 FFTLength: 1024
 FrequencyVector: []
 OverlapLength: 25
 Window: []

Use the extract function to extract the Welch's PSD estimate of the signal. Plot the result.

feature = extract(sFE,x);

fvec = linspace(0,fs/2,length(feature));
plot(fvec,pow2db(abs(feature)))

xlabel("Frequency (Hz)")

 setExtractorParameters

1-2159

ylabel("PSD (dB/Hz)")
grid

Input Arguments
sFE — Feature extractor object
signalFrequencyFeatureExtractor object

Feature extractor object, specified as a signalFrequencyFeatureExtractor object.

featurename — Extracted feature
string scalar | character vector

Extracted feature, specified as a string scalar or a character vector.
Data Types: char | string

params — Parameters
name-value arguments | structure

Parameters used to extract featurename, specified as name-value arguments or a structure.
Data Types: string | struct

1 Functions

1-2160

See Also
Objects
signalFrequencyFeatureExtractor

Functions
extract | getExtractorParameters

Introduced in R2021b

 setExtractorParameters

1-2161

sigwin
Signal processing window object

Syntax
w = sigwin.window

Description

Note The use of sigwin.window is not recommended. Use the corresponding function instead. See
“Windows” on page 1-2162 for the functional forms.

w = sigwin.window returns a window object, w, of type window. Each window type takes one or
more inputs. If you specify a sigwin.window with no inputs, a default window of length 64 is
created.

Note You must specify a window type with sigwin.

Windows

window for sigwin specifies the type of window. The following table lists the supported window
functions with links to the corresponding class reference page for the window object.

Window Window Object Corresponding Function
Modified Bartlett-Hann Window sigwin.barthannwin barthannwin
Bartlett Window sigwin.bartlett bartlett
Blackman Window sigwin.blackman blackman
Blackman-Harris Window sigwin.blackmanharris blackmanharris
Bohman Window sigwin.bohmanwin bohmanwin
Dolph-Chebyshev Window sigwin.chebwin chebwin
Flat Top Window sigwin.flattopwin flattopwin
Gaussian Window sigwin.gausswin gausswin
Hamming Window sigwin.hamming hamming
Hann (Hanning) Window sigwin.hann hann
Kaiser Window sigwin.kaiser kaiser
Nuttall defined 4-term
Blackman-Harris Window

sigwin.nuttallwin nuttallwin

Parzen Window sigwin.parzenwin parzenwin
Rectangular Window sigwin.rectwin rectwin
Taylor Window sigwin.taylorwin taylorwin

1 Functions

1-2162

Window Window Object Corresponding Function
Triangular Window sigwin.triang triang
Tukey Window sigwin.tukeywin tukeywin

Methods

Methods provide ways of performing functions directly on your sigwin object without having to
specify the window parameters again. You can apply this method directly on the variable you
assigned to your sigwin object.

Method Description
generate Returns a column vector of values representing

the window.
info Returns information about the window object.
winwrite Writes an ASCII file that contains window weights

for a single window object or a vector of window
objects. Default filename is untitled.wf.

winwrite(Hd,filename) writes to a disk file
named filename in the current working
directory. The .wf extension is added
automatically.

Viewing Object Parameters

As with any object, you can use get to view a sigwin object's parameters. To see a specific
parameter,

 get(w,'parameter')

or to see all parameters for an object,

get(w)

Changing Object Parameters

To set specific parameters,

set(w,'parameter1',value,'parameter2',value,...)

Note that you must use single quotation marks around the parameter name.

Examples

Bartlett window Object

Create a default Bartlett window and view the result in wvtool. See bartlett for information on
Bartlett windows.

w = sigwin.bartlett

w =
 Name: 'Bartlett'

 sigwin

1-2163

 Length: 64

wvtool(w)

Chebyshev Window Object

Create a 128-point Chebyshev window with 100 dB of sidelobe attenuation. (See chebwin for
information on Chebyshev windows.) View the result with wvtool.

w = sigwin.chebwin(128,100)

w =
 Name: 'Chebyshev'
 Length: 128
 SidelobeAtten: 100

wvtool(w)

1 Functions

1-2164

Save Window Object as Vector

Create a Hamming window of length 12. Visualize the result.

H = sigwin.hamming(12);
wvtool(H)

 sigwin

1-2165

Save the window values in a column vector.

d = generate(H)'

d = 1×12

 0.0800 0.1530 0.3489 0.6055 0.8412 0.9814 0.9814 0.8412 0.6055 0.3489 0.1530 0.0800

See Also
Apps
Window Designer

Functions
WVTool

Introduced before R2006a

1 Functions

1-2166

sigwin.barthannwin class
Package: sigwin

Construct modified Bartlett-Hann window object

Description

Note The use of sigwin.barthannwin is not recommended. Use barthannwin instead.

sigwin.barthannwin creates a handle to a modified Bartlett-Hann window object for use in
spectral analysis and FIR filtering by the window method. Object methods enable workspace import
and ASCII file export of the window values.

The following equation defines a modified Bartlett-Hann window of length N:

w(x) = 0.62 − 0.48 x + 0.38cos2πx, − 1
2 ≤ x ≤ 1

2

where x is an N-point linearly spaced vector over the interval [1/2, 1/2].

Construction
H = sigwin.barthannwin returns a modified Bartlett-Hann window object H of length 64.

H = sigwin.barthannwin(Length) returns a modified Bartlett-Hann window object H of length
Length. Length requires a positive integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results in a window with a single value of
1.

Properties
Length

Modified Bartlett-Hann window length. The window length requires a positive integer. Entering a
positive noninteger value for Length rounds the length to the nearest integer. Entering a 1 for
Length results in a window with a single value of 1.

Methods
generate Generates modified Bartlett-Hann window
info Display information about modified Bartlett-Hann window object
winwrite Save modified Bartlett-Hann window object values in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

 sigwin.barthannwin class

1-2167

Examples

Modified Bartlett-Hann Window

Generate a modified Bartlett-Hann window of length N = 16. Return its values as a column vector.
Show information about the window object. Display the window.

H = sigwin.barthannwin(16);

win = generate(H)

win = 16×1

 0
 0.0649
 0.1897
 0.3586
 0.5477
 0.7300
 0.8794
 0.9757
 0.9757
 0.8794
 ⋮

wininfo = info(H)

wininfo = 3x23 char array
 'Bartlett-Hanning Window'
 '-----------------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2168

References
Yeong, H. H., and Pearce, J. A. “A New Window and Comparison to Standard Windows.” IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. 37, 1989, pp. 298–301.

See Also
barthannwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.barthannwin class

1-2169

generate
Class: sigwin.barthannwin
Package: sigwin

Generates modified Bartlett-Hann window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the modified Bartlett-Hann window object H as a double-
precision column vector.

Examples

Modified Bartlett-Hann Window

Generate a modified Bartlett-Hann window of length N = 16. Return its values as a column vector.
Show information about the window object. Display the window.

H = sigwin.barthannwin(16);

win = generate(H)

win = 16×1

 0
 0.0649
 0.1897
 0.3586
 0.5477
 0.7300
 0.8794
 0.9757
 0.9757
 0.8794
 ⋮

wininfo = info(H)

wininfo = 3x23 char array
 'Bartlett-Hanning Window'
 '-----------------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2170

See Also
barthannwin | window | WVTool

 generate

1-2171

info
Class: sigwin.barthannwin
Package: sigwin

Display information about modified Bartlett-Hann window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information for the modified Bartlett-Hann window object H.

info_win = info(H) returns length information for the modified Bartlett-Hann window object H in
the character array info_win.

Examples

Modified Bartlett-Hann Window

Generate a modified Bartlett-Hann window of length N = 16. Return its values as a column vector.
Show information about the window object. Display the window.

H = sigwin.barthannwin(16);

win = generate(H)

win = 16×1

 0
 0.0649
 0.1897
 0.3586
 0.5477
 0.7300
 0.8794
 0.9757
 0.9757
 0.8794
 ⋮

wininfo = info(H)

wininfo = 3x23 char array
 'Bartlett-Hanning Window'
 '-----------------------'
 'Length : 16 '

1 Functions

1-2172

wvtool(H)

See Also
barthannwin | window | WVTool

 info

1-2173

winwrite
Class: sigwin.barthannwin
Package: sigwin

Save modified Bartlett-Hann window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog box that enables you to export the values of the modified Bartlett-Hann
window object H to an ASCII file with file name extension wf.

winwrite(H,'filename') saves the values of the modified Bartlett-Hann window object H in the
current folder as a column vector in the ASCII file 'filename'. The filename extension is wf.

Examples

Modified Bartlett-Hann Window

Generate a modified Bartlett-Hann window of length N = 16. Return its values as a column vector.
Show information about the window object. Display the window.

H = sigwin.barthannwin(16);

win = generate(H)

win = 16×1

 0
 0.0649
 0.1897
 0.3586
 0.5477
 0.7300
 0.8794
 0.9757
 0.9757
 0.8794
 ⋮

wininfo = info(H)

wininfo = 3x23 char array
 'Bartlett-Hanning Window'
 '-----------------------'

1 Functions

1-2174

 'Length : 16 '

wvtool(H)

See Also
barthannwin | window | WVTool

 winwrite

1-2175

sigwin.bartlett class
Package: sigwin

Construct Bartlett window object

Description

Note The use of sigwin.bartlett is not recommended. Use bartlett instead.

sigwin.bartlett creates a handle to a Bartlett window object for use in spectral analysis and
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

For N even, the following equation defines the Bartlett window:

w(n) =

2n
N − 1 0 ≤ n ≤ N/2 − 1

2 − 2n
N − 1 N/2 ≤ n ≤ N − 1

For N odd, the equation for the Bartlett window is:

w(n) =

2n
N − 1 0 ≤ n ≤ (N − 1)/2

2 − 2n
N − 1 (N − 1)/2 + 1 ≤ n ≤ N − 1

Construction
H = sigwin.bartlett returns a Bartlett window object H of length 64.

H = sigwin.bartlett(Length) returns a Bartlett window object H of length Length. Length
must be a positive integer. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1.

Properties
Length

Bartlett window length. The length requires a positive integer. Entering a positive noninteger value
for Length rounds the length to the nearest integer. Entering a 1 for Length results in a window
with a single value of 1.

1 Functions

1-2176

Methods
generate Generates Bartlett window
info Display information about Bartlett window object
winwrite Save Bartlett window object values in ASCII file

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Bartlett Window

Generate a Bartlett window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bartlett(16);

win = generate(H)

win = 16×1

 0
 0.1333
 0.2667
 0.4000
 0.5333
 0.6667
 0.8000
 0.9333
 0.9333
 0.8000
 ⋮

wininfo = info(H)

wininfo = 3x15 char array
 'Bartlett Window'
 '---------------'
 'Length : 16 '

wvtool(H)

 sigwin.bartlett class

1-2177

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
bartlett | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2178

generate
Class: sigwin.bartlett
Package: sigwin

Generates Bartlett window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Bartlett window object H as a double-precision
column vector.

Examples

Bartlett Window

Generate a Bartlett window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bartlett(16);

win = generate(H)

win = 16×1

 0
 0.1333
 0.2667
 0.4000
 0.5333
 0.6667
 0.8000
 0.9333
 0.9333
 0.8000
 ⋮

wininfo = info(H)

wininfo = 3x15 char array
 'Bartlett Window'
 '---------------'
 'Length : 16 '

wvtool(H)

 generate

1-2179

See Also
bartlett | window | WVTool

1 Functions

1-2180

info
Class: sigwin.bartlett
Package: sigwin

Display information about Bartlett window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information for the Bartlett window object H.

info_win = info(H) returns length information for the Bartlett window object H in the character
array info_win.

Examples

Bartlett Window

Generate a Bartlett window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bartlett(16);

win = generate(H)

win = 16×1

 0
 0.1333
 0.2667
 0.4000
 0.5333
 0.6667
 0.8000
 0.9333
 0.9333
 0.8000
 ⋮

wininfo = info(H)

wininfo = 3x15 char array
 'Bartlett Window'
 '---------------'
 'Length : 16 '

 info

1-2181

wvtool(H)

See Also
bartlett | window | WVTool

1 Functions

1-2182

winwrite
Class: sigwin.bartlett
Package: sigwin

Save Bartlett window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog box that enables you to export the values of the Bartlett window object
H to an ASCII file with filename extension wf.

winwrite(H,'filename') saves the values of the Bartlett window object H in the current folder as
a column vector in the ASCII file 'filename'. The filename extension is wf.

Examples

Bartlett Window

Generate a Bartlett window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bartlett(16);

win = generate(H)

win = 16×1

 0
 0.1333
 0.2667
 0.4000
 0.5333
 0.6667
 0.8000
 0.9333
 0.9333
 0.8000
 ⋮

wininfo = info(H)

wininfo = 3x15 char array
 'Bartlett Window'
 '---------------'

 winwrite

1-2183

 'Length : 16 '

wvtool(H)

See Also
bartlett | window | WVTool

1 Functions

1-2184

sigwin.blackman class
Package: sigwin

Construct Blackman window object

Description

Note The use of sigwin.blackman is not recommended. Use blackman instead.

sigwin.blackman creates a handle to a Blackman window object for use in spectral analysis and
FIR filtering by the window method. Object methods enable workspace import and ASCII file export
of the window values.

The following equation defines the Blackman window of length N:

w(n) = 0.42 − 0.5cos 2πn
L− 1 + 0.08cos 4πn

L− 1 , 0 ≤ n ≤ M − 1

where M is N/2 for N even and (N+1)/2 for N odd.

In the symmetric case, the second half of the Blackman window M ≤ n ≤ N − 1 is obtained by flipping
the first half around the midpoint. The symmetric option is the preferred method when using a
Blackman window in FIR filter design.

The periodic Blackman window is constructed by extending the desired window length by one sample
to N+1, constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a Blackman window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

Construction
H = sigwin.blackman returns a Blackman window object H of length 64 with symmetric sampling.

H = sigwin.blackman(Length) returns a Blackman window object H of length Length with
symmetric sampling. Length requires a positive integer. Entering a positive noninteger value for
Length rounds the length to the nearest integer. Entering a 1 for Length results in a window with a
single value of 1.

H = sigwin.blackman(Length,SamplingFlag) returns a Blackman window object H with
sampling Sampling_Flag. The Sampling_Flag can be either 'symmetric' or 'periodic'.

Properties
Length

Blackman window length. Must be a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length results in a window with a single
value of 1.

 sigwin.blackman class

1-2185

SamplingFlag

'symmetric' is the default and forces exact symmetry between the first and second halves of the
Blackman window. A symmetric window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Blackman window of length Length+1 and truncates the window
to length Length. This design is preferred in spectral analysis where the window is treated as one
period of a Length-point periodic sequence.

Methods

generate Generates Blackman window
info Display information about Blackman window object
winwrite Save Blackman window in ASCII file

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Blackman Window

Generate a Blackman window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackman(16);

win = generate(H)

win = 16×1

 0
 0.0168
 0.0771
 0.2008
 0.3940
 0.6300
 0.8492
 0.9822
 0.9822
 0.8492
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman Window '
 '--------------- '
 'Length : 16 '

1 Functions

1-2186

 'Sampling Flag : symmetric'

wvtool(H)

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
blackman | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.blackman class

1-2187

generate
Class: sigwin.blackman
Package: sigwin

Generates Blackman window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Blackman window object H as a double-precision
column vector.

Examples

Blackman Window

Generate a Blackman window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackman(16);

win = generate(H)

win = 16×1

 0
 0.0168
 0.0771
 0.2008
 0.3940
 0.6300
 0.8492
 0.9822
 0.9822
 0.8492
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman Window '
 '--------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

1 Functions

1-2188

See Also
blackman | WVTool

 generate

1-2189

info
Class: sigwin.blackman
Package: sigwin

Display information about Blackman window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and sampling information about the Blackman window object H.

info_win = info(H) returns length and sampling information about the Blackman window object
H in the character array info_win.

Examples

Blackman Window

Generate a Blackman window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackman(16);

win = generate(H)

win = 16×1

 0
 0.0168
 0.0771
 0.2008
 0.3940
 0.6300
 0.8492
 0.9822
 0.9822
 0.8492
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman Window '
 '--------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

1 Functions

1-2190

wvtool(H)

See Also
blackman | window | WVTool

 info

1-2191

winwrite
Class: sigwin.blackman
Package: sigwin

Save Blackman window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog box that enables you to export the values of the Blackman window
object H to an ASCII file with file name extension wf.

winwrite(H,'filename') saves the values of the Blackman window object H in the current folder
as a column vector in the ASCII file 'filename' with filename extension wf.

Examples

Blackman Window

Generate a Blackman window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackman(16);

win = generate(H)

win = 16×1

 0
 0.0168
 0.0771
 0.2008
 0.3940
 0.6300
 0.8492
 0.9822
 0.9822
 0.8492
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman Window '
 '--------------- '
 'Length : 16 '

1 Functions

1-2192

 'Sampling Flag : symmetric'

wvtool(H)

See Also
blackman | window | WVTool

 winwrite

1-2193

sigwin.blackmanharris class
Package: sigwin

Construct Blackman-Harris window object

Description

Note The use of sigwin.blackmanharris is not recommended. Use blackmanharris instead.

sigwin.blackmanharris creates a handle to a Blackman-Harris window object for use in spectral
analysis and FIR filtering by the window method. Object methods enable workspace import and ASCII
file export of the window values.

The following equation defines the symmetric Blackman-Harris window of length N:

w(n) = a0− a1cos 2πn
N − 1 + a2cos 4πn

N − 1 − a3cos 6πn
N − 1 , 0 ≤ n ≤ N − 1

The following equation defines the periodic Blackman-Harris window of length N:

w(n) = a0− a1cos2πn
N + a2cos4πn

N − a3cos6πn
N , 0 ≤ n ≤ N − 1

The following table lists the coefficients:

Coefficient Value
a0 0.35875
a1 0.48829
a2 0.14128
a3 0.01168

Construction
H = sigwin.blackmanharris returns a Blackman-Harris window object H of length 64.

H = sigwin.blackmanharris(Length) returns a Blackman-Harris window object H of length
Length. Length must be a positive integer. Entering a positive noninteger value for Length rounds
the length to the nearest integer. Entering a 1 for Length results in a window with a single value of
1.

Properties
Length

Blackman-Harris window length. The window length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

1 Functions

1-2194

SamplingFlag

The type of window returned as one of 'symmetric' or 'periodic'. The default is 'symmetric'.
A symmetric window exhibits perfect symmetry between halves of the window. Setting the
SamplingFlag property to 'periodic' results in a N-periodic window. The equations for the
Blackman-Harris window differ slightly based on the value of the SamplingFlag property. See
“Description” on page 1-2194 for details.

Methods
generate Generates Blackman–Harris window
info Display information about Blackman–Harris window object
winwrite Save Blackman–Harris window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Blackman-Harris Window

Generate a Blackman-Harris window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackmanharris(16);

win = generate(H)

win = 16×1

 0.0001
 0.0036
 0.0267
 0.1030
 0.2680
 0.5206
 0.7938
 0.9749
 0.9749
 0.7938
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman-Harris Window '
 '---------------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

 sigwin.blackmanharris class

1-2195

wvtool(H)

References
harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
blackmanharris | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2196

generate
Class: sigwin.blackmanharris
Package: sigwin

Generates Blackman–Harris window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Blackman–Harris window object H as a double-
precision column vector.

Examples

Blackman-Harris Window

Generate a Blackman-Harris window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackmanharris(16);

win = generate(H)

win = 16×1

 0.0001
 0.0036
 0.0267
 0.1030
 0.2680
 0.5206
 0.7938
 0.9749
 0.9749
 0.7938
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman-Harris Window '
 '---------------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

 generate

1-2197

See Also
blackmanharris | window | WVTool

1 Functions

1-2198

info
Class: sigwin.blackmanharris
Package: sigwin

Display information about Blackman–Harris window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information for the Blackman–Harris window object H.

info_win = info(H) returns length information for the Blackman–Harris window object H in the
character array info_win.

Examples

Blackman-Harris Window

Generate a Blackman-Harris window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackmanharris(16);

win = generate(H)

win = 16×1

 0.0001
 0.0036
 0.0267
 0.1030
 0.2680
 0.5206
 0.7938
 0.9749
 0.9749
 0.7938
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman-Harris Window '
 '---------------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

 info

1-2199

wvtool(H)

See Also
blackmanharris | window | WVTool

1 Functions

1-2200

winwrite
Class: sigwin.blackmanharris
Package: sigwin

Save Blackman–Harris window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog box that enables you to export the values of the Blackman–Harris
window object H to an ASCII file with filename extension wf.

winwrite(H,'filename') saves the values of the Blackman–Harris window object H in the current
folder as a column vector in the ASCII file 'filename' with filename extension wf.

Examples

Blackman-Harris Window

Generate a Blackman-Harris window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.blackmanharris(16);

win = generate(H)

win = 16×1

 0.0001
 0.0036
 0.0267
 0.1030
 0.2680
 0.5206
 0.7938
 0.9749
 0.9749
 0.7938
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Blackman-Harris Window '
 '---------------------- '
 'Length : 16 '

 winwrite

1-2201

 'Sampling Flag : symmetric'

wvtool(H)

See Also
blackmanharris | window | WVTool

1 Functions

1-2202

sigwin.bohmanwin class
Package: sigwin

Construct Bohman window object

Description

Note The use of sigwin.bohmanwin is not recommended. Use bohmanwin instead.

sigwin.bohmanwin creates a handle to a Bohman window object for use in spectral analysis and
FIR filtering by the window method. Object methods enable workspace import and ASCII file export
of the window values.

The following equation defines the Bohman window of length N:

w(x) = (1 − x)cos(π x) + 1
πsin(π x), − 1 ≤ x ≤ 1

where x is a length N vector of linearly spaced values generated using linspace. The first and last
elements of the Bohman window are forced to be identically zero.

Construction
H = sigwin.bohmanwin returns a Bohman window object H of length 64.

H = sigwin.bohmanwin(Length) returns a Bohman window object H of length Length. Length is
a positive integer. Entering a positive noninteger value for Length rounds the length to the nearest
integer. Entering a 1 for Length results in a window with a single value of 1.

Properties
Length

Bohman window length. Must be a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length results in a window with a single
value of 1.

Methods

generate Generates Bohman window
info Display information about Bohman window object
winwrite Save Bohman window object values in ASCII file

 sigwin.bohmanwin class

1-2203

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Bohman Window

Generate a Bohman window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bohmanwin(16);

win = generate(H)

win = 16×1

 0
 0.0077
 0.0581
 0.1791
 0.3723
 0.6090
 0.8343
 0.9791
 0.9791
 0.8343
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Bohman Window'
 '-------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2204

References
harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
bohmanwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.bohmanwin class

1-2205

generate
Class: sigwin.bohmanwin
Package: sigwin

Generates Bohman window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Bohman window object as a double-precision column
vector.

Examples

Bohman Window

Generate a Bohman window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bohmanwin(16);

win = generate(H)

win = 16×1

 0
 0.0077
 0.0581
 0.1791
 0.3723
 0.6090
 0.8343
 0.9791
 0.9791
 0.8343
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Bohman Window'
 '-------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2206

See Also
bohmanwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2207

info
Class: sigwin.bohmanwin
Package: sigwin

Display information about Bohman window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information for the Bohman window object H.

info_win = info(H) returns length information for the Bohman window object H in the character
array info_win.

Examples

Bohman Window

Generate a Bohman window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bohmanwin(16);

win = generate(H)

win = 16×1

 0
 0.0077
 0.0581
 0.1791
 0.3723
 0.6090
 0.8343
 0.9791
 0.9791
 0.8343
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Bohman Window'
 '-------------'
 'Length : 16 '

1 Functions

1-2208

wvtool(H)

See Also
bohmanwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 info

1-2209

winwrite
Class: sigwin.bohmanwin
Package: sigwin

Save Bohman window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Bohman window object H to an ASCII file.
The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Bohman window object H in the current folder as
a column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Bohman Window

Generate a Bohman window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.bohmanwin(16);

win = generate(H)

win = 16×1

 0
 0.0077
 0.0581
 0.1791
 0.3723
 0.6090
 0.8343
 0.9791
 0.9791
 0.8343
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Bohman Window'
 '-------------'

1 Functions

1-2210

 'Length : 16 '

wvtool(H)

See Also
bohmanwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2211

sigwin.chebwin class
Package: sigwin

Construct Dolph-Chebyshev window object

Description

Note The use of sigwin.chebwin is not recommended. Use chebwin instead.

sigwin.chebwin creates a handle to a Dolph-Chebyshev window object for use in spectral analysis
and FIR filtering by the window method. Object methods enable workspace import and ASCII file
export of the window values.

The Dolph-Chebyshev window is constructed in the frequency domain by taking samples of the
window's Fourier transform:

W(k) = (− 1)kcos[Ncos−1[βcos(πk/N)]]
cosh[Ncosh−1(β)]

, 0 ≤ k ≤ N − 1

where

β = cos[1/Ncosh−1(10α)]

α determines the level of the sidelobe attenuation. The level of the sidelobe attenuation is equal to
−20α. For example, 100 dB of attenuation results from setting α = 5

The discrete-time Dolph-Chebyshev window is obtained by taking the inverse DFT of W(k) and scaling
the result to have a peak value of 1.

Construction
H = sigwin.chebwin returns a Dolph-Chebyshev window object H of length 64 with relative
sidelobe attenuation of 100 dB.

H = sigwin.chebwin(Length) returns a Dolph-Chebyshev window object H of length Length with
relative sidelobe attenuation of 100 dB. Length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. A window length of 1 results in
a window with a single value equal to 1.

H = sigwin.chebwin(Length,SidelobeAtten) returns a Dolph-Chebyshev window object with
relative sidelobe attenuation of atten_param dB.

Properties
Length

Dolph-Chebyshev window length.

1 Functions

1-2212

SidelobeAtten

The attenuation parameter in dB. The attenuation parameter is a positive real number that
determines the relative sidelobe attenuation of the window.

Methods
generate Generates Dolph-Chebyshev window
info Display information about Dolph–Chebyshev window object
winwrite Save Dolph-Chebyshev window object values in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Dolph-Chebyshev Window

Generate a Dolph-Chebyshev window of length N = 16. Specify a relative sidelobe attenuation of 40
dB. Return the window values as a column vector. Show information about the window object. Display
the window.

H = sigwin.chebwin(16,40);

win = generate(H)

win = 16×1

 0.1138
 0.1964
 0.3319
 0.4926
 0.6613
 0.8163
 0.9353
 1.0000
 1.0000
 0.9353
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Chebyshev Window '
 '---------------- '
 'Length : 16'
 'Sidelobe Attenuation : 40'

wvtool(H)

 sigwin.chebwin class

1-2213

References
harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
chebwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2214

generate
Class: sigwin.chebwin
Package: sigwin

Generates Dolph-Chebyshev window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Dolph-Chebyshev window object H as a double-
precision column vector.

Examples

Dolph-Chebyshev Window

Generate a Dolph-Chebyshev window of length N = 16. Specify a relative sidelobe attenuation of 40
dB. Return the window values as a column vector. Show information about the window object. Display
the window.

H = sigwin.chebwin(16,40);

win = generate(H)

win = 16×1

 0.1138
 0.1964
 0.3319
 0.4926
 0.6613
 0.8163
 0.9353
 1.0000
 1.0000
 0.9353
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Chebyshev Window '
 '---------------- '
 'Length : 16'
 'Sidelobe Attenuation : 40'

wvtool(H)

 generate

1-2215

See Also
chebwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2216

info
Class: sigwin.chebwin
Package: sigwin

Display information about Dolph–Chebyshev window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and relative sidelobe attenuation information for the Dolph-Chebyshev
window object H.

info_win = info(H) returns length information for the Dolph-Chebyshev window object H in the
character array info_win.

Examples

Dolph-Chebyshev Window

Generate a Dolph-Chebyshev window of length N = 16. Specify a relative sidelobe attenuation of 40
dB. Return the window values as a column vector. Show information about the window object. Display
the window.

H = sigwin.chebwin(16,40);

win = generate(H)

win = 16×1

 0.1138
 0.1964
 0.3319
 0.4926
 0.6613
 0.8163
 0.9353
 1.0000
 1.0000
 0.9353
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Chebyshev Window '
 '---------------- '

 info

1-2217

 'Length : 16'
 'Sidelobe Attenuation : 40'

wvtool(H)

See Also
chebwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2218

winwrite
Class: sigwin.chebwin
Package: sigwin

Save Dolph-Chebyshev window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Dolph-Chebyshev window object H to an
ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Dolph-Chebyshev window object H in the current
folder as a column vector in the ASCII file 'filename'. The file extension .wf is automatically
appended to filename.

Examples

Dolph-Chebyshev Window

Generate a Dolph-Chebyshev window of length N = 16. Specify a relative sidelobe attenuation of 40
dB. Return the window values as a column vector. Show information about the window object. Display
the window.

H = sigwin.chebwin(16,40);

win = generate(H)

win = 16×1

 0.1138
 0.1964
 0.3319
 0.4926
 0.6613
 0.8163
 0.9353
 1.0000
 1.0000
 0.9353
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Chebyshev Window '

 winwrite

1-2219

 '---------------- '
 'Length : 16'
 'Sidelobe Attenuation : 40'

wvtool(H)

See Also
chebwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2220

sigwin.flattopwin class
Package: sigwin

Construct flat top window object

Description

Note The use of sigwin.flattopwin is not recommended. Use flattopwin instead.

sigwin.flattopwin creates a handle to a flat top window object for use in spectral analysis and
FIR filtering by the window method. Object methods enable workspace import and ASCII file export
of the window values.

Construction
H = sigwin.flattopwin returns a flat top window object H of length 64 with symmetric sampling.

H = sigwin.flattopwin(Length) returns a flat top window object of length Length with
symmetric sampling. Length must be a positive integer. Entering a positive noninteger value for
Length rounds the length to the nearest integer. Entering a 1 for Length results in a window with a
single value of 1.

H = sigwin.flattopwin(Length,SamplingFlag) returns a flat top window object H of length
Length with sampling SamplingFlag. The SamplingFlag can be either 'symmetric' or
'periodic'.

Properties
Length

Flat top window length. Must be a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length results in a window with a single
value of 1.

SamplingFlag

'symmetric' is the default and forces exact symmetry between the first and second halves of the
flat top window. A symmetric window is preferred in FIR filter design.

'periodic' designs a symmetric flat top window of length Length+1 and truncates the window to
length Length. This design is preferred in spectral analysis where the window is treated as one
period of a Length-point periodic sequence.

 sigwin.flattopwin class

1-2221

Methods
generate Generates flat top window
info Display information about flat top window object
winwrite Save flat top window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Flat Top Window

Generate a flat top window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.flattopwin(16);

win = generate(H)

win = 16×1

 -0.0004
 -0.0061
 -0.0314
 -0.0677
 -0.0316
 0.1982
 0.6069
 0.9487
 0.9487
 0.6069
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Flat Top Window '
 '--------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

1 Functions

1-2222

Algorithms
The following equation defines the flat top window of length N:

w(n) = a0− a1cos 2πn
N − 1 + a2cos 4πn

N − 1 − a3cos 6πn
N − 1 + a4cos 8πn

N − 1, 0 ≤ n ≤ M − 1,

where M is N/2 for N even and (N + 1)/2 for N odd.

The second half of the symmetric flat top window M ≤ n ≤ N − 1 is obtained by flipping the first half
around the midpoint. The symmetric option is the preferred method when using a flat top window in
FIR filter design by the window method.

The periodic flat top window is constructed by extending the desired window length by one sample,
constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a flat top window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

The coefficients are listed in the following table:

Coefficient Value
a0 0.21557895
a1 0.41663158

 sigwin.flattopwin class

1-2223

Coefficient Value
a2 0.277263158
a3 0.083578947
a4 0.006947368

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
flattopwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2224

generate
Class: sigwin.flattopwin
Package: sigwin

Generates flat top window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the flat top window object as a double-precision column
vector.

Examples

Flat Top Window

Generate a flat top window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.flattopwin(16);

win = generate(H)

win = 16×1

 -0.0004
 -0.0061
 -0.0314
 -0.0677
 -0.0316
 0.1982
 0.6069
 0.9487
 0.9487
 0.6069
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Flat Top Window '
 '--------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

 generate

1-2225

See Also
flattopwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2226

info
Class: sigwin.flattopwin
Package: sigwin

Display information about flat top window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and sampling information for the flat top window object H.

info_win = info(H) returns length and sampling information for the flat top window object H in
the character array info_win.

Examples

Flat Top Window

Generate a flat top window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.flattopwin(16);

win = generate(H)

win = 16×1

 -0.0004
 -0.0061
 -0.0314
 -0.0677
 -0.0316
 0.1982
 0.6069
 0.9487
 0.9487
 0.6069
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Flat Top Window '
 '--------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

 info

1-2227

wvtool(H)

See Also
flattopwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2228

winwrite
Class: sigwin.flattopwin
Package: sigwin

Save flat top window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the flat top window values to an ASCII file. The file
extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the flat top window object H in the current folder as
a column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Flat Top Window

Generate a flat top window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.flattopwin(16);

win = generate(H)

win = 16×1

 -0.0004
 -0.0061
 -0.0314
 -0.0677
 -0.0316
 0.1982
 0.6069
 0.9487
 0.9487
 0.6069
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Flat Top Window '
 '--------------- '

 winwrite

1-2229

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
flattopwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2230

sigwin.gausswin class
Package: sigwin

Construct Gaussian window object

Description

Note The use of sigwin.gausswin is not recommended. Use gausswin instead.

sigwin.gausswin creates a handle to a Gaussian window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

The following equation defines the Gaussian window of length N:

w(x) = e−
1
2(α2x2/M2), −M ≤ x ≤ M

where M=(N-1)/2 and x is a linearly spaced vector of length N.

Equating α with the usual standard deviation of a Gaussian value, σ, note:

α = (N − 1)
2σ

Construction
H = sigwin.gausswin returns a Gaussian window object H of length 64 and dispersion parameter
alpha of 2.5.

H = sigwin.gausswin(Length) returns a Gaussian window object H of length Length and
dispersion parameter alpha of 2.5. Length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

H = sigwin.gausswin(Length,Alpha) returns a Gaussian window object with dispersion
parameter alpha. alpha requires a nonnegative real number and is inversely proportional to the
standard deviation of a Gaussian value.

Properties
Length

Gaussian window length. The window length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

Alpha

Width of Gaussian window. Alpha is inversely proportional to the standard deviation of a Gaussian.
Larger values of Alpha produce Gaussian windows with inflection points closer to the peak value, or

 sigwin.gausswin class

1-2231

narrower windows. In the frequency domain, larger values of Alpha produce a Gaussian window with
increased spread of the main lobe in frequency but decreased sidelobe energy.

Methods
generate Generates Gaussian window
info Display information about Gaussian window object
winwrite Save Gaussian window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Gaussian Windows

Generate two Gaussian windows of length N = 64. Specify α values of 4 and 2. Show information
about the window objects. Display the windows.

H4 = sigwin.gausswin(64,4);
H2 = sigwin.gausswin(64,2);

wvt = wvtool(H4,H2);
legend(wvt.CurrentAxes,'\alpha=4','\alpha=2')

1 Functions

1-2232

The window with α = 4 has a wider mainlobe and less sidelobe energy.

Generate a Gaussian window with N = 16 and α = 3. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.gausswin(16,3);

win = generate(H)

win = 16×1

 0.0111
 0.0340
 0.0889
 0.1979
 0.3753
 0.6065
 0.8353
 0.9802
 0.9802
 0.8353
 ⋮

wininfo = info(H)

wininfo = 4x15 char array
 'Gaussian Window'

 sigwin.gausswin class

1-2233

 '---------------'
 'Length : 16 '
 'Alpha : 3 '

wvtool(H)

References
harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
gausswin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2234

generate
Class: sigwin.gausswin
Package: sigwin

Generates Gaussian window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Gaussian window object H as a double-precision
column vector.

Examples

Gaussian Windows

Generate two Gaussian windows of length N = 64. Specify α values of 4 and 2. Show information
about the window objects. Display the windows.

H4 = sigwin.gausswin(64,4);
H2 = sigwin.gausswin(64,2);

wvt = wvtool(H4,H2);
legend(wvt.CurrentAxes,'\alpha=4','\alpha=2')

 generate

1-2235

The window with α = 4 has a wider mainlobe and less sidelobe energy.

Generate a Gaussian window with N = 16 and α = 3. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.gausswin(16,3);

win = generate(H)

win = 16×1

 0.0111
 0.0340
 0.0889
 0.1979
 0.3753
 0.6065
 0.8353
 0.9802
 0.9802
 0.8353
 ⋮

wininfo = info(H)

wininfo = 4x15 char array
 'Gaussian Window'

1 Functions

1-2236

 '---------------'
 'Length : 16 '
 'Alpha : 3 '

wvtool(H)

See Also
gausswin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2237

info
Class: sigwin.gausswin
Package: sigwin

Display information about Gaussian window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and dispersion information for the Gaussian window object H.

info_win = info(H) returns length and dispersion information for the Gaussian window object H
in the character array info_win.

Examples

Gaussian Windows

Generate two Gaussian windows of length N = 64. Specify α values of 4 and 2. Show information
about the window objects. Display the windows.

H4 = sigwin.gausswin(64,4);
H2 = sigwin.gausswin(64,2);

wvt = wvtool(H4,H2);
legend(wvt.CurrentAxes,'\alpha=4','\alpha=2')

1 Functions

1-2238

The window with α = 4 has a wider mainlobe and less sidelobe energy.

Generate a Gaussian window with N = 16 and α = 3. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.gausswin(16,3);

win = generate(H)

win = 16×1

 0.0111
 0.0340
 0.0889
 0.1979
 0.3753
 0.6065
 0.8353
 0.9802
 0.9802
 0.8353
 ⋮

wininfo = info(H)

wininfo = 4x15 char array
 'Gaussian Window'

 info

1-2239

 '---------------'
 'Length : 16 '
 'Alpha : 3 '

wvtool(H)

See Also
gausswin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2240

winwrite
Class: sigwin.gausswin
Package: sigwin

Save Gaussian window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of Gaussian window object H to an ASCII file. The
file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Gaussian window object H in the current folder
as a column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Gaussian Windows

Generate two Gaussian windows of length N = 64. Specify α values of 4 and 2. Show information
about the window objects. Display the windows.

H4 = sigwin.gausswin(64,4);
H2 = sigwin.gausswin(64,2);

wvt = wvtool(H4,H2);
legend(wvt.CurrentAxes,'\alpha=4','\alpha=2')

 winwrite

1-2241

The window with α = 4 has a wider mainlobe and less sidelobe energy.

Generate a Gaussian window with N = 16 and α = 3. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.gausswin(16,3);

win = generate(H)

win = 16×1

 0.0111
 0.0340
 0.0889
 0.1979
 0.3753
 0.6065
 0.8353
 0.9802
 0.9802
 0.8353
 ⋮

wininfo = info(H)

wininfo = 4x15 char array
 'Gaussian Window'

1 Functions

1-2242

 '---------------'
 'Length : 16 '
 'Alpha : 3 '

wvtool(H)

See Also
gausswin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2243

sigwin.hamming class
Package: sigwin

Construct Hamming window object

Description

Note The use of sigwin.hamming is not recommended. Use hamming instead.

sigwin.hamming creates a handle to a Hamming window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

The following equation defines the Hamming window of length N:

w(n) = 0.54 − 0.46cos 2πn
N − 1, 0 ≤ n ≤ M − 1

where M is N/2 for N even and (N+1)/2 for N odd.

The second half of the symmetric Hamming window M ≤ n ≤ N − 1 is obtained by flipping the first
half around the midpoint. The symmetric option is the preferred method when using a Hamming
window in FIR filter design.

The periodic Hamming window is constructed by extending the desired window length by one
sample, constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a Hamming window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

Construction
H = sigwin.hamming returns a symmetric Hamming window object H of length 64.

H = sigwin.hamming(Length) returns a symmetric Hamming window object with length Length.
Length must be a positive integer. Entering a positive noninteger value for Length rounds the
length to the nearest integer. Entering a 1 for Length results in a window with a single value of 1.

H = sigwin.hamming(Length,SamplingFlag) returns a Hamming window with sampling
Sampling_Flag. The SamplingFlag can be either 'symmetric' or 'periodic'.

Properties
Length

Hamming window length. The window length must be a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

1 Functions

1-2244

SamplingFlag

'symmetric' is the default and forces exact symmetry between the first and second halves of the
Hamming window. A symmetric window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Hamming window of length Length+1 and truncates the window
to length Length. This design is preferred in spectral analysis where the window is treated as one
period of a Length-point periodic sequence.

Methods
generate Generates Hamming window
info Display information about Hamming window object
winwrite Save Hamming window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Hamming Windows

Generate two Hamming windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hamming(64,'symmetric');
Hp = sigwin.hamming(63,'periodic')

Hp =
 Name: 'Hamming'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

 sigwin.hamming class

1-2245

Generate a symmetric Hamming window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hamming(16);

win = generate(H)

win = 16×1

 0.0800
 0.1198
 0.2322
 0.3979
 0.5881
 0.7700
 0.9121
 0.9899
 0.9899
 0.9121
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hamming Window '
 '-------------- '

1 Functions

1-2246

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
hamming | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.hamming class

1-2247

generate
Class: sigwin.hamming
Package: sigwin

Generates Hamming window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Hamming window object as a double-precision
column vector.

Examples

Hamming Windows

Generate two Hamming windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hamming(64,'symmetric');
Hp = sigwin.hamming(63,'periodic')

Hp =
 Name: 'Hamming'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2248

Generate a symmetric Hamming window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hamming(16);

win = generate(H)

win = 16×1

 0.0800
 0.1198
 0.2322
 0.3979
 0.5881
 0.7700
 0.9121
 0.9899
 0.9899
 0.9121
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hamming Window '
 '-------------- '

 generate

1-2249

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hamming | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2250

info
Class: sigwin.hamming
Package: sigwin

Display information about Hamming window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and sampling information for the Hamming window object H.

info_win = info(H) returns length and sampling information for the Hamming window object H in
the character array info_win.

Examples

Hamming Windows

Generate two Hamming windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hamming(64,'symmetric');
Hp = sigwin.hamming(63,'periodic')

Hp =
 Name: 'Hamming'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

 info

1-2251

Generate a symmetric Hamming window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hamming(16);

win = generate(H)

win = 16×1

 0.0800
 0.1198
 0.2322
 0.3979
 0.5881
 0.7700
 0.9121
 0.9899
 0.9899
 0.9121
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hamming Window '
 '-------------- '

1 Functions

1-2252

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hamming | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 info

1-2253

winwrite
Class: sigwin.hamming
Package: sigwin

Save Hamming window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the Hamming window values to an ASCII file. The file
extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Hamming window object H in the current folder
as a column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Hamming Windows

Generate two Hamming windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hamming(64,'symmetric');
Hp = sigwin.hamming(63,'periodic')

Hp =
 Name: 'Hamming'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2254

Generate a symmetric Hamming window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hamming(16);

win = generate(H)

win = 16×1

 0.0800
 0.1198
 0.2322
 0.3979
 0.5881
 0.7700
 0.9121
 0.9899
 0.9899
 0.9121
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hamming Window '
 '-------------- '

 winwrite

1-2255

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hamming | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2256

sigwin.hann class
Package: sigwin

Construct Hann (Hanning) window object

Description

Note The use of sigwin.hann is not recommended. Use hann instead.

sigwin.hann creates a handle to a Hann window object for use in spectral analysis and FIR filtering
by the window method. Object methods enable workspace import and ASCII file export of the window
values.

The symmetric Hann window of length N is defined as:

w(n) = 1
2 1 − cos 2πn

N − 1 , 0 ≤ n ≤ M − 1

where M is N/2 for N even and (N + 1)/2 for N odd.

The second half of the symmetric Hann window M ≤ n ≤ N − 1 is obtained by flipping the first half
around the midpoint. The symmetric option is the preferred method when using a Hann window in
FIR filter design.

The periodic Hann window is constructed by extending the desired window length by one sample,
constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a Hann window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

Construction
H = sigwin.hann returns a symmetric Hann window object H of length 64.

H = sigwin.hann(Length) returns a symmetric Hann window object with length Length. Length
requires a positive integer. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1.

H = sigwin.hann(Length,SamplingFlag) returns a Hann window object with sampling
Sampling_Flag. The SamplingFlag can be either 'symmetric' or 'periodic'.

Properties
Length

Hann window length. Must be a positive integer. Entering a positive noninteger value for Length
rounds the length to the nearest integer. Entering a 1 for Length results in a window with a single
value of 1.

 sigwin.hann class

1-2257

SamplingFlag

'symmetric' is the default and forces exact symmetry between the first and second halves of the
Hann window. A symmetric window is preferred in FIR filter design by the window method.

'periodic' designs a symmetric Hann window of length Length+1 and truncates the window to
length Length. This design is preferred in spectral analysis where the window is treated as one
period of a Length-point periodic sequence.

Methods
generate Generates Hann window
info Display information about Hann window object
winwrite Save Hann window object values in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Hann Windows

Generate two Hann windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hann(64,'symmetric');
Hp = sigwin.hann(63,'periodic')

Hp =
 Name: 'Hann'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2258

Generate a symmetric Hann window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hann(16);

win = generate(H)

win = 16×1

 0
 0.0432
 0.1654
 0.3455
 0.5523
 0.7500
 0.9045
 0.9891
 0.9891
 0.9045
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hann Window '
 '----------- '

 sigwin.hann class

1-2259

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
hann | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2260

generate
Class: sigwin.hann
Package: sigwin

Generates Hann window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Hann window object H as a double-precision column
vector.

Examples

Hann Windows

Generate two Hann windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hann(64,'symmetric');
Hp = sigwin.hann(63,'periodic')

Hp =
 Name: 'Hann'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

 generate

1-2261

Generate a symmetric Hann window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hann(16);

win = generate(H)

win = 16×1

 0
 0.0432
 0.1654
 0.3455
 0.5523
 0.7500
 0.9045
 0.9891
 0.9891
 0.9045
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hann Window '
 '----------- '

1 Functions

1-2262

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hann | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2263

info
Class: sigwin.hann
Package: sigwin

Display information about Hann window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and sampling information for the Hann window object H.

info_win = info(H) returns length and sampling information for the Hann window object H in the
character array info_win.

Examples

Hann Windows

Generate two Hann windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hann(64,'symmetric');
Hp = sigwin.hann(63,'periodic')

Hp =
 Name: 'Hann'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2264

Generate a symmetric Hann window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hann(16);

win = generate(H)

win = 16×1

 0
 0.0432
 0.1654
 0.3455
 0.5523
 0.7500
 0.9045
 0.9891
 0.9891
 0.9045
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hann Window '
 '----------- '

 info

1-2265

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hann | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2266

winwrite
Class: sigwin.hann
Package: sigwin

Save Hann window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Hann window object H to an ASCII file. The
file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Hann window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Hann Windows

Generate two Hann windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.hann(64,'symmetric');
Hp = sigwin.hann(63,'periodic')

Hp =
 Name: 'Hann'
 SamplingFlag: 'periodic'
 Length: 63

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

 winwrite

1-2267

Generate a symmetric Hann window with N = 16. Return the window values as a column vector.
Show information about the window object. Display the window.

H = sigwin.hann(16);

win = generate(H)

win = 16×1

 0
 0.0432
 0.1654
 0.3455
 0.5523
 0.7500
 0.9045
 0.9891
 0.9891
 0.9045
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Hann Window '
 '----------- '

1 Functions

1-2268

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
hann | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2269

sigwin.kaiser class
Package: sigwin

Construct Kaiser window object

Description

Note The use of sigwin.kaiser is not recommended. Use kaiser instead.

sigwin.kaiser creates a handle to a Kaiser window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

The following equation defines the Kaiser window of length N:

w(x) = I0 β 1 − 4x2

(N − 1)2
/I0(β), − (N − 1)/2 ≤ x ≤ (N − 1)/2

where x is linearly spaced N-point vector and I0() is the modified zeroth-order Bessel function of the
first kind. β is the attenuation parameter.

Construction
H = sigwin.kaiser returns a Kaiser window object H of length 64 and attenuation parameter beta
of 0.5.

H = sigwin.kaiser(Length) returns a Kaiser window object H of length Length and attenuation
parameter beta of 0.5. Length requires a positive integer. Entering a positive noninteger value for
Length rounds the length to the nearest integer. Entering a 1 for Length results in a window with a
single value of 1.

H = sigwin.kaiser(Length,Beta) returns a Kaiser window object with real-valued attenuation
parameter beta.

Properties
Length

Kaiser window length. The window length requires a positive integer. Entering a positive noninteger
value for Length rounds the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

Beta

Attenuation parameter. Beta requires a real number. Larger absolute values of Beta result in greater
stopband attenuation, or equivalently greater attenuation between the main lobe and first side lobe.

1 Functions

1-2270

Methods
generate Generates Kaiser window
info Display information about Kaiser window object
winwrite Save Kaiser window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Kaiser Windows

Generate two Kaiser windows of length N = 64:

• The first window has an attenuation parameter β = 5.
• The second window has β = 15.

Display the two windows.

H05 = sigwin.kaiser(128,5);
H15 = sigwin.kaiser(128,15);

wvt = wvtool(H05,H15);
legend(wvt.CurrentAxes,'\beta = 5','\beta = 15')

 sigwin.kaiser class

1-2271

Generate a Kaiser window with length N = 16 and the default β = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.kaiser(16);

win = generate(H)

win = 16×1

 0.9403
 0.9550
 0.9677
 0.9783
 0.9868
 0.9933
 0.9976
 0.9997
 0.9997
 0.9976
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Kaiser Window'
 '-------------'

1 Functions

1-2272

 'Length : 16 '
 'Beta : 0.5'

wvtool(H)

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
kaiser | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.kaiser class

1-2273

generate
Class: sigwin.kaiser
Package: sigwin

Generates Kaiser window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Kaiser window object as a double-precision column
vector.

Examples

Kaiser Windows

Generate two Kaiser windows of length N = 64:

• The first window has an attenuation parameter β = 5.
• The second window has β = 15.

Display the two windows.

H05 = sigwin.kaiser(128,5);
H15 = sigwin.kaiser(128,15);

wvt = wvtool(H05,H15);
legend(wvt.CurrentAxes,'\beta = 5','\beta = 15')

1 Functions

1-2274

Generate a Kaiser window with length N = 16 and the default β = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.kaiser(16);

win = generate(H)

win = 16×1

 0.9403
 0.9550
 0.9677
 0.9783
 0.9868
 0.9933
 0.9976
 0.9997
 0.9997
 0.9976
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Kaiser Window'
 '-------------'

 generate

1-2275

 'Length : 16 '
 'Beta : 0.5'

wvtool(H)

See Also
kaiser | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2276

info
Class: sigwin.kaiser
Package: sigwin

Display information about Kaiser window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and attenuation information for the Kaiser window object H.

info_win = info(H) returns length and attenuation information for the Kaiser window object H in
the character array info_win.

Examples

Kaiser Windows

Generate two Kaiser windows of length N = 64:

• The first window has an attenuation parameter β = 5.
• The second window has β = 15.

Display the two windows.

H05 = sigwin.kaiser(128,5);
H15 = sigwin.kaiser(128,15);

wvt = wvtool(H05,H15);
legend(wvt.CurrentAxes,'\beta = 5','\beta = 15')

 info

1-2277

Generate a Kaiser window with length N = 16 and the default β = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.kaiser(16);

win = generate(H)

win = 16×1

 0.9403
 0.9550
 0.9677
 0.9783
 0.9868
 0.9933
 0.9976
 0.9997
 0.9997
 0.9976
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Kaiser Window'
 '-------------'

1 Functions

1-2278

 'Length : 16 '
 'Beta : 0.5'

wvtool(H)

See Also
kaiser | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 info

1-2279

winwrite
Class: sigwin.kaiser
Package: sigwin

Save Kaiser window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the Kaiser window values to an ASCII file. The file
extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Kaiser window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Kaiser Windows

Generate two Kaiser windows of length N = 64:

• The first window has an attenuation parameter β = 5.
• The second window has β = 15.

Display the two windows.

H05 = sigwin.kaiser(128,5);
H15 = sigwin.kaiser(128,15);

wvt = wvtool(H05,H15);
legend(wvt.CurrentAxes,'\beta = 5','\beta = 15')

1 Functions

1-2280

Generate a Kaiser window with length N = 16 and the default β = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.kaiser(16);

win = generate(H)

win = 16×1

 0.9403
 0.9550
 0.9677
 0.9783
 0.9868
 0.9933
 0.9976
 0.9997
 0.9997
 0.9976
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Kaiser Window'
 '-------------'

 winwrite

1-2281

 'Length : 16 '
 'Beta : 0.5'

wvtool(H)

See Also
kaiser | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2282

sigwin.nuttallwin class
Package: sigwin

Construct Nuttall defined four-term Blackman-Harris window object

Description

Note The use of sigwin.nuttallwin is not recommended. Use nuttallwin instead.

sigwin.nuttallwin creates a handle to a Nuttall defined four-term Blackman-Harris window
object for use in spectral analysis and FIR filtering by the window method. Object methods enable
workspace import and ASCII file export of the window values.

Construction
H = sigwin.nuttallwin returns a Nuttall defined four-term Blackman-Harris window object
window object H of length 64.

H = sigwin.nuttallwin(Length) returns a Nuttall defined four-term Blackman-Harris window
object H of length Length. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1. The
SamplingFlag property defaults to 'symmetric'.

Properties
Length

Nuttall defined four-term Blackman-Harris window length. The window length must be a positive
integer. Entering a positive noninteger value for Length rounds the length to the nearest integer.
Entering a 1 for Length results in a window with a single value of 1.

SamplingFlag

The type of window returned as one of 'symmetric' or 'periodic'. The default is 'symmetric'.
A symmetric window exhibits perfect symmetry between halves of the window. Setting the
SamplingFlag property to 'periodic' results in a N-periodic window. The equations for the
Nuttall defined 4-term Blackman-Harris window differ slightly based on the value of the
SamplingFlag property. See “Algorithms” on page 1-2286 for details.

Methods

generate Generates Nuttall defined four-term Blackman-Harris window
info Display information about Nuttall defined four-term Blackman-Harris window object
winwrite Save Nuttall defined four-term Blackman-Harris window object values in ASCII file

 sigwin.nuttallwin class

1-2283

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Nuttall-Defined Four-Term Blackman-Harris Windows

Generate two Nuttall-defined four-term Blackman-Harris windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.nuttallwin(64);
Hp = sigwin.nuttallwin(63);
Hp.SamplingFlag = 'periodic';

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

Generate a symmetric Nuttall-defined four-term Blackman-Harris window with N = 16. Return the
window values as a column vector. Show information about the window object. Display the window.

1 Functions

1-2284

H = sigwin.nuttallwin(16);

win = generate(H)

win = 16×1

 0.0004
 0.0048
 0.0306
 0.1105
 0.2778
 0.5292
 0.7983
 0.9755
 0.9755
 0.7983
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Nuttall Window '
 '-------------- '
 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

 sigwin.nuttallwin class

1-2285

Algorithms
The following equation defines the symmetric Nuttall defined four-term Blackman-Harris window of
length N.

w(n) = a0− a1cos 2πn
N − 1 + a2cos 4πn

N − 1 − a3cos 6πn
N − 1 , 0 ≤ n ≤ N − 1

The following equation defines the periodic Nuttall defined four-term Blackman-Harris window of
length N.

w(n) = a0− a1cos2πn
N + a2cos4πn

N − a3cos6πn
N , 0 ≤ n ≤ N − 1

The following table lists the coefficients:

Coefficient Value
a0 0.3635819
a1 0.4891775
a2 0.1365995
a3 0.0106411

1 Functions

1-2286

References
Nuttall, A. H. “Some Windows with Very Good Sidelobe Behavior.” IEEE Transactions on Acoustics,
Speech, and Signal Processing. Vol. 29, 1981, pp. 84–91.

See Also
nuttallwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.nuttallwin class

1-2287

generate
Class: sigwin.nuttallwin
Package: sigwin

Generates Nuttall defined four-term Blackman-Harris window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Nuttall defined four-term Blackman-Harris window
object as a double-precision column vector.

Examples

Nuttall-Defined Four-Term Blackman-Harris Windows

Generate two Nuttall-defined four-term Blackman-Harris windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.nuttallwin(64);
Hp = sigwin.nuttallwin(63);
Hp.SamplingFlag = 'periodic';

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2288

Generate a symmetric Nuttall-defined four-term Blackman-Harris window with N = 16. Return the
window values as a column vector. Show information about the window object. Display the window.

H = sigwin.nuttallwin(16);

win = generate(H)

win = 16×1

 0.0004
 0.0048
 0.0306
 0.1105
 0.2778
 0.5292
 0.7983
 0.9755
 0.9755
 0.7983
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Nuttall Window '
 '-------------- '

 generate

1-2289

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
nuttallwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2290

info
Class: sigwin.nuttallwin
Package: sigwin

Display information about Nuttall defined four-term Blackman-Harris window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information about the Nuttall defined four-term Blackman-Harris window
object H.

info_win = info(H) returns length information about the Nuttall defined four-term Blackman-
Harris window object H in the character array info_win.

Examples

Nuttall-Defined Four-Term Blackman-Harris Windows

Generate two Nuttall-defined four-term Blackman-Harris windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.nuttallwin(64);
Hp = sigwin.nuttallwin(63);
Hp.SamplingFlag = 'periodic';

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

 info

1-2291

Generate a symmetric Nuttall-defined four-term Blackman-Harris window with N = 16. Return the
window values as a column vector. Show information about the window object. Display the window.

H = sigwin.nuttallwin(16);

win = generate(H)

win = 16×1

 0.0004
 0.0048
 0.0306
 0.1105
 0.2778
 0.5292
 0.7983
 0.9755
 0.9755
 0.7983
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Nuttall Window '
 '-------------- '

1 Functions

1-2292

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
nuttallwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 info

1-2293

winwrite
Class: sigwin.nuttallwin
Package: sigwin

Save Nuttall defined four-term Blackman-Harris window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Nuttall defined four-term Blackman-Harris
window object H to an ASCII file. The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Nuttall defined four-term Blackman-Harris
window object H in the current folder as a column vector in the ASCII file 'filename'. The file
extension .wf is automatically appended to filename.

Examples

Nuttall-Defined Four-Term Blackman-Harris Windows

Generate two Nuttall-defined four-term Blackman-Harris windows:

• The first window has N = 64 and is symmetric.
• The second window has N = 63 and is periodic.

Display the two windows.

Hs = sigwin.nuttallwin(64);
Hp = sigwin.nuttallwin(63);
Hp.SamplingFlag = 'periodic';

wvt = wvtool(Hs,Hp);
legend(wvt.CurrentAxes,'Symmetric','Periodic')

1 Functions

1-2294

Generate a symmetric Nuttall-defined four-term Blackman-Harris window with N = 16. Return the
window values as a column vector. Show information about the window object. Display the window.

H = sigwin.nuttallwin(16);

win = generate(H)

win = 16×1

 0.0004
 0.0048
 0.0306
 0.1105
 0.2778
 0.5292
 0.7983
 0.9755
 0.9755
 0.7983
 ⋮

wininfo = info(H)

wininfo = 4x26 char array
 'Nuttall Window '
 '-------------- '

 winwrite

1-2295

 'Length : 16 '
 'Sampling Flag : symmetric'

wvtool(H)

See Also
nuttallwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2296

sigwin.parzenwin class
Package: sigwin

Construct Parzen window object

Description

Note The use of sigwin.parzenwin is not recommended. Use parzenwin instead.

sigwin.parzenwin creates a handle to a Parzen window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

The following equation defines the N-point Parzen window over the interval − (N − 1)
2 ≤ n ≤ (N − 1)

2 :

w(n) =
1 − 6 n

N/2
2 + 6 n

N/2
3, 0 ≤ n ≤ (N − 1)/4

2 1 − n
N/2

3, (N − 1)/4 < n ≤ (N − 1)/2

Construction
H = sigwin.parzenwin returns a Parzen window object H of length 64.

H = sigwin.parzenwin(Length) returns a Parzen window object H of length Length. Length
requires a positive integer. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1.

Properties
Length

Length requires a positive integer. Entering a positive noninteger value for Length rounds the
length to the nearest integer. Entering a 1 for Length results in a window with a single value of 1.

Methods

generate Generate Parzen window
info Display information about Parzen window object
winwrite Save Parzen window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

 sigwin.parzenwin class

1-2297

Examples

Parzen Window

Generate a Parzen window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.parzenwin(16);

win = generate(H)

win = 16×1

 0.0005
 0.0132
 0.0610
 0.1675
 0.3540
 0.5972
 0.8286
 0.9780
 0.9780
 0.8286
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Parzen Window'
 '-------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2298

References
harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
parzenwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 sigwin.parzenwin class

1-2299

generate
Class: sigwin.parzenwin
Package: sigwin

Generate Parzen window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Parzen window object as a double-precision column
vector.

Examples

Parzen Window

Generate a Parzen window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.parzenwin(16);

win = generate(H)

win = 16×1

 0.0005
 0.0132
 0.0610
 0.1675
 0.3540
 0.5972
 0.8286
 0.9780
 0.9780
 0.8286
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Parzen Window'
 '-------------'
 'Length : 16 '

wvtool(H)

1 Functions

1-2300

See Also
parzenwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2301

info
Class: sigwin.parzenwin
Package: sigwin

Display information about Parzen window object

Syntax
info(H)
info_win=info(H)

Description
info(H) displays length information about the Parzen window object H.

info_win=info(H) returns length information about the Parzen window object H in the character
array info_win.

Examples

Parzen Window

Generate a Parzen window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.parzenwin(16);

win = generate(H)

win = 16×1

 0.0005
 0.0132
 0.0610
 0.1675
 0.3540
 0.5972
 0.8286
 0.9780
 0.9780
 0.8286
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Parzen Window'
 '-------------'
 'Length : 16 '

1 Functions

1-2302

wvtool(H)

See Also
parzenwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 info

1-2303

winwrite
Class: sigwin.parzenwin
Package: sigwin

Save Parzen window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Parzen window object H to an ASCII file. The
file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Parzen window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Parzen Window

Generate a Parzen window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.parzenwin(16);

win = generate(H)

win = 16×1

 0.0005
 0.0132
 0.0610
 0.1675
 0.3540
 0.5972
 0.8286
 0.9780
 0.9780
 0.8286
 ⋮

wininfo = info(H)

wininfo = 3x13 char array
 'Parzen Window'
 '-------------'

1 Functions

1-2304

 'Length : 16 '

wvtool(H)

See Also
parzenwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2305

sigwin.rectwin class
Package: sigwin

Construct rectangular window object

Description

Note The use of sigwin.rectwin is not recommended. Use rectwin instead.

sigwin.rectwin creates a handle to a rectangular window object for use in spectral analysis and
FIR filtering by the window method. Object methods enable workspace import and ASCII file export
of the window values.

The following equation defines the rectangular window of length N:

w(n) = 1, 0 ≤ n ≤ N − 1

Construction
H = sigwin.rectwin returns a rectangular window object H of length 64.

H = sigwin.rectwin(Length) returns a rectangular window object H of length Length. Length
requires a positive integer. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1.

Properties
Length

Rectangular window length. The window length requires a positive integer. Entering a positive
noninteger value for Length rounds the length to the nearest integer. Entering a 1 for Length
results in a window with a single value of 1.

Methods
generate Generates rectangular window
info Display information about rectangular window object
winwrite Save rectangular window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

1 Functions

1-2306

Rectangular Window

Generate a rectangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.rectwin(16);

win = generate(H)

win = 16×1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

wininfo = info(H)

wininfo = 3x18 char array
 'Rectangular Window'
 '------------------'
 'Length : 16 '

wvtool(H)

 sigwin.rectwin class

1-2307

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
rectwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2308

generate
Class: sigwin.rectwin
Package: sigwin

Generates rectangular window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the rectangular window object H as a double-precision
column vector.

Examples

Rectangular Window

Generate a rectangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.rectwin(16);

win = generate(H)

win = 16×1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

wininfo = info(H)

wininfo = 3x18 char array
 'Rectangular Window'
 '------------------'
 'Length : 16 '

wvtool(H)

 generate

1-2309

See Also
rectwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2310

info
Class: sigwin.rectwin
Package: sigwin

Display information about rectangular window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length information for the rectangular window object H.

info_win = info(H) returns length information for the rectangular window object H in the
character array info_win.

Examples

Rectangular Window

Generate a rectangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.rectwin(16);

win = generate(H)

win = 16×1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

wininfo = info(H)

wininfo = 3x18 char array
 'Rectangular Window'
 '------------------'
 'Length : 16 '

 info

1-2311

wvtool(H)

See Also
rectwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2312

winwrite
Class: sigwin.rectwin
Package: sigwin

Save rectangular window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the rectangular window object H to an ASCII file.
The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the rectangular window object H in the current
folder as a column vector in the ASCII file 'filename'. The file extension .wf is automatically
appended to filename.

Examples

Rectangular Window

Generate a rectangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.rectwin(16);

win = generate(H)

win = 16×1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

wininfo = info(H)

wininfo = 3x18 char array
 'Rectangular Window'
 '------------------'

 winwrite

1-2313

 'Length : 16 '

wvtool(H)

See Also
rectwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2314

sigwin.taylorwin class
Package: sigwin

Construct Taylor window object

Description

Note The use of sigwin.taylorwin is not recommended. Use taylorwin instead.

sigwin.taylorwin creates a handle to a Taylor window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

Taylor windows are similar to Dolph-Chebyshev windows. The Taylor window approximates the
minimization of the main lobe width in the Dolph-Chebyshev window, but allows the sidelobe levels to
decrease beyond a certain frequency. Taylor windows are typically used in radar applications, such as
weighting synthetic aperture radar images and antenna design.

Construction
H = sigwin.taylorwin returns a Taylor window object H of length 64, with a maximum sidelobe
level of 30 dB and 4 constant-level sidelobes adjacent to the main lobe.

H = sigwin.taylorwin(Length) returns a Taylor window object H of length Length with a
maximum sidelobe level of 30 dB and 4 constant-level sidelobes adjacent to the main lobe. Length
must be a positive integer. Entering a positive noninteger value for Length rounds the length to the
nearest integer. Entering a 1 for Length results in a window with a single value of 1.

H = sigwin.taylorwin(Length,Nbar) returns a Taylor window object with Nbar nearly
constant-level sidelobes adjacent to the main lobe. Nbar must be a positive integer.

H = sigwin.taylorwin(Length,Nbar,SidelobeLevel) returns a Taylor window object with a
maximum sidelobe level SidelobeLevel dB below the main lobe level.

Properties
Length

Taylor window length. The window length must be a positive integer. Entering a positive noninteger
value for Length rounds the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

Nbar

Number of nearly constant-level sidelobes. Must be a positive integer.

 sigwin.taylorwin class

1-2315

SidelobeLevel

Maximum sidelobe level relative to the main lobe peak. The maximum sidelobe level is a nonnegative
number which gives side lobes SidelobeLevel dB down from the main lobe peak.

Methods
generate Generates Taylor window
info Display information about Taylor window object
winwrite Save Taylor window object values in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Taylor Windows

Generate a Taylor window of length N = 32 with a maximum sidelobe level of 60 dB and two
constant-level sidelobes adjacent to the mainlobe. Display the window.

H = sigwin.taylorwin(32,3,60);

wvt = wvtool(H);
ax = wvt.CurrentAxes;
ax.YLim = [-50 50];

1 Functions

1-2316

Generate a Taylor window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.taylorwin(16);

win = generate(H)

win = 16×1

 0.3931
 0.5021
 0.6912
 0.9174
 1.1409
 1.3330
 1.4737
 1.5485
 1.5485
 1.4737
 ⋮

wininfo = info(H)

wininfo = 5x47 char array
 'Taylor Window '
 '------------- '

 sigwin.taylorwin class

1-2317

 'Length : 16'
 'Number of nearly constant-level sidelobes : 4 '
 'Maximum sidelobe level : 30'

wvtool(H)

References
Carrara, W. G., R. M. Majewski, and R. S. Goodman. Spotlight Synthetic Aperture Radar: Signal
Processing Algorithms. Boston: Artech House Publishers, 1995. Appendix D.2.

See Also
taylorwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2318

generate
Class: sigwin.taylorwin
Package: sigwin

Generates Taylor window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Taylor window object H as a double-precision column
vector.

Examples

Taylor Windows

Generate a Taylor window of length N = 32 with a maximum sidelobe level of 60 dB and two
constant-level sidelobes adjacent to the mainlobe. Display the window.

H = sigwin.taylorwin(32,3,60);

wvt = wvtool(H);
ax = wvt.CurrentAxes;
ax.YLim = [-50 50];

 generate

1-2319

Generate a Taylor window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.taylorwin(16);

win = generate(H)

win = 16×1

 0.3931
 0.5021
 0.6912
 0.9174
 1.1409
 1.3330
 1.4737
 1.5485
 1.5485
 1.4737
 ⋮

wininfo = info(H)

wininfo = 5x47 char array
 'Taylor Window '
 '------------- '

1 Functions

1-2320

 'Length : 16'
 'Number of nearly constant-level sidelobes : 4 '
 'Maximum sidelobe level : 30'

wvtool(H)

See Also
taylorwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2321

info
Class: sigwin.taylorwin
Package: sigwin

Display information about Taylor window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and sidelobe information for the Taylor window object H.

info_win = info(H) returns length and sidelobe information for the Taylor window object H in the
character array info_win.

Examples

Taylor Windows

Generate a Taylor window of length N = 32 with a maximum sidelobe level of 60 dB and two
constant-level sidelobes adjacent to the mainlobe. Display the window.

H = sigwin.taylorwin(32,3,60);

wvt = wvtool(H);
ax = wvt.CurrentAxes;
ax.YLim = [-50 50];

1 Functions

1-2322

Generate a Taylor window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.taylorwin(16);

win = generate(H)

win = 16×1

 0.3931
 0.5021
 0.6912
 0.9174
 1.1409
 1.3330
 1.4737
 1.5485
 1.5485
 1.4737
 ⋮

wininfo = info(H)

wininfo = 5x47 char array
 'Taylor Window '
 '------------- '

 info

1-2323

 'Length : 16'
 'Number of nearly constant-level sidelobes : 4 '
 'Maximum sidelobe level : 30'

wvtool(H)

See Also
taylorwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2324

winwrite
Class: sigwin.taylorwin
Package: sigwin

Save Taylor window object values in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Taylor window object H to an ASCII file. The
file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Taylor window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Taylor Windows

Generate a Taylor window of length N = 32 with a maximum sidelobe level of 60 dB and two
constant-level sidelobes adjacent to the mainlobe. Display the window.

H = sigwin.taylorwin(32,3,60);

wvt = wvtool(H);
ax = wvt.CurrentAxes;
ax.YLim = [-50 50];

 winwrite

1-2325

Generate a Taylor window of length N = 16. Return its values as a column vector. Show information
about the window object. Display the window.

H = sigwin.taylorwin(16);

win = generate(H)

win = 16×1

 0.3931
 0.5021
 0.6912
 0.9174
 1.1409
 1.3330
 1.4737
 1.5485
 1.5485
 1.4737
 ⋮

wininfo = info(H)

wininfo = 5x47 char array
 'Taylor Window '
 '------------- '

1 Functions

1-2326

 'Length : 16'
 'Number of nearly constant-level sidelobes : 4 '
 'Maximum sidelobe level : 30'

wvtool(H)

See Also
taylorwin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2327

sigwin.triang class
Package: sigwin

Construct triangular window object

Description

Note The use of sigwin.triang is not recommended. Use triang instead.

sigwin.triang is a triangular window object.

sigwin.triang creates a handle to a triangular window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

For L odd, the triangular window is defined as:

w(n) =

2n
L + 1 1 ≤ n ≤ L + 1

2

2 − 2n
L + 1

L + 1
2 + 1 ≤ n ≤ L

For L even, the triangular window is defined as:

w(n) =

(2n− 1)
L 1 ≤ n ≤ L

2

2 − (2n− 1)
L

L
2 + 1 ≤ n ≤ L

Construction
H = sigwin.triang returns a triangular window object H of length 64.

H = sigwin.triang(Length) returns a triangular window object H of length Length. Entering a
positive non-integer value for Length rounds the length to the nearest integer. Entering a 1 for
Length results in a window with a single value of 1.

Properties
Length

Triangular window length. The window length requires a positive integer. Entering a positive non-
integer value for Length rounds the length to the nearest integer. Entering a 1 for Length results in
a window with a single value of 1.

1 Functions

1-2328

Methods
generate Generates triangular window
info Display information about triangular window
winwrite Save triangular window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Triangular Window

Generate a triangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.triang(16);

win = generate(H)

win = 16×1

 0.0625
 0.1875
 0.3125
 0.4375
 0.5625
 0.6875
 0.8125
 0.9375
 0.9375
 0.8125
 ⋮

wininfo = info(H)

wininfo = 3x17 char array
 'Triangular Window'
 '-----------------'
 'Length : 16 '

wvtool(H)

 sigwin.triang class

1-2329

References
Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1989.

See Also
triang | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2330

generate
Class: sigwin.triang
Package: sigwin

Generates triangular window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the triangular window object H as a double-precision
column vector.

Examples

Triangular Window

Generate a triangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.triang(16);

win = generate(H)

win = 16×1

 0.0625
 0.1875
 0.3125
 0.4375
 0.5625
 0.6875
 0.8125
 0.9375
 0.9375
 0.8125
 ⋮

wininfo = info(H)

wininfo = 3x17 char array
 'Triangular Window'
 '-----------------'
 'Length : 16 '

wvtool(H)

 generate

1-2331

See Also
triang | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2332

info
Class: sigwin.triang
Package: sigwin

Display information about triangular window

Syntax
info(H)
info_array = info(H)

Description
info(H) displays length information for the triangular window object H.

info_array = info(H) returns length information for the triangular window object H in the
character array info_array.

Examples

Triangular Window

Generate a triangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.triang(16);

win = generate(H)

win = 16×1

 0.0625
 0.1875
 0.3125
 0.4375
 0.5625
 0.6875
 0.8125
 0.9375
 0.9375
 0.8125
 ⋮

wininfo = info(H)

wininfo = 3x17 char array
 'Triangular Window'
 '-----------------'
 'Length : 16 '

 info

1-2333

wvtool(H)

See Also
triang | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2334

winwrite
Class: sigwin.triang
Package: sigwin

Save triangular window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the triangular window object H to an ASCII file.
The file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the triangular window object H as a column vector in
the ASCII file 'filename' in the current folder. The file extension .wf is automatically appended to
filename.

Examples

Triangular Window

Generate a triangular window of length N = 16. Return its values as a column vector. Show
information about the window object. Display the window.

H = sigwin.triang(16);

win = generate(H)

win = 16×1

 0.0625
 0.1875
 0.3125
 0.4375
 0.5625
 0.6875
 0.8125
 0.9375
 0.9375
 0.8125
 ⋮

wininfo = info(H)

wininfo = 3x17 char array
 'Triangular Window'
 '-----------------'

 winwrite

1-2335

 'Length : 16 '

wvtool(H)

See Also
triang | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2336

sigwin.tukeywin class
Package: sigwin

Construct Tukey window object

Description

Note The use of sigwin.tukeywin is not recommended. Use tukeywin instead.

sigwin.tukeywin creates a handle to a Tukey window object for use in spectral analysis and FIR
filtering by the window method. Object methods enable workspace import and ASCII file export of the
window values.

The following equation defines the N–point Tukey window:

w(x) =

1
2 1 + cos(2π

α [x− α/2]) 0 ≤ x < α
2

1 α
2 ≤ x < 1 − α

2
1
2 1 + cos(2π

α [x− 1 + α/2]) 1 − α
2 ≤ x ≤ 1

where x is a N–point linearly spaced vector generated using linspace. The parameter α is the ratio
of cosine-tapered section length to the entire window length with 0 ≤α≤1. For example, setting α=0.5
produces a Tukey window where 1/2 of the entire window length consists of segments of a phase-
shifted cosine with period 2α=1. If you specify α≤0, an N-point rectangular window is returned. If
you specify α≥1, a von Hann window (sigwin.hann) is returned.

Construction
H = sigwin.tukeywin returns a Tukey or cosine-tapered window object H of length 64 with Alpha
parameter equal to 0.5.

H = sigwin.tukeywin(Length) returns a Tukey window object H of length Length with Alpha
parameter equal to 0.5. Length requires a positive integer. Entering a positive noninteger value for
Length rounds the length to the nearest integer.

H = sigwin.tukeywin(Length,Alpha) returns a Tukey window object with the ratio of the
tapered section length to the entire window length Alpha. Alpha defaults to 0.5. As Alpha
approaches zero, the Tukey window approaches a rectangular window. As Alpha approaches one, the
Tukey window approaches a Hann window.

 sigwin.tukeywin class

1-2337

Properties
Length

Tukey window length. The window length must be a positive integer. Entering a positive noninteger
value for Length rounds the length to the nearest integer. Entering a 1 for Length results in a
window with a single value of 1.

Alpha

The ratio of tapered window section to constant section. As a ratio, Alpha satisfies the inequality
0 ≤ α ≤ 1. As Alpha approaches zero, the Tukey window approaches a rectangular window. As Alpha
approaches one, the Tukey window approaches a Hann window. Specifying Alpha less than zero or
greater than one replaces Alpha with 0 and 1 respectively.

Methods
generate Generates Tukey window
info Display information about Tukey window object
winwrite Save Tukey window in ASCII file

Copy Semantics
Handle. To learn how copy semantics affect your use of the class, see Copying Objects in the MATLAB
Programming Fundamentals documentation.

Examples

Tukey Windows

Generate two Tukey windows of length N = 64:

• The first window has α = 1/4. α is the ratio of tapered window section length to constant section
length.

• The second window has α = 3/4.

Display the two windows.

H14 = sigwin.tukeywin(64,1/4);
H34 = sigwin.tukeywin(64,3/4);

wvt = wvtool(H14,H34);
legend(wvt.CurrentAxes,'\alpha = 1/4','\alpha = 3/4')

1 Functions

1-2338

Generate a Tukey window with length N = 16 and the default α = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.tukeywin(16);

win = generate(H)

win = 16×1

 0
 0.1654
 0.5523
 0.9045
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Tukey Window '
 '------------ '

 sigwin.tukeywin class

1-2339

 'Length : 16 '
 'Alpha : 0.5'

wvtool(H)

References

[1] Bloomfield, P. Fourier Analysis of Time Series: An Introduction. New York: Wiley-Interscience,
2000.

See Also
tukeywin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2340

generate
Class: sigwin.tukeywin
Package: sigwin

Generates Tukey window

Syntax
win = generate(H)

Description
win = generate(H) returns the values of the Tukey window object H as a double-precision column
vector.

Examples

Tukey Windows

Generate two Tukey windows of length N = 64:

• The first window has α = 1/4. α is the ratio of tapered window section length to constant section
length.

• The second window has α = 3/4.

Display the two windows.

H14 = sigwin.tukeywin(64,1/4);
H34 = sigwin.tukeywin(64,3/4);

wvt = wvtool(H14,H34);
legend(wvt.CurrentAxes,'\alpha = 1/4','\alpha = 3/4')

 generate

1-2341

Generate a Tukey window with length N = 16 and the default α = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.tukeywin(16);

win = generate(H)

win = 16×1

 0
 0.1654
 0.5523
 0.9045
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Tukey Window '
 '------------ '

1 Functions

1-2342

 'Length : 16 '
 'Alpha : 0.5'

wvtool(H)

See Also
tukeywin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 generate

1-2343

info
Class: sigwin.tukeywin
Package: sigwin

Display information about Tukey window object

Syntax
info(H)
info_win = info(H)

Description
info(H) displays length and tapered–to–constant section ratio information for the Tukey window
object H.

info_win = info(H) returns length and tapered–to–constant section ratio information for the
Tukey window object H in the character array info_win.

Examples

Tukey Windows

Generate two Tukey windows of length N = 64:

• The first window has α = 1/4. α is the ratio of tapered window section length to constant section
length.

• The second window has α = 3/4.

Display the two windows.

H14 = sigwin.tukeywin(64,1/4);
H34 = sigwin.tukeywin(64,3/4);

wvt = wvtool(H14,H34);
legend(wvt.CurrentAxes,'\alpha = 1/4','\alpha = 3/4')

1 Functions

1-2344

Generate a Tukey window with length N = 16 and the default α = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.tukeywin(16);

win = generate(H)

win = 16×1

 0
 0.1654
 0.5523
 0.9045
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Tukey Window '
 '------------ '

 info

1-2345

 'Length : 16 '
 'Alpha : 0.5'

wvtool(H)

See Also
tukeywin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

1 Functions

1-2346

winwrite
Class: sigwin.tukeywin
Package: sigwin

Save Tukey window in ASCII file

Syntax
winwrite(H)
winwrite(H,'filename')

Description
winwrite(H) opens a dialog to export the values of the Tukey window object to an ASCII file. The
file extension .wf is automatically appended.

winwrite(H,'filename') saves the values of the Tukey window object H in the current folder as a
column vector in the ASCII file 'filename'. The file extension .wf is automatically appended to
filename.

Examples

Tukey Windows

Generate two Tukey windows of length N = 64:

• The first window has α = 1/4. α is the ratio of tapered window section length to constant section
length.

• The second window has α = 3/4.

Display the two windows.

H14 = sigwin.tukeywin(64,1/4);
H34 = sigwin.tukeywin(64,3/4);

wvt = wvtool(H14,H34);
legend(wvt.CurrentAxes,'\alpha = 1/4','\alpha = 3/4')

 winwrite

1-2347

Generate a Tukey window with length N = 16 and the default α = 1/2. Return its values as a column
vector. Show information about the window object. Display the window.

H = sigwin.tukeywin(16);

win = generate(H)

win = 16×1

 0
 0.1654
 0.5523
 0.9045
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 ⋮

wininfo = info(H)

wininfo = 4x13 char array
 'Tukey Window '
 '------------ '

1 Functions

1-2348

 'Length : 16 '
 'Alpha : 0.5'

wvtool(H)

See Also
tukeywin | window | WVTool

Topics
“Windows”
Class Attributes
Property Attributes

 winwrite

1-2349

Simulation Data Inspector
Inspect and compare data and simulation results to validate and iterate model designs

Description
The Simulation Data Inspector visualizes and compares multiple kinds of data.

Using the Simulation Data Inspector, you can inspect and compare time series data at multiple stages
of your workflow. This example workflow shows how the Simulation Data Inspector supports all
stages of the design cycle:

1 “View Data in the Simulation Data Inspector” (Simulink).

Run a simulation in a model configured to log data to the Simulation Data Inspector, or import
data from the workspace or a MAT-file. You can view and verify model input data or inspect
logged simulation data while iteratively modifying your model diagram, parameter values, or
model configuration.

2 “Inspect Simulation Data” (Simulink).

Plot signals on multiple subplots, zoom in and out on specified plot axes, and use data cursors to
understand and evaluate the data. “Create Plots Using the Simulation Data Inspector” (Simulink)
to tell your story.

3 “Compare Simulation Data” (Simulink)

Compare individual signals or simulation runs and analyze your comparison results with relative,
absolute, and time tolerances. The compare tools in the Simulation Data Inspector facilitate
iterative design and allow you to highlight signals that do not meet your tolerance requirements.
For more information about the comparison operation, see “How the Simulation Data Inspector
Compares Data” (Simulink).

4 “Save and Share Simulation Data Inspector Data and Views” (Simulink).

Share your findings with others by saving Simulation Data Inspector data and views.

You can also harness the capabilities of the Simulation Data Inspector from the command line. For
more information, see “Inspect and Compare Data Programmatically” (Simulink).

1 Functions

1-2350

Open the Simulation Data Inspector
• Simulink Toolstrip: On the Simulation tab, under Review Results, click Data Inspector.
• Click the streaming badge on a signal to open the Simulation Data Inspector and plot the signal.
• MATLAB command prompt: Enter Simulink.sdi.view.

Examples

Apply a Tolerance to a Signal in Multiple Runs

You can use the Simulation Data Inspector programmatic interface to modify a parameter for the
same signal in multiple runs. This example adds an absolute tolerance of 0.1 to a signal in all four
runs of data.

First, clear the workspace and load the Simulation Data Inspector session with the data. The session
includes logged data from four simulations of a Simulink® model of a longitudinal controller for an
aircraft.

Simulink.sdi.clear
Simulink.sdi.load('AircraftExample.mldatx');

Use the Simulink.sdi.getRunCount function to get the number of runs in the Simulation Data
Inspector. You can use this number as the index for a for loop that operates on each run.

count = Simulink.sdi.getRunCount;

Then, use a for loop to assign the absolute tolerance of 0.1 to the first signal in each run.

 Simulation Data Inspector

1-2351

for a = 1:count
 runID = Simulink.sdi.getRunIDByIndex(a);
 aircraftRun = Simulink.sdi.getRun(runID);
 sig = getSignalByIndex(aircraftRun,1);
 sig.AbsTol = 0.1;
end

• “View Data in the Simulation Data Inspector” (Simulink)
• “Inspect Simulation Data” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Iterate Model Design Using the Simulation Data Inspector” (Simulink)

Programmatic Use
Simulink.sdi.view opens the Simulation Data Inspector from the MATLAB command line.

See Also
Functions
Simulink.sdi.clear | Simulink.sdi.clearPreferences | Simulink.sdi.snapshot

Topics
“View Data in the Simulation Data Inspector” (Simulink)
“Inspect Simulation Data” (Simulink)
“Compare Simulation Data” (Simulink)
“Iterate Model Design Using the Simulation Data Inspector” (Simulink)

Introduced in R2010b

1 Functions

1-2352

Simulink.sdi.compareRuns
Package: Simulink.sdi

Compare data in two simulation runs

Syntax
diffResult = Simulink.sdi.compareRuns(runID1,runID2)
diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value)

Description
diffResult = Simulink.sdi.compareRuns(runID1,runID2) compares the data in the runs
that correspond to runID1 and runID2 and returns the result in the
Simulink.sdi.DiffRunResult object diffResult. The comparison uses the Simulation Data
Inspector comparison algorithm. For more information about the algorithm, see “How the Simulation
Data Inspector Compares Data” (Simulink).

diffResult = Simulink.sdi.compareRuns(runID1,runID2,Name,Value) compares the
simulation runs that correspond to runID1 and runID2 using the options specified by one or more
Name,Value pair arguments. For more information about how the options can affect the comparison,
see “How the Simulation Data Inspector Compares Data” (Simulink).

Examples

Compare Runs with Global Tolerance

You can specify global tolerance values to use when comparing two simulation runs. Global tolerance
values are applied to all signals within the run. This example shows how to specify global tolerance
values for a run comparison and how to analyze and save the comparison results.

First, load the session file that contains the data to compare. The session file contains data for four
simulations of an aircraft longitudinal controller. This example compares data from two runs that use
different input filter time constants.

Simulink.sdi.load('AircraftExample.mldatx');

To access the run data to compare, use the Simulink.sdi.getAllRunIDs (Simulink) function to
get the run IDs that correspond to the last two simulation runs.

runIDs = Simulink.sdi.getAllRunIDs;
runID1 = runIDs(end - 1);
runID2 = runIDs(end);

Use the Simulink.sdi.compareRuns (Simulink) function to compare the runs. Specify a global
relative tolerance value of 0.2 and a global time tolerance value of 0.5.

runResult = Simulink.sdi.compareRuns(runID1,runID2,'reltol',0.2,'timetol',0.5);

 Simulink.sdi.compareRuns

1-2353

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see whether
signals were within the tolerance values or out of tolerance.

runResult.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 3
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

All three signal comparison results fell within the specified global tolerance.

You can save the comparison results to an MLDATX file using the saveResult (Simulink) function.

saveResult(runResult,'InputFilterComparison');

Analyze Simulation Data Using Signal Tolerances

You can programmatically specify signal tolerance values to use in comparisons performed using the
Simulation Data Inspector. In this example, you compare data collected by simulating a model of an
aircraft longitudinal flight control system. Each simulation uses a different value for the input filter
time constant and logs the input and output signals. You analyze the effect of the time constant
change by comparing results using the Simulation Data Inspector and signal tolerances.

First, load the session file that contains the simulation data.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains four runs. In this example, you compare data from the first two runs in the
file. Access the Simulink.sdi.Run objects for the first two runs loaded from the file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Now, compare the two runs without specifying any tolerances.

noTolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);

Use the getResultByIndex function to access the comparison results for the q and alpha signals.

qResult = getResultByIndex(noTolDiffResult,1);
alphaResult = getResultByIndex(noTolDiffResult,2);

Check the Status of each signal result to see whether the comparison result fell within our out of
tolerance.

1 Functions

1-2354

qResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

alphaResult.Status

ans =
 ComparisonSignalStatus enumeration

 OutOfTolerance

The comparison used a value of 0 for all tolerances, so the OutOfTolerance result means the
signals are not identical.

You can further analyze the effect of the time constant by specifying tolerance values for the signals.
Specify the tolerances by setting the properties for the Simulink.sdi.Signal objects that
correspond to the signals being compared. Comparisons use tolerances specified for the baseline
signals. This example specifies a time tolerance and an absolute tolerance.

To specify a tolerance, first access the Signal objects from the baseline run.

runTs1 = Simulink.sdi.getRun(runIDTs1);
qSig = getSignalsByName(runTs1,'q, rad/sec');
alphaSig = getSignalsByName(runTs1,'alpha, rad');

Specify an absolute tolerance of 0.1 and a time tolerance of 0.6 for the q signal using the AbsTol
and TimeTol properties.

qSig.AbsTol = 0.1;
qSig.TimeTol = 0.6;

Specify an absolute tolerance of 0.2 and a time tolerance of 0.8 for the alpha signal.

alphaSig.AbsTol = 0.2;
alphaSig.TimeTol = 0.8;

Compare the results again. Access the results from the comparison and check the Status property
for each signal.

tolDiffResult = Simulink.sdi.compareRuns(runIDTs1,runIDTs2);
qResult2 = getResultByIndex(tolDiffResult,1);
alphaResult2 = getResultByIndex(tolDiffResult,2);

qResult2.Status

ans =
 ComparisonSignalStatus enumeration

 WithinTolerance

alphaResult2.Status

ans =
 ComparisonSignalStatus enumeration

 Simulink.sdi.compareRuns

1-2355

 WithinTolerance

Configure Comparisons to Check Metadata

You can use the Simulink.sdi.compareRuns function to compare signal data and metadata,
including data type and start and stop times. A single comparison may check for mismatches in one
or more pieces of metadata. When you check for mismatches in signal metadata, the Summary
property of the Simulink.sdi.DiffRunResult object may differ from a basic comparison because
the Status property for a Simulink.sdi.DiffSignalResult object can indicate the metadata
mismatch. You can configure comparisons using the Simulink.sdi.compareRuns function for
imported data and for data logged from a simulation.

This example configures a comparison of runs created from workspace data three ways to show how
the Summary of the DiffSignalResult object can provide specific information about signal
mismatches.

Create Workspace Data

The Simulink.sdi.compareRuns function compares time series data. Create data for a sine wave
to use as the baseline signal, using the timeseries format. Give the timeseries the name Wave
Data.

time = 0:0.1:20;
sig1vals = sin(2*pi/5*time);
sig1_ts = timeseries(sig1vals,time);
sig1_ts.Name = 'Wave Data';

Create a second sine wave to compare against the baseline signal. Use a slightly different time vector
and attenuate the signal so the two signals are not identical. Cast the signal data to the single data
type. Also name this timeseries object Wave Data. The Simulation Data Inspector comparison
algorithm will align these signals for comparison using the name.

time2 = 0:0.1:22;
sig2vals = single(0.98*sin(2*pi/5*time2));
sig2_ts = timeseries(sig2vals,time2);
sig2_ts.Name = 'Wave Data';

Create and Compare Runs in the Simulation Data Inspector

The Simulink.sdi.compareRuns function compares data contained in Simulink.sdi.Run
objects. Use the Simulink.sdi.createRun function to create runs in the Simulation Data
Inspector for the data. The Simulink.sdi.createRun function returns the run ID for each created
run.

runID1 = Simulink.sdi.createRun('Baseline Run','vars',sig1_ts);
runID2 = Simulink.sdi.createRun('Compare to Run','vars',sig2_ts);

You can use the Simulink.sdi.compareRuns function to compare the runs. The comparison
algorithm converts the signal data to the double data type and synchronizes the signal data before
computing the difference signal.

basic_DRR = Simulink.sdi.compareRuns(runID1,runID2);

1 Functions

1-2356

Check the Summary property of the returned Simulink.sdi.DiffRunResult object to see the
result of the comparison.

basic_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 1
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The difference between the signals is out of tolerance.

Compare Runs and Check for Data Type Match

Depending on your system requirements, you may want the data types for signals you compare to
match. You can use the Simulink.sdi.compareRuns function to configure the comparison
algorithm to check for and report data type mismatches.

dataType_DRR = Simulink.sdi.compareRuns(runID1,runID2,'DataType','MustMatch');
dataType_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0
 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 1
 TimeMismatch: 0
 StartStopMismatch: 0
 Unsupported: 0

The result of the signal comparison is now DataTypeMismatch because the data for the baseline
signal is double data type, while the data for the signal compared to the baseline is single data
type.

Compare Runs and Check for Start and Stop Time Match

You can use the Simulink.sdi.compareRuns function to configure the comparison algorithm to
check whether the aligned signals have the same start and stop times.

startStop_DRR = Simulink.sdi.compareRuns(runID1,runID2,'StartStop','MustMatch');
startStop_DRR.Summary

ans = struct with fields:
 OutOfTolerance: 0

 Simulink.sdi.compareRuns

1-2357

 WithinTolerance: 0
 Unaligned: 0
 UnitsMismatch: 0
 Empty: 0
 Canceled: 0
 EmptySynced: 0
 DataTypeMismatch: 0
 TimeMismatch: 0
 StartStopMismatch: 1
 Unsupported: 0

The signal comparison result is now StartStopMismatch because the signals created in the
workspace have different stop times.

Compare Runs with Alignment Criteria

When you compare runs using the Simulation Data Inspector, you can specify alignment criteria that
determine how signals are paired with each other for comparison. This example compares data from
simulations of a model of an aircraft longitudinal control system. The simulations used a square wave
input. The first simulation used an input filter time constant of 0.1s and the second simulation used
an input filter time constant of 0.5s.

First, load the simulation data from the session file that contains the data for this example.

Simulink.sdi.load('AircraftExample.mldatx');

The session file contains data for four simulations. This example compares data from the first two
runs. Access the run IDs for the first two runs loaded from the session file.

runIDs = Simulink.sdi.getAllRunIDs;
runIDTs1 = runIDs(end-3);
runIDTs2 = runIDs(end-2);

Before running the comparison, define how you want the Simulation Data Inspector to align the
signals between the runs. This example aligns signals by their name, then by their block path, and
then by their Simulink identifier.

alignMethods = [Simulink.sdi.AlignType.SignalName
 Simulink.sdi.AlignType.BlockPath
 Simulink.sdi.AlignType.SID];

Compare the simulation data in your two runs, using the alignment criteria you specified. The
comparison uses a small time tolerance to account for the effect of differences in the step size used
by the solver on the transition of the square wave input.

diffResults = Simulink.sdi.compareRuns(runIDTs1,runIDTs2,'align',alignMethods,...
 'timetol',0.005);

You can use the getResultByIndex function to access the comparison results for the aligned
signals in the runs you compared. You can use the Count property of the
Simulink.sdi.DiffRunResult object to set up a for loop to check the Status property for each
Simulink.sdi.DiffSignalResult object.

numComparisons = diffResults.count;

1 Functions

1-2358

for k = 1:numComparisons
 resultAtIdx = getResultByIndex(diffResults,k);

 sigID1 = resultAtIdx.signalID1;
 sigID2 = resultAtIdx.signalID2;

 sig1 = Simulink.sdi.getSignal(sigID1);
 sig2 = Simulink.sdi.getSignal(sigID2);

 displayStr = 'Signals %s and %s: %s \n';
 fprintf(displayStr,sig1.Name,sig2.Name,resultAtIdx.Status);
end

Signals q, rad/sec and q, rad/sec: OutOfTolerance
Signals alpha, rad and alpha, rad: OutOfTolerance
Signals Stick and Stick: WithinTolerance

Input Arguments
runID1 — Baseline run identifier
integer

Numeric identifier for the baseline run in the comparison, specified as a run ID that corresponds to a
run in the Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are
created. You can get the run ID for a run by using the ID property of the Simulink.sdi.Run object,
the Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

runID2 — Identifier for run to compare
integer

Numeric identifier for the run to compare, specified as a run ID that corresponds to a run in the
Simulation Data Inspector. The Simulation Data Inspector assigns run IDs when runs are created. You
can get the run ID for a run by using the ID property of the Simulink.sdi.Run object, the
Simulink.sdi.getAllRunIDs function, or the Simulink.sdi.getRunIDByIndex function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'abstol',x,'align',alignOpts

Align — Signal alignment options
string array | character vector array

Signal alignment options, specified as the comma-separated pair consisting of 'Align' and a string
array or array of character vectors.

Array specifying alignment options to use for pairing signals from the runs being compared. The
Simulation Data Inspector aligns signals first by the first element in the array, then by the second
element in the array, and so on. For more information, see “Signal Alignment” (Simulink).

 Simulink.sdi.compareRuns

1-2359

Value Aligns By
Simulink.sdi.AlignType.BlockPath Path to the source block for the signal
Simulink.sdi.AlignType.SID Simulink identifier “Simulink Identifiers” (Simulink)
Simulink.sdi.AlignType.SignalName Signal name
Simulink.sdi.AlignType.DataSource Path of the variable in the MATLAB workspace

Example: [Simulink.sdi.AlignType.SignalName,Simulink.sdi.AlignType.SID] specifies
signal alignment by name and then by SID.

AbsTol — Absolute tolerance for comparison
0 (default) | scalar

Positive-valued global absolute tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'AbsTol' and a scalar. For more information about how
tolerances are used in comparisons, see “Tolerance Specification” (Simulink).
Example: 0.5
Data Types: double

RelTol — Relative tolerance for comparison
0 (default) | scalar

Positive-valued global relative tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'RelTol' and a scalar. The relative tolerance is expressed as a
fractional multiplier. For example, 0.1 specifies a 10 percent tolerance. For more information about
how the relative tolerance is applied in the Simulation Data Inspector, see “Tolerance Specification”
(Simulink).
Example: 0.1
Data Types: double

TimeTol — Time tolerance for comparison
0 (default) | scalar

Positive-valued global time tolerance used for all signals in the run comparison, specified as the
comma-separated pair consisting of 'TimeTol' and a scalar. Specify the time tolerance in units of
seconds. For more information about tolerances in the Simulation Data Inspector, see “Tolerance
Specification” (Simulink).
Example: 0.2
Data Types: double

DataType — Comparison sensitivity to signal data types
'MustMatch'

Specify the name-value pair 'DataType','MustMatch' when you want the comparison to be
sensitive to data type mismatches in compared signals. When you specify this name-value pair, the
algorithm compares the data types for aligned signals before synchronizing and comparing the signal
data.

The Simulink.sdi.compareRuns function does not compare the data types of aligned signals
unless you specify this name-value pair. The comparison algorithm can compare signals with different
data types.

1 Functions

1-2360

When signal data types do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to DataTypeMismatch.

When you specify that data types must match and configure the comparison to stop on the first
mismatch, a data type mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

Time — Comparison sensitivity to signal time vectors
'MustMatch'

Specify the name-value pair 'Time','MustMatch' when you want the comparison to be sensitive to
mismatches in the time vectors of compared signals. When you specify this name-value pair, the
algorithm compares the time vectors of aligned signals before synchronizing and comparing the
signal data.

Comparisons are not sensitive to differences in signal time vectors unless you specify this name-value
pair. For comparisons that are not sensitive to differences in the time vectors, the comparison
algorithm synchronizes the signals prior to the comparison. For more information about how
synchronization works, see “How the Simulation Data Inspector Compares Data” (Simulink).

When the time vectors for signals do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to TimeMismatch.

When you specify that time vectors must match and configure the comparison to stop on the first
mismatch, a time vector mismatch stops the comparison. A stopped comparison may not compute
results for all signals.

StartStop — Comparison sensitivity to signal start and stop times
'MustMatch'

Specify the name-value pair 'StartStop','MustMatch' when you want the comparison to be
sensitive to mismatches in signal start and stop times. When you specify this name-value pair, the
algorithm compares the start and stop times for aligned signals before synchronizing and comparing
the signal data.

When the start times and stop times do not match, the Status property of the
Simulink.sdi.DiffSignalResult object for the result is set to StartStopMismatch.

When you specify that start and stop times must match and configure the comparison to stop on the
first mismatch, a start or stop time mismatch stops the comparison. A stopped comparison may not
compute results for all signals.

StopOnFirstMismatch — Whether comparison stops on first detected mismatch
'Metadata' | 'Any'

Whether the comparison stops without comparing remaining signals on the first detected mismatch,
specified as the comma-separated pair consisting of 'StopOnFirstMismatch' and 'Metadata' or
'Any'. A stopped comparison may not compute results for all signals, and can return a mismatched
result more quickly.

• Metadata — A mismatch in metadata for aligned signals causes the comparison to stop. Metadata
comparisons happen before comparing signal data.

The Simulation Data Inspector always aligns signals and compares signal units. When you
configure the comparison to stop on the first mismatch, an unaligned signal or mismatched units

 Simulink.sdi.compareRuns

1-2361

always causes the comparison to stop. You can specify additional name-value pairs to configure
the comparison to check and stop on the first mismatch for additional metadata, such as signal
data type, start and stop times, and time vectors.

• Any — A mismatch in metadata or signal data for aligned signals causes the comparison to stop.

ExpandChannels — Whether to compute comparison results for each channel in
multidimensional signals
true or 1 (default) | false or 0

Whether to compute comparison results for each channel in multidimensional signals, specified as the
comma-separated pair consisting of 'ExpandChannels' and a logical true (1) or false (0).

• true or 1 — Comparison expands multidimensional signals represented as a single signal with
nonscalar sample values to a set of signals with scalar sample values and computes a comparison
result for each of these signals.

The representation of the multidimensional signal in the Simulation Data Inspector as a single
signal with nonscalar sample values does not change.

• false or 0 — Comparison does not compute results for multidimensional signals represented as a
single signal with nonscalar sample values.

Output Arguments
diffResult — Comparison results
Simulink.sdi.DiffRunResult

Comparison results, returned as a Simulink.sdi.DiffRunResult object.

Limitations
The Simulation Data Inspector does not support comparing:

• Signals of data types int64 or uint64.
• Variable-size signals.

See Also
Simulink.sdi.compareSignals | Simulink.sdi.getRunIDByIndex |
Simulink.sdi.getRunCount | Simulink.sdi.DiffRunResult | getResultByIndex |
Simulink.sdi.DiffSignalResult

Topics
“Inspect and Compare Data Programmatically” (Simulink)
“Compare Simulation Data” (Simulink)
“How the Simulation Data Inspector Compares Data” (Simulink)

Introduced in R2011b

1 Functions

1-2362

sinad
Signal to noise and distortion ratio

Syntax
r = sinad(x)
r = sinad(x,fs)

r = sinad(pxx,f,'psd')

r = sinad(sxx,f,rbw,'power')

[r,totdistpow] = sinad(___)

sinad(___)

Description
r = sinad(x) returns the signal to noise and distortion ratio (SINAD) in dBc of the real-valued
sinusoidal signal x. The SINAD is determined using a modified periodogram of the same length as the
input signal. The modified periodogram uses a Kaiser window with β = 38.

r = sinad(x,fs) specifies the sample rate fs of the input signal x. If you do not specify fs, then
the sample rate defaults to 1.

r = sinad(pxx,f,'psd') specifies the input pxx as a one-sided power spectral density (PSD)
estimate. f is a vector of frequencies corresponding to the PSD estimates in pxx.

r = sinad(sxx,f,rbw,'power') specifies the input as a one-sided power spectrum. rbw is the
resolution bandwidth over which each power estimate is integrated.

[r,totdistpow] = sinad(___) returns the total noise and harmonic distortion power (in dB) of
the signal.

sinad(___) with no output arguments plots the spectrum of the signal in the current figure
window and labels its fundamental component. It uses different colors to draw the fundamental
component, the DC value, and the noise. The SINAD appears above the plot.

Examples

SINAD for Signal with One Harmonic or One Harmonic Plus Noise

Create two signals. Both signals have a fundamental frequency of π/4 rad/sample with amplitude 1
and the first harmonic of frequency π/2 rad/sample with amplitude 0.025. One of the signals
additionally has additive white Gaussian noise with variance 0 . 052.

Create the two signals. Set the random number generator to the default settings for reproducible
results. Determine the SINAD for the signal without additive noise and compare the result to the
theoretical SINAD.

 sinad

1-2363

n = 0:159;
x = cos(pi/4*n)+0.025*sin(pi/2*n);
rng default

y = cos(pi/4*n)+0.025*sin(pi/2*n)+0.05*randn(size(n));
r = sinad(x)

r = 32.0412

powfund = 1;
powharm = 0.025^2;
thSINAD = 10*log10(powfund/powharm)

thSINAD = 32.0412

Determine the SINAD for the sinusoidal signal with additive noise. Show how including the
theoretical variance of the additive noise approximates the SINAD.

r = sinad(y)

r = 22.8085

varnoise = 0.05^2;
thSINAD = 10*log10(powfund/(powharm+varnoise))

thSINAD = 25.0515

SINAD for Signal with Sample Rate

Create a signal with a fundamental frequency of 1 kHz and unit amplitude, sampled at 480 kHz. The
signal additionally consists of the first harmonic with amplitude 0.02 and additive white Gaussian
noise with variance 0 . 012.

Determine the SINAD and compare the result with the theoretical SINAD.

fs = 48e4;
t = 0:1/fs:1-1/fs;
rng default

x = cos(2*pi*1000*t)+0.02*sin(2*pi*2000*t)+0.01*randn(size(t));
r = sinad(x,fs)

r = 32.2058

powfund = 1;
powharm = 0.02^2;
varnoise = 0.01^2;
thSINAD = 10*log10(powfund/(powharm+varnoise*(1/fs)))

thSINAD = 33.9794

SINAD from Periodogram

Create a signal with a fundamental frequency of 1 kHz and unit amplitude, sampled at 480 kHz. The
signal additionally consists of the first harmonic with amplitude 0.02 and additive white Gaussian

1 Functions

1-2364

noise with standard deviation 0.01. Set the random number generator to the default settings for
reproducible results.

Obtain the periodogram of the signal and use the periodogram as the input to sinad.

fs = 48e4;
t = 0:1/fs:1-1/fs;

rng default
x = cos(2*pi*1000*t)+0.02*sin(2*pi*2000*t)+0.01*randn(size(t));

[pxx,f] = periodogram(x,rectwin(length(x)),length(x),fs);
r = sinad(pxx,f,'psd')

r = 32.2109

SINAD of Amplified Signal

Generate a sinusoid of frequency 2.5 kHz sampled at 50 kHz. Add Gaussian white noise with standard
deviation 0.00005 to the signal. Pass the result through a weakly nonlinear amplifier. Plot the SINAD.

fs = 5e4;
f0 = 2.5e3;
N = 1024;
t = (0:N-1)/fs;

ct = cos(2*pi*f0*t);
cd = ct + 0.00005*randn(size(ct));

amp = [1e-5 5e-6 -1e-3 6e-5 1 25e-3];
sgn = polyval(amp,cd);

sinad(sgn,fs);

 sinad

1-2365

The plot shows the spectrum used to compute the ratio and the region treated as noise. The DC level
and the fundamental are excluded from the noise computation. The fundamental is labeled.

Input Arguments
x — Real-valued sinusoidal input signal
vector

Real-valued sinusoidal input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+cos(pi/2*(0:159))
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

pxx — One-sided PSD estimate
vector

One-sided PSD estimate, specified as a real-valued, nonnegative column vector.

1 Functions

1-2366

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Cyclical frequencies
vector

Cyclical frequencies corresponding to the one-sided PSD estimate, pxx, specified as a row or column
vector. The first element of f must be 0.
Data Types: double | single

sxx — Power spectrum
nonnegative real-valued row or column vector

Power spectrum, specified as a real-valued nonnegative row or column vector.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of the
frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth of the
window.

Output Arguments
r — Signal to noise and distortion ratio in dBc
real-valued scalar

Signal to noise and distortion ratio in dBc, returned as a real-valued scalar.

totdistpow — Total noise and harmonic distortion power of the signal
real-valued scalar

Total noise and harmonic distortion power of the signal, returned as a real-valued scalar expressed in
dB.

More About
Distortion Measurement Functions

The functions thd, sfdr, sinad, and snr measure the response of a weakly nonlinear system
stimulated by a sinusoid.

 sinad

1-2367

When given time-domain input, sinad performs a periodogram using a Kaiser window with large
sidelobe attenuation. To find the fundamental frequency, the algorithm searches the periodogram for
the largest nonzero spectral component. It then computes the central moment of all adjacent bins
that decrease monotonically away from the maximum. To be detectable, the fundamental should be at
least in the second frequency bin. Higher harmonics are at integer multiples of the fundamental
frequency. If a harmonic lies within the monotonically decreasing region in the neighborhood of
another, its power is considered to belong to the larger harmonic. This larger harmonic may or may
not be the fundamental.

The function estimates a noise level using the median power in the regions containing only noise and
distortion. The DC component is excluded from the calculation. The noise at each point is the
estimated level or the ordinate of the point, whichever is smaller. The noise is then subtracted from
the values of the signal and the harmonics.

sinad fails if the fundamental is not the highest spectral component in the signal.

Ensure that the frequency components are far enough apart to accommodate for the sidelobe width
of the Kaiser window. If this is not feasible, you can use the 'power' flag and compute a
periodogram with a different window.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If supplied, input arguments 'power' and 'psd' must be compile-time constants.

See Also
sfdr | snr | thd | toi

Topics
“Analyzing Harmonic Distortion”

Introduced in R2013b

1 Functions

1-2368

sinc
Sinc function

Syntax
y = sinc(x)

Description
y = sinc(x) returns an array, y, whose elements are the “sinc” on page 1-2371 of the elements of
the input, x. The output y is the same size as x.

Examples

Ideal Bandlimited Interpolation

Perform ideal bandlimited interpolation of a random signal sampled at integer spacings.

Assume that the signal to interpolate, x, is 0 outside of the given time interval and has been sampled
at the Nyquist frequency. Reset the random number generator for reproducibility.

rng default

t = 1:10;
x = randn(size(t))';
ts = linspace(-5,15,600);
[Ts,T] = ndgrid(ts,t);
y = sinc(Ts - T)*x;

plot(t,x,'o',ts,y)
xlabel Time, ylabel Signal
legend('Sampled','Interpolated','Location','SouthWest')
legend boxoff

 sinc

1-2369

Input Arguments
x — Input array
scalar value | vector | matrix | N-D array | gpuArray object

Input array, specified as a real-valued or complex-valued scalar, vector, matrix, N-D array, or
gpuArray object. When x is nonscalar, sinc is an element-wise operation.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
y — Sinc of input
scalar value | vector | matrix | N-D array | gpuArray object

Sinc of the input array, x, returned as a real-valued or complex-valued scalar, vector, matrix, N-D
array, or gpuArray object of the same size as x.

1 Functions

1-2370

More About
sinc

The sinc function is defined by

sinct =
sinπt

πt t ≠ 0,

1 t = 0.

This analytic expression corresponds to the continuous inverse Fourier transform of a rectangular
pulse of width 2π and height 1:

sinct = 1
2π ∫−π

π
e jωt dω .

The space of functions bandlimited in the frequency range ω = (− π, π] is spanned by the countably
infinite set of sinc functions shifted by integers. Thus, you can reconstruct any such bandlimited
function g(t) from its samples at integer spacings:

g(t) = ∑
n = −∞

∞
g(n)sinc(t − n) .

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

This function fully supports thread-based environments. For more information, see “Run MATLAB
Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin | square | tripuls

Introduced before R2006a

 sinc

1-2371

single
Cast coefficients of digital filter to single precision

Syntax
f2 = single(f1)

Description
f2 = single(f1) casts coefficients in a digital filter, f1, to single precision and returns a new
digital filter, f2, that contains these coefficients. This is the only way that you can create single-
precision digitalFilter objects.

Examples

Lowpass FIR Filter in Double and Single Precision

Use designfilt to design a 5th-order FIR lowpass filter. Specify a normalized passband frequency
of 0 . 2π rad/sample and a normalized stopband frequency of 0 . 55π rad/sample. Cast the filter
coefficients to single precision.

format long
d = designfilt('lowpassfir','FilterOrder',5, ...
 'PassbandFrequency',0.2,'StopbandFrequency', 0.55);
e = single(d);
classd = class(d.Coefficients)

classd =
'double'

classe = class(e.Coefficients)

classe =
'single'

Input Arguments
f1 — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate f1 based on
frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample.

1 Functions

1-2372

Output Arguments
f2 — Single-precision digital filter
digitalFilter object

Single-precision digital filter, returned as a digitalFilter object.

See Also
designfilt | digitalFilter | double | isdouble | issingle

Introduced in R2014a

 single

1-2373

slewrate
Slew rate of bilevel waveform

Syntax
S = slewrate(X)
S = slewrate(X,Fs)
S = slewrate(X,T)
[S,LT,UT] = slewrate(...)
[S,LT,UT,LL,UL] = slewrate(...)
S = slewrate(...,Name,Value)
slewrate(...)

Description
S = slewrate(X) returns the slew rate for all transitions found in the bilevel waveform, X. The slew
rate is the slope of the line connecting the 10% and 90% reference levels. The sample instants of X
are the indices of the vector. To determine the transitions, slewrate estimates the state levels of the
input waveform by a histogram method. slewrate identifies all regions that cross the upper-state
boundary of the low state and the lower-state boundary of the high state. The low-state and high-state
boundaries are expressed as the state level plus or minus a multiple of the difference between the
state levels. See “State-Level Tolerances” on page 1-2381.

S = slewrate(X,Fs) specifies the sample rate, Fs, in hertz. The first time instant in X corresponds
to t=0.

S = slewrate(X,T) specifies the sample instants in the vector, T. The length of T must equal the
length of X.

[S,LT,UT] = slewrate(...) returns the time instants when the waveform crosses the lower-
percent reference level, LT, and upper-percent reference level, UT. If you do not specify lower- and
upper-percent reference levels, the levels default to 10% and 90%.

[S,LT,UT,LL,UL] = slewrate(...) returns the waveform values that correspond to the lower-
reference levels, LL, and upper-reference levels, UL.

S = slewrate(...,Name,Value) returns the slew rate for all transitions with additional options
specified by one or more Name,Value pair arguments.

slewrate(...) plots the bilevel waveform and darkens the regions of each transition where the
slew rate is computed. The plot marks the lower- and upper-reference level crossings and associated
reference levels. The plot indicates the state levels and associated lower and upper tolerances.

Input Arguments
X

Bilevel waveform as a real-valued column or row vector. If the input waveform does not have at least
one transition, slewrate returns an empty matrix.

1 Functions

1-2374

Fs

Sample rate in hertz.

T

Vector of sample instants. The length of T must equal the length of the bilevel waveform, X.

Name-Value Pair Arguments

PercentReferenceLevels

Percent reference levels. See “Percent Reference Levels” on page 1-2380 for a definition.

Default: [10,90]

StateLevels

Low- and high-state levels. StateLevels is a 1-by-2 real-valued vector. The first element is the low-
state level. The second element is the high-state level. If you do not specify low- and high-state levels,
slewrate estimates the state levels from the input waveform using the histogram method.

Tolerance

Tolerance levels (lower and upper state boundaries) expressed as a percentage. See “State-Level
Tolerances” on page 1-2381.

Default: 2

Output Arguments
S

Slew rates as real-valued scalars. A positive slew rate indicates that the upper-percent reference level
occurs later than the lower-percent reference level. A negative slew rate indicates that the upper-
percent reference level occurs before the lower-percent reference level.

LT

Time instants when signal crosses the lower percent reference level. If you do not specify the lower
percent reference levels with the 'PercentReferenceLevels' name-value pair, the lower percent
reference level is 10%.

UT

Time instants when signal crosses the upper-percent reference level. If you do not specify the upper-
percent reference levels with the 'PercentReferenceLevels' name-value pair, the upper-percent
reference level is 90%.

LL

Waveform values at the lower-reference level.

UL

Waveform values at the upper-reference level.

 slewrate

1-2375

Examples

Slew Rate For One-Transition Waveform

Use slewrate with no output arguments to plot the slew rate information for a step waveform
sampled at 4 MHz.

Load the transitionex.mat file and compute the slew rate. Annotate the slew rate in a plot of the
waveform.

load('transitionex.mat','x','t')

slewrate(x,t)

ans = 1.0310e+07

Slew Rates for Three-Transition Waveform

Create a bilevel waveform with three transitions, two positive and one negative. The sample rate is 4
MHz. Obtain the slew rates for the three transitions.

load('transitionex.mat','x')
fs = 4e6;

1 Functions

1-2376

y = [x;fliplr(x)];
t = (0:length(y)-1)/4e6;

S = slewrate(y,t)

S = 3×1
107 ×

 1.0310
 -0.9320
 1.0310

Annotate the result on a plot of the waveform.

slewrate(y,t);

Lower and Upper Transition Times

Return the lower- and upper-transition times for a three-transition waveform sampled at 4 MHz.

load('transitionex.mat','x')
fs = 4e6;

 slewrate

1-2377

y = [x;fliplr(x)];
t = (0:length(y)-1)/fs;

[~,LT,UT] = slewrate(y,t)

LT = 3×1
10-4 ×

 0.0504
 0.0998
 0.1504

UT = 3×1
10-4 ×

 0.0521
 0.0978
 0.1521

Repeat using the sample rate instead of the time vector.

[~,LT,UT] = slewrate(y,fs)

LT = 3×1
10-4 ×

 0.0504
 0.0998
 0.1504

UT = 3×1
10-4 ×

 0.0521
 0.0978
 0.1521

Annotate the result on a plot of the waveform.

slewrate(y,fs);

1 Functions

1-2378

Lower and Upper Reference Levels

Return the waveform values corresponding to the lower- and upper-reference levels for a three-
transition waveform sampled at 4 MHz. Compute these values for 10% and 90%, the default levels.

load('transitionex.mat','x')
fs = 4e6;

y = [x;fliplr(x)];
t = (0:length(y)-1)/fs;

[~,~,~,LL,UL] = slewrate(y,t)

LL = 0.2212

UL = 2.0564

Repeat the calculation for 20% and 80%. Annotate the result on a plot of the waveform

slewrate(y,t,'PercentReferenceLevels',[20 80]);

 slewrate

1-2379

More About
Percent Reference Levels

If S1 is the low state, S2 is the high state, and U is the upper-percent reference level. The waveform
value corresponding to the upper-percent reference level is

S1 + U
100(S2− S1) .

If L is the lower-percent reference level, the waveform value corresponding to the lower percent
reference level is

S1 + L
100(S2− S1) .

Slew Rate

The slew rate is the slope of a line connecting the upper- and lower-percent reference levels. Let tL
denote the time instant when the waveform crosses the lower reference level and tU denote the time
instant when the waveform crosses the upper percent reference level. Using the definitions for the
upper and lower percent reference levels given in “Percent Reference Levels” on page 1-2380, the
slew rate is

1 Functions

1-2380

S1 + U
100(S2− S1) − S1 + L

100(S2− S1)
tU − tL

= U − L
100

S2− S1
tU − tL

.

When tL occurs earlier than tU, the slew rate is positive. When tU occurs earlier than tL, the slew rate
is negative.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

 slewrate

1-2381

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003.

See Also
falltime | midcross | pulsewidth | risetime | settlingtime | statelevels

Introduced in R2012a

1 Functions

1-2382

snr
Signal-to-noise ratio

Syntax
r = snr(xi,y)

r = snr(x)
r = snr(x,fs,n)

r = snr(pxx,f,'psd')
r = snr(pxx,f,n,'psd')

r = snr(sxx,f,rbw,'power')
r = snr(sxx,f,rbw,n,'power')

r = snr(___ ,'aliased')

[r,noisepow] = snr(___)

snr(___)

Description
r = snr(xi,y) returns the signal-to-noise ratio (SNR) in decibels of a signal, xi, by computing the
ratio of its summed squared magnitude to that of the noise y:

r = mag2db(rssq(xi(:))/rssq(y(:))).
y must have the same dimensions as xi. Use this form when the input signal is not necessarily
sinusoidal and you have an estimate of the noise.

r = snr(x) returns the SNR in decibels relative to the carrier (dBc) of a real-valued sinusoidal
input signal, x. The SNR is determined using a modified periodogram of the same length as the input.
The modified periodogram uses a Kaiser window with β = 38. The result excludes the power of the
first six harmonics, including the fundamental.

r = snr(x,fs,n) returns the SNR in dBc of a real sinusoidal input signal, x, sampled at a rate fs.
The computation excludes the power contained in the lowest n harmonics, including the fundamental.
The default value of fs is 1. The default value of n is 6.

r = snr(pxx,f,'psd') specifies the input pxx as a one-sided power spectral density (PSD)
estimate. The argument f is a vector of the frequencies at which the estimates of pxx occur. The
computation of noise excludes the power of the first six harmonics, including the fundamental.

r = snr(pxx,f,n,'psd') specifies the number of harmonics, n, to exclude when computing the
SNR. The default value of n is 6 and includes the fundamental.

r = snr(sxx,f,rbw,'power') specifies the input as a one-sided power spectrum, sxx, of a real
signal. The input rbw is the resolution bandwidth over which each power estimate is integrated.

r = snr(sxx,f,rbw,n,'power') specifies the number of harmonics, n, to exclude when
computing the SNR. The default value of n is 6 and includes the fundamental.

 snr

1-2383

r = snr(___ ,'aliased') removes harmonics of the fundamental that are aliased into the
Nyquist range. Use this option when the sinusoidal input signal is undersampled. If you do not specify
this option, or if you set it to 'omitaliases', then the function treats as noise any harmonics of the
fundamental frequency that lie beyond the Nyquist range.

[r,noisepow] = snr(___) also returns the total noise power of the nonharmonic components of
the signal.

snr(___) with no output arguments plots the spectrum of the signal in the current figure window
and labels its main features. It uses different colors to draw the fundamental component, the DC
value and the harmonics, and the noise. The SNR appears above the plot. This functionality works for
all syntaxes listed above except snr(x,y).

Examples

Signal-to-Noise Ratio for Rectangular Pulse with Gaussian Noise

Generate a 20-millisecond rectangular pulse sampled for 2 seconds at 10 kHz.

Tpulse = 20e-3;
Fs = 10e3;
t = -1:1/Fs:1;
x = rectpuls(t,Tpulse);

Embed the pulse in white Gaussian noise such that the signal-to-noise ratio (SNR) is 53 dB. Reset the
random number generator for reproducible results.

rng default

SNR = 53;
y = randn(size(x))*std(x)/db2mag(SNR);

s = x + y;

Use the snr function to compute the SNR of the noisy signal.

pulseSNR = snr(x,y)

pulseSNR = 53.1255

Compare SNR with THD and SINAD

Compute and compare the signal-to-noise ratio (SNR), the total harmonic distortion (THD), and the
signal to noise and distortion ratio (SINAD) of a signal.

Create a sinusoidal signal sampled at 48 kHz. The signal has a fundamental of frequency 1 kHz and
unit amplitude. It additionally contains a 2 kHz harmonic with half the amplitude and additive noise
with variance 0.1².

fs = 48e3;
t = 0:1/fs:1-1/fs;
A = 1.0;

1 Functions

1-2384

powfund = A^2/2;
a = 0.4;
powharm = a^2/2;
s = 0.1;
varnoise = s^2;
x = A*cos(2*pi*1000*t) + ...
 a*sin(2*pi*2000*t) + s*randn(size(t));

Verify that SNR, THD, and SINAD agree with their definitions.

SNR = snr(x);
defSNR = 10*log10(powfund/varnoise);
SN = [SNR defSNR]

SN = 1×2

 17.0178 16.9897

THD = thd(x);
defTHD = 10*log10(powharm/powfund);
TH = [THD defTHD]

TH = 1×2

 -7.9546 -7.9588

SINAD = sinad(x);
defSINAD = 10*log10(powfund/(powharm+varnoise));
SI = [SINAD defSINAD]

SI = 1×2

 7.4571 7.4473

Signal-to-Noise Ratio of Sinusoid

Compute the SNR of a 2.5 kHz sinusoid sampled at 48 kHz. Add white noise with variance 0.001².

Fi = 2500;
Fs = 48e3;
N = 1024;
x = sin(2*pi*Fi/Fs*(1:N)) + 0.001*randn(1,N);
SNR = snr(x,Fs)

SNR = 57.7103

Plot the spectrum and annotate the SNR.

snr(x,Fs);

 snr

1-2385

SNR of Sinusoid Using PSD

Obtain the periodogram power spectral density (PSD) estimate of a 2.5 kHz sinusoid sampled at 48
kHz. Add white noise with standard deviation 0.00001. Use this value as input to determine the SNR.
Set the random number generator to the default settings for reproducible results.

rng default
Fi = 2500;
Fs = 48e3;
N = 1024;
x = sin(2*pi*Fi/Fs*(1:N)) + 0.00001*randn(1,N);

w = kaiser(numel(x),38);
[Pxx, F] = periodogram(x,w,numel(x),Fs);
SNR = snr(Pxx,F,'psd')

SNR = 97.7446

1 Functions

1-2386

SNR of Sinusoid Using Power Spectrum

Using the power spectrum, compute the SNR of a 2.5 kHz sinusoid sampled at 48 kHz and embedded
in white noise with a standard deviation of 0.00001. Reset the random number generator for
reproducible results.

rng default
Fi = 2500;
Fs = 48e3;
N = 1024;
x = sin(2*pi*Fi/Fs*(1:N)) + 0.00001*randn(1,N);

w = kaiser(numel(x),38);
[Sxx, F] = periodogram(x,w,numel(x),Fs,'power');
rbw = enbw(w,Fs);
SNR = snr(Sxx,F,rbw,'power')

SNR = 97.7446

Plot the spectrum of the signal and annotate the SNR.

snr(Sxx,F,rbw,'power');

 snr

1-2387

SNR with and Without Aliased Harmonics

Generate a signal that resembles the output of a weakly nonlinear amplifier with a 2.1 kHz tone as
input. The signal is sampled for 1 second at 10 kHz. Compute and plot the power spectrum of the
signal. Use a Kaiser window with β = 38 for the computation.

Fs = 10000;
f = 2100;

t = 0:1/Fs:1;
x = tanh(sin(2*pi*f*t)+0.1) + 0.001*randn(1,length(t));

periodogram(x,kaiser(length(x),38),[],Fs,'power')

Harmonics stick out from the noise at frequencies of 4.2 kHz, 6.3 kHz, 8.4 kHz, 10.5 kHz, 12.6 kHz,
and 14.7 kHz. All frequencies except for the first one are greater than the Nyquist frequency. The
harmonics are aliased respectively into 3.7 kHz, 1.6 kHz, 0.5 kHz, 2.6 kHz, and 4.7 kHz.

Compute the signal-to-noise ratio of the signal. By default, snr treats the aliased harmonics as part of
the noise.

snr(x,Fs,7);

1 Functions

1-2388

Repeat the computation, but now treat the aliased harmonics as part of the signal.

snr(x,Fs,7,'aliased');

 snr

1-2389

Noise Power

Create a sinusoidal signal sampled at 48 kHz. The signal has a fundamental of frequency 1 kHz and
unit amplitude. It additionally contains a 2 kHz harmonic with half the amplitude and additive noise
with variance 0.1².

fs = 48e3;
t = 0:1/fs:1-1/fs;

A = 1.0;
powfund = A^2/2;
a = 0.4;
powharm = a^2/2;
s = 0.1;
varnoise = s^2;

x = A*cos(2*pi*1000*t) + ...
 a*sin(2*pi*2000*t) + s*randn(size(t));

Compute the noise power in the signal. Verify that it agrees with the definition.

[SNR,npow] = snr(x,fs);
compare = [10*log10(powfund)-npow SNR]

compare = 1×2

1 Functions

1-2390

 17.0281 17.0178

SNR of Amplified Signal

Generate a sinusoid of frequency 2.5 kHz sampled at 50 kHz. Reset the random number generator.
Add Gaussian white noise with standard deviation 0.00005 to the signal. Pass the result through a
weakly nonlinear amplifier. Plot the SNR.

rng default

fs = 5e4;
f0 = 2.5e3;
N = 1024;
t = (0:N-1)/fs;

ct = cos(2*pi*f0*t);
cd = ct + 0.00005*randn(size(ct));

amp = [1e-5 5e-6 -1e-3 6e-5 1 25e-3];
sgn = polyval(amp,cd);

snr(sgn,fs);

 snr

1-2391

The DC component and all harmonics, including the fundamental, are excluded from the noise
measurement. The fundamental and harmonics are labeled.

Input Arguments
xi — Input signal
vector | matrix | N-D array

Input signal, specified as a vector, matrix, or N-D array.
Data Types: double | single
Complex Number Support: Yes

y — Noise estimate
vector | matrix | N-D array

Estimate of the noise in the input signal, specified as a vector, matrix, or N-D array with the same
dimensions as xi.
Data Types: double | single
Complex Number Support: Yes

x — Real-valued sinusoidal input signal
vector

Real-valued sinusoidal input signal, specified as a row or column vector.
Data Types: double | single

fs — Sample rate
1 (default) | positive real scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of hertz.
Data Types: double | single

n — Number of harmonics
6 (default) | positive integer scalar

Number of harmonics to exclude from the SNR computation, specified as a positive integer scalar.
The default value of n is 6.

pxx — One-sided PSD estimate
vector

One-sided power spectral density estimate, specified as a real-valued, nonnegative column vector.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: double | single

1 Functions

1-2392

f — Cyclical frequencies
real-valued row or column vector

Cyclical frequencies of the one-sided PSD estimate, pxx, specified as a row or column vector. The first
element of f must be 0.
Data Types: double | single

sxx — Power spectrum
nonnegative real-valued row or column vector

Power spectrum, specified as a real-valued nonnegative row or column vector.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: double | single

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of the
frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth of the
window.
Data Types: double | single

Output Arguments
r — Signal-to-noise ratio
real-valued scalar

Signal-to-noise ratio, expressed in decibels relative to the carrier (dBc), returned as a real-valued
scalar. The SNR is returned in decibels (dB) if the input signal is not sinusoidal.
Data Types: double | single

noisepow — Total noise power
real-valued scalar

Total noise power of the nonharmonic components of the input signal, returned as a real-valued
scalar.
Data Types: double | single

More About
Distortion Measurement Functions

The functions thd, sfdr, sinad, and snr measure the response of a weakly nonlinear system
stimulated by a sinusoid.

 snr

1-2393

When given time-domain input, snr performs a periodogram using a Kaiser window with large
sidelobe attenuation. To find the fundamental frequency, the algorithm searches the periodogram for
the largest nonzero spectral component. It then computes the central moment of all adjacent bins
that decrease monotonically away from the maximum. To be detectable, the fundamental should be at
least in the second frequency bin. Higher harmonics are at integer multiples of the fundamental
frequency. If a harmonic lies within the monotonically decreasing region in the neighborhood of
another, its power is considered to belong to the larger harmonic. This larger harmonic may or may
not be the fundamental.

The function estimates a noise level using the median power in the regions containing only noise. The
DC component is excluded from the calculation. The noise at each point is the estimated level or the
ordinate of the point, whichever is smaller. The noise is then subtracted from the values of the signal
and the harmonics.

snr fails if the fundamental is not the highest spectral component in the signal.

Ensure that the frequency components are far enough apart to accommodate for the sidelobe width
of the Kaiser window. If this is not feasible, you can use the 'power' flag and compute a
periodogram with a different window.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If x and y are complex at compile time, then their size must be constant at compile time.

See Also
sfdr | sinad | thd | toi

Topics
“Analyzing Harmonic Distortion”

Introduced in R2013b

1 Functions

1-2394

sos2cell
Convert second-order sections matrix to cell array

Syntax
c = sos2cell(m)
c = sos2cell(m,g)

Description
c = sos2cell(m) changes an L-by-6 second-order section matrix m generated by tf2sos into a 1-
by-L cell array of 1-by-2 cell arrays, c. You can use c to specify a quantized filter with L cascaded
second-order sections.

The matrix m should have the form

m = [b1 a1;b2 a2; ... ;bL aL]

where both bi and ai, with i = 1, ..., L, are 1-by-3 row vectors. The resulting c is a 1-by-L cell array
of cells of the form

c = { {b1 a1} {b2 a2} ... {bL aL} }

c = sos2cell(m,g) with the optional gain term g, prepends the constant value g to c. When you
use the added gain term in the command, c is a 1-by-L cell array of cells of the form

c = {{g,1} {b1,a1} {b2,a2}...{bL,aL} }

Examples

Second-Order-Section Cell Array of Elliptic Filter

Generate a lowpass elliptic filter of order 4 with 0.5 dB of passband ripple and 20 dB of stopband
attenuation. The passband edge is 0.6 times the Nyquist frequency. Convert the transfer function to a
matrix of second-order sections.

[b,a] = ellip(4,0.5,20,0.6);
m = tf2sos(b,a);

Use sos2cell to convert the 2-by-6 matrix produced by tf2sos into a 1-by-2 cell array, c, of cells.
Display the second entry in the first cell of c. Verify that it contains the denominator coefficients of
the first second-order section of m.

c = sos2cell(m);
compare = [c{1}{2};m(1,4:6)]

compare = 2×3

 1.0000 0.1677 0.2575
 1.0000 0.1677 0.2575

 sos2cell

1-2395

See Also
tf2sos | cell2sos

Introduced before R2006a

1 Functions

1-2396

sos2ss
Convert digital filter second-order section parameters to state-space form

Syntax
[A,B,C,D] = sos2ss(sos)
[A,B,C,D] = sos2ss(sos,g)

Description
[A,B,C,D] = sos2ss(sos) converts a second-order section representation of a digital filter sos to
its equivalent state-space form.

[A,B,C,D] = sos2ss(sos,g) converts a second-order section representation of a digital filter sos
to its equivalent state-space form with gain g.

Examples

State-Space Representation of Second-Order Section System

Compute the state-space representation of a simple second-order section system with a gain of 2.

sos = [1 1 1 1 0 -1 ;
 -2 3 1 1 10 1];
[A,B,C,D] = sos2ss(sos,2)

A = 4×4

 -10 0 10 1
 1 0 0 0
 0 1 0 0
 0 0 1 0

B = 4×1

 1
 0
 0
 0

C = 1×4

 42 4 -32 -2

D = -4

 sos2ss

1-2397

Input Arguments
sos — Second-order section representation
matrix

Second-order section representation, specified as a matrix. sos is an L-by- 6 matrix of the form

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

.

The entries of sos must be real for proper conversion to state space.

g — Overall system gain
real-valued scalar

Overall system gain, specified as a real-valued scalar. The function applies the gain to the system as

H(z) = g ∏
k = 1

L
Hk(z) .

Output Arguments
A — State matrix
2L-by-2L matrix

State matrix, returned as a 2L-by-2L matrix.

B — Input-to-state vector
2L-by-1 vector

Input-to-state vector, returned as a 2L-by-1 vector.

C — Output-to-state vector
1-by-2L vector

Output-to-state vector, returned as a 1-by-2L vector.

D — Feedthrough matrix
scalar

Feedthrough matrix, returned as a scalar.

More About
Transfer Function

The discrete transfer function in second-order section form is given by

H(z) = ∏
k = 1

L
Hk(z) = ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

1 Functions

1-2398

Algorithms
The sos2ss function first converts from second-order sections to transfer function using the sos2tf
function, and then from transfer function to state-space form using the tf2ss function.

The single-input, single-output state-space representation is given by

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Du(n) .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sos2tf | sos2zp | ss2sos | tf2ss | zp2ss

Introduced before R2006a

 sos2ss

1-2399

sos2tf
Convert digital filter second-order section data to transfer function form

Syntax
[b,a] = sos2tf(sos)
[b,a] = sos2tf(sos,g)

Description
[b,a] = sos2tf(sos) returns the transfer function coefficients of a discrete-time system
described in second-order section form by sos.

[b,a] = sos2tf(sos,g) returns the transfer function coefficients of a discrete-time system
described in second-order section form by sos with gain g.

Examples

Transfer Function Representation of a Second-Order Section System

Compute the transfer function representation of a simple second-order section system.

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[b,a] = sos2tf(sos)

b = 1×5

 -2 1 2 4 1

a = 1×5

 1 10 0 -10 -1

Input Arguments
sos — Second-order section representation
matrix

Second-order section representation, specified as a matrix. sos is an L-by-6 matrix

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

1 Functions

1-2400

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z):

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

Example: [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with normalized
3 dB frequency 0.5π rad/sample.
Data Types: double
Complex Number Support: Yes

g — Overall system gain
real scalar

Overall system gain, specified as a real scalar.
Data Types: double

Output Arguments
b, a — Transfer function coefficients
row vectors

Transfer function coefficients, returned as row vectors. b and a contain the numerator and
denominator coefficients of H(z) stored in descending powers of z:

H(z) = B(z)
A(z) =

b1 + b2z−1 +⋯+ bn + 1z−n

a1 + a2z−1 +⋯+ am + 1z−m .

Algorithms
sos2tf uses the conv function to multiply all of the numerator and denominator second-order
polynomials together. For higher order filters (possibly starting as low as order 8), numerical
problems due to round-off errors may occur when forming the transfer function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
latc2tf | sos2ss | sos2zp | ss2tf | tf2sos | zp2tf

Introduced before R2006a

 sos2tf

1-2401

sos2zp
Convert digital filter second-order section parameters to zero-pole-gain form

Syntax
[z,p,k] = sos2zp(sos)
[z,p,k] = sos2zp(sos,g)

Description
[z,p,k] = sos2zp(sos) returns the zeros, poles, and gain of a system whose second-order section
representation is given by sos.

[z,p,k] = sos2zp(sos,g) returns the zeros, poles, and gain of a system whose second-order
section representation is given by sos with gain g.

Examples

Zeros, Poles, and Gain of a System

Compute the zeros, poles, and gain of a simple system in second-order section form.

sos = [1 1 1 1 0 -1; -2 3 1 1 10 1];
[z,p,k] = sos2zp(sos)

z = 4×1 complex

 -0.5000 + 0.8660i
 -0.5000 - 0.8660i
 1.7808 + 0.0000i
 -0.2808 + 0.0000i

p = 4×1

 -1.0000
 1.0000
 -9.8990
 -0.1010

k = -2

Input Arguments
sos — Second-order section representation
matrix

Second-order section representation, specified as a matrix. sos is an L-by-6 matrix

1 Functions

1-2402

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z):

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

Example: [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with normalized
3 dB frequency 0.5π rad/sample.
Data Types: single | double
Complex Number Support: Yes

g — Overall system gain
real scalar

Overall system gain, specified as a real scalar.
Data Types: single | double

Output Arguments
z — Zeros
vector

Zeros of the system, returned as a vector.

p — Poles
vector

Poles of the system, returned as a vector.

k — Scalar gain
scalar

Scalar gain of the system, returned as a scalar.

Algorithms
sos2zp finds the poles and zeros of each second-order section by repeatedly calling tf2zp.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 sos2zp

1-2403

• The complexity of outputs, z, p, and k, might be different in MATLAB and the generated code.
• The order of outputs, z and p, might be different in MATLAB and the generated code.

See Also
sos2ss | sos2tf | ss2zp | tf2zp | tf2zpk | zp2sos

Introduced before R2006a

1 Functions

1-2404

sosfilt
Second-order (biquadratic) IIR digital filtering

Syntax
y = sosfilt(sos,x)
y = sosfilt(sos,x,dim)

Description
y = sosfilt(sos,x) applies the second-order section digital filter sos to the input signal x.

y = sosfilt(sos,x,dim) operates along the dimension dim.

Examples

Second-Order Section Filtering

Load chirp.mat. The file contains a signal, y, that has most of its power above Fs/4, or half the
Nyquist frequency. The sample rate is 8192 Hz.

load chirp

t = (0:length(y)-1)/Fs;

Design a seventh-order Butterworth highpass filter to attenuate the components of the signal below
Fs/4. Use a normalized cutoff frequency of 0.48π rad/sample. Express the filter coefficients in terms
of second-order sections.

[zhi,phi,khi] = butter(7,0.48,'high');
soshi = zp2sos(zhi,phi,khi);

freqz(soshi)

 sosfilt

1-2405

Filter the signal. Display the original and highpass-filtered signals. Use the same y-axis scale for both
plots.

outhi = sosfilt(soshi,y);

figure
subplot(2,1,1)
plot(t,y)
title('Original Signal')
ys = ylim;

subplot(2,1,2)
plot(t,outhi)
title('Highpass-Filtered Signal')
xlabel('Time (s)')
ylim(ys)

1 Functions

1-2406

Design a lowpass filter with the same specifications. Filter the signal and compare the result to the
original. Use the same y-axis scale for both plots. The result is mostly noise.

[zlo,plo,klo] = butter(7,0.48);
soslo = zp2sos(zlo,plo,klo);

outlo = sosfilt(soslo,y);

subplot(2,1,1)
plot(t,y)
title('Original Signal')
ys = ylim;

subplot(2,1,2)
plot(t,outlo)
title('Lowpass-Filtered Signal')
xlabel('Time (s)')
ylim(ys)

 sosfilt

1-2407

Input Arguments
sos — Second-order section digital filter
L-by-6 matrix

Second-order section digital filter, specified as an L-by-6 matrix, where L is the number of second-
order sections. The matrix

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

represents the second-order section digital filter

H(z) = ∏
k = 1

L
Hk(z) = ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

Example: [b,a] = butter(3,1/32); sos = tf2sos(b,a) specifies a third-order Butterworth
filter with a normalized 3 dB frequency of π/32 rad/sample.
Data Types: single | double

1 Functions

1-2408

x — Input signal
vector | matrix | N-D array

Input signal, specified as a vector, matrix, or N-D array.
Example: x = [2 1].*sin(2*pi*(0:127)'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double
Complex Number Support: Yes

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. By default, sosfilt operates
along the first array dimension of x with size greater than 1.
Data Types: single | double

Output Arguments
y — Filtered signal
vector | matrix | N-D array

Filtered signal, returned as a vector, matrix, or N-D array. y has the same size as x.

References
[1] Bank, Balázs. "Converting Infinite Impulse Response Filters to Parallel Form". IEEE Signal

Processing Magazine. Vol. 35, Number 3, May 2018, pp. 124-130.

[2] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,
1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Input filter sos must be stable. Use isstable to check for filter stability.
• All second-order subsections of the input filter must be IIR.
• The gpuArray version of sosfilt uses a parallel algorithm [1] which is different from the MATLAB

version. The algorithms give different results for complex-valued input with NaN or Inf values:

• In the MATLAB version, the NaNs and Infs propagate only in the real part.
• In the gpuArray version, the NaNs and Infs propagate in both the real part and the imaginary

part.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

 sosfilt

1-2409

See Also
filter | medfilt1 | sgolayfilt

Introduced before R2006a

1 Functions

1-2410

spectrogram
Spectrogram using short-time Fourier transform

Syntax
s = spectrogram(x)
s = spectrogram(x,window)
s = spectrogram(x,window,noverlap)
s = spectrogram(x,window,noverlap,nfft)

[s,w,t] = spectrogram(___)
[s,f,t] = spectrogram(___ ,fs)

[s,w,t] = spectrogram(x,window,noverlap,w)
[s,f,t] = spectrogram(x,window,noverlap,f,fs)

[___ ,ps] = spectrogram(___)

[___] = spectrogram(___ ,'reassigned')
[___ ,ps,fc,tc] = spectrogram(___)

[___] = spectrogram(___ ,freqrange)
[___] = spectrogram(___ ,Name,Value)

[___] = spectrogram(___ ,spectrumtype)

spectrogram(___)
spectrogram(___ ,freqloc)

Description
s = spectrogram(x) returns the short-time Fourier transform of the input signal, x. Each column
of s contains an estimate of the short-term, time-localized frequency content of x.

s = spectrogram(x,window) uses window to divide the signal into segments and perform
windowing.

s = spectrogram(x,window,noverlap) uses noverlap samples of overlap between adjoining
segments.

s = spectrogram(x,window,noverlap,nfft) uses nfft sampling points to calculate the
discrete Fourier transform.

[s,w,t] = spectrogram(___) returns a vector of normalized frequencies, w, and a vector of time
instants, t, at which the spectrogram is computed. This syntax can include any combination of input
arguments from previous syntaxes.

[s,f,t] = spectrogram(___ ,fs) returns a vector of cyclical frequencies, f, expressed in terms
of the sample rate, fs. fs must be the fifth input to spectrogram. To input a sample rate and still
use the default values of the preceding optional arguments, specify these arguments as empty, [].

 spectrogram

1-2411

[s,w,t] = spectrogram(x,window,noverlap,w) returns the spectrogram at the normalized
frequencies specified in w.

[s,f,t] = spectrogram(x,window,noverlap,f,fs) returns the spectrogram at the cyclical
frequencies specified in f.

[___ ,ps] = spectrogram(___) also returns a matrix, ps, containing an estimate of the power
spectral density (PSD) or the power spectrum of each segment.

[___] = spectrogram(___ ,'reassigned') reassigns each PSD or power spectrum estimate to
the location of its center of energy. If your signal contains well-localized temporal or spectral
components, then this option generates a sharper spectrogram.

[___ ,ps,fc,tc] = spectrogram(___) also returns two matrices, fc and tc, containing the
frequency and time of the center of energy of each PSD or power spectrum estimate.

[___] = spectrogram(___ ,freqrange) returns the PSD or power spectrum estimate over the
frequency range specified by freqrange. Valid options for freqrange are 'onesided',
'twosided', and 'centered'.

[___] = spectrogram(___ ,Name,Value) specifies additional options using name-value pair
arguments. Options include the minimum threshold and output time dimension.

[___] = spectrogram(___ ,spectrumtype) returns PSD estimates if spectrumtype is
specified as 'psd' and returns power spectrum estimates if spectrumtype is specified as 'power'.

spectrogram(___) with no output arguments plots the spectrogram in the current figure window.

spectrogram(___ ,freqloc) specifies the axis on which to plot the frequency.

Examples

Default Values of Spectrogram

Generate Nx = 1024 samples of a signal that consists of a sum of sinusoids. The normalized
frequencies of the sinusoids are 2π/5 rad/sample and 4π/5 rad/sample. The higher frequency sinusoid
has 10 times the amplitude of the other sinusoid.

N = 1024;
n = 0:N-1;

w0 = 2*pi/5;
x = sin(w0*n)+10*sin(2*w0*n);

Compute the short-time Fourier transform using the function defaults. Plot the spectrogram.

s = spectrogram(x);

spectrogram(x,'yaxis')

1 Functions

1-2412

Repeat the computation.

• Divide the signal into sections of length nsc = ⌊Nx/4 . 5⌋.
• Window the sections using a Hamming window.
• Specify 50% overlap between contiguous sections.
• To compute the FFT, use max(256, 2p) points, where p = ⌈log2nsc⌉.

Verify that the two approaches give identical results.

Nx = length(x);
nsc = floor(Nx/4.5);
nov = floor(nsc/2);
nff = max(256,2^nextpow2(nsc));

t = spectrogram(x,hamming(nsc),nov,nff);

maxerr = max(abs(abs(t(:))-abs(s(:))))

maxerr = 0

Divide the signal into 8 sections of equal length, with 50% overlap between sections. Specify the
same FFT length as in the preceding step. Compute the short-time Fourier transform and verify that
it gives the same result as the previous two procedures.

ns = 8;
ov = 0.5;

 spectrogram

1-2413

lsc = floor(Nx/(ns-(ns-1)*ov));

t = spectrogram(x,lsc,floor(ov*lsc),nff);

maxerr = max(abs(abs(t(:))-abs(s(:))))

maxerr = 0

Frequency Along x-Axis

Generate a quadratic chirp, x, sampled at 1 kHz for 2 seconds. The frequency of the chirp is 100 Hz
initially and crosses 200 Hz at t = 1 s.

t = 0:0.001:2;
x = chirp(t,100,1,200,'quadratic');

Compute and display the spectrogram of x.

• Divide the signal into sections of length 128, windowed with a Hamming window.
• Specify 120 samples of overlap between adjoining sections.
• Evaluate the spectrum at ⌊128/2 + 1⌋ = 65 frequencies and ⌊(length(x) − 120)/(128 − 120)⌋ = 235

time bins.

spectrogram(x,128,120,128,1e3)

1 Functions

1-2414

Replace the Hamming window with a Blackman window. Decrease the overlap to 60 samples. Plot the
time axis so that its values increase from top to bottom.

spectrogram(x,blackman(128),60,128,1e3)
ax = gca;
ax.YDir = 'reverse';

Power Spectral Densities of Chirps

Compute and display the PSD of each segment of a quadratic chirp that starts at 100 Hz and crosses
200 Hz at t = 1 second. Specify a sample rate of 1 kHz, a segment length of 128 samples, and an
overlap of 120 samples. Use 128 DFT points and the default Hamming window.

fs = 1000;
t = 0:1/fs:2;
x = chirp(t,100,1,200,'quadratic');

spectrogram(x,128,120,128,fs,'yaxis')
title('Quadratic Chirp')

 spectrogram

1-2415

Compute and display the PSD of each segment of a linear chirp sampled at 1 kHz that starts at DC
and crosses 150 Hz at t = 1 second. Specify a segment length of 256 samples and an overlap of 250
samples. Use the default Hamming window and 256 DFT points.

x = chirp(t,0,1,150);

spectrogram(x,256,250,256,fs,'yaxis')
title('Linear Chirp')

1 Functions

1-2416

Compute and display the PSD of each segment of a logarithmic chirp sampled at 1 kHz that starts at
20 Hz and crosses 60 Hz at t = 1 second. Specify a segment length of 256 samples and an overlap of
250 samples. Use the default Hamming window and 256 DFT points.

x = chirp(t,20,1,60,'logarithmic');

spectrogram(x,256,250,[],fs,'yaxis')
title('Logarithmic Chirp')

 spectrogram

1-2417

Use a logarithmic scale for the frequency axis. The spectrogram becomes a line.

ax = gca;
ax.YScale = 'log';

1 Functions

1-2418

Spectrogram and Instantaneous Frequency

Use the spectrogram function to measure and track the instantaneous frequency of a signal.

Generate a quadratic chirp sampled at 1 kHz for two seconds. Specify the chirp so that its frequency
is initially 100 Hz and increases to 200 Hz after one second.

fs = 1000;
t = 0:1/fs:2-1/fs;
y = chirp(t,100,1,200,'quadratic');

Estimate the spectrum of the chirp using the short-time Fourier transform implemented in the
spectrogram function. Divide the signal into sections of length 100, windowed with a Hamming
window. Specify 80 samples of overlap between adjoining sections and evaluate the spectrum at
⌊100/2 + 1⌋ = 51 frequencies.

spectrogram(y,100,80,100,fs,'yaxis')

 spectrogram

1-2419

Track the chirp frequency by finding the time-frequency ridge with highest energy across the
⌊(2000 − 80)/(100 − 80)⌋ = 96 time points. Overlay the instantaneous frequency on the spectrogram
plot.

[~,f,t,p] = spectrogram(y,100,80,100,fs);

[fridge,~,lr] = tfridge(p,f);

hold on
plot3(t,fridge,abs(p(lr)),'LineWidth',4)
hold off

1 Functions

1-2420

Spectrogram of Complex Signal

Generate 512 samples of a chirp with sinusoidally varying frequency content.

N = 512;
n = 0:N-1;

x = exp(1j*pi*sin(8*n/N)*32);

Compute the centered two-sided short-time Fourier transform of the chirp. Divide the signal into 32-
sample segments with 16-sample overlap. Specify 64 DFT points. Plot the spectrogram.

[scalar,fs,ts] = spectrogram(x,32,16,64,'centered');

spectrogram(x,32,16,64,'centered','yaxis')

 spectrogram

1-2421

Obtain the same result by computing the spectrogram on 64 equispaced frequencies over the interval
− π, π . The 'centered' option is not necessary.

fintv = -pi+pi/32:pi/32:pi;

[vector,fv,tv] = spectrogram(x,32,16,fintv);

spectrogram(x,32,16,fintv,'yaxis')

1 Functions

1-2422

Reassigned Spectrogram of Quadratic Chirp

Generate a chirp signal sampled for 2 seconds at 1 kHz. Specify the chirp so that its frequency is
initially 100 Hz and increases to 200 Hz after 1 second.

Fs = 1000;
t = 0:1/Fs:2;
y = chirp(t,100,1,200,'quadratic');

Estimate the reassigned spectrogram of the signal.

• Divide the signal into sections of length 128, windowed with a Kaiser window with shape
parameter β = 18.

• Specify 120 samples of overlap between adjoining sections.
• Evaluate the spectrum at ⌊128/2⌋ = 65 frequencies and ⌊(length(x) − 120)/(128 − 120)⌋ = 235 time

bins.

spectrogram(y,kaiser(128,18),120,128,Fs,'reassigned','yaxis')

 spectrogram

1-2423

Spectrogram with Threshold

Generate a chirp signal sampled for 2 seconds at 1 kHz. Specify the chirp so that its frequency is
initially 100 Hz and increases to 200 Hz after 1 second.

Fs = 1000;
t = 0:1/Fs:2;
y = chirp(t,100,1,200,'quadratic');

Estimate the time-dependent power spectral density (PSD) of the signal.

• Divide the signal into sections of length 128, windowed with a Kaiser window with shape
parameter β = 18.

• Specify 120 samples of overlap between adjoining sections.
• Evaluate the spectrum at ⌊128/2⌋ = 65 frequencies and ⌊(length(x) − 120)/(128 − 120)⌋ = 235 time

bins.

Output the frequency and time of the center of gravity of each PSD estimate. Set to zero those
elements of the PSD smaller than −30 dB.

[~,~,~,pxx,fc,tc] = spectrogram(y,kaiser(128,18),120,128,Fs, ...
 'MinThreshold',-30);

Plot the nonzero elements as functions of the center-of-gravity frequencies and times.

1 Functions

1-2424

plot(tc(pxx>0),fc(pxx>0),'.')

Spectrogram Reassignment and Thresholding

Generate a signal sampled at 1024 Hz for 2 seconds.

nSamp = 2048;
Fs = 1024;
t = (0:nSamp-1)'/Fs;

During the first second, the signal consists of a 400 Hz sinusoid and a concave quadratic chirp.
Specify the chirp so that it is symmetric about the interval midpoint, starting and ending at a
frequency of 250 Hz and attaining a minimum of 150 Hz.

t1 = t(1:nSamp/2);

x11 = sin(2*pi*400*t1);
x12 = chirp(t1-t1(nSamp/4),150,nSamp/Fs,1750,'quadratic');
x1 = x11+x12;

The rest of the signal consists of two linear chirps of decreasing frequency. One chirp has an initial
frequency of 250 Hz that decreases to 100 Hz. The other chirp has an initial frequency of 400 Hz that
decreases to 250 Hz.

t2 = t(nSamp/2+1:nSamp);

 spectrogram

1-2425

x21 = chirp(t2,400,nSamp/Fs,100);
x22 = chirp(t2,550,nSamp/Fs,250);
x2 = x21+x22;

Add white Gaussian noise to the signal. Specify a signal-to-noise ratio of 20 dB. Reset the random
number generator for reproducible results.

SNR = 20;
rng('default')

sig = [x1;x2];
sig = sig + randn(size(sig))*std(sig)/db2mag(SNR);

Compute and plot the spectrogram of the signal. Specify a Kaiser window of length 63 with a shape
parameter β = 17, 10 fewer samples of overlap between adjoining sections, and an FFT length of 256.

nwin = 63;
wind = kaiser(nwin,17);
nlap = nwin-10;
nfft = 256;

spectrogram(sig,wind,nlap,nfft,Fs,'yaxis')

Threshold the spectrogram so that any elements with values smaller than the SNR are set to zero.

spectrogram(sig,wind,nlap,nfft,Fs,'MinThreshold',-SNR,'yaxis')

1 Functions

1-2426

Reassign each PSD estimate to the location of its center of energy.

spectrogram(sig,wind,nlap,nfft,Fs,'reassign','yaxis')

 spectrogram

1-2427

Threshold the reassigned spectrogram so that any elements with values smaller than the SNR are set
to zero.

spectrogram(sig,wind,nlap,nfft,Fs,'reassign','MinThreshold',-SNR,'yaxis')

1 Functions

1-2428

Track Chirps in Audio Signal

Load an audio signal that contains two decreasing chirps and a wideband splatter sound. Compute
the short-time Fourier transform. Divide the waveform into 400-sample segments with 300-sample
overlap. Plot the spectrogram.

load splat

% To hear, type soundsc(y,Fs)

sg = 400;
ov = 300;

spectrogram(y,sg,ov,[],Fs,'yaxis')
colormap bone

 spectrogram

1-2429

Use the spectrogram function to output the power spectral density (PSD) of the signal.

[s,f,t,p] = spectrogram(y,sg,ov,[],Fs);

Track the two chirps using the medfreq function. To find the stronger, low-frequency chirp, restrict
the search to frequencies above 100 Hz and to times before the start of the wideband sound.

f1 = f > 100;
t1 = t < 0.75;

m1 = medfreq(p(f1,t1),f(f1));

To find the faint high-frequency chirp, restrict the search to frequencies above 2500 Hz and to times
between 0.3 seconds and 0.65 seconds.

f2 = f > 2500;
t2 = t > 0.3 & t < 0.65;

m2 = medfreq(p(f2,t2),f(f2));

Overlay the result on the spectrogram. Divide the frequency values by 1000 to express them in kHz.

hold on
plot(t(t1),m1/1000,'linewidth',4)
plot(t(t2),m2/1000,'linewidth',4)
hold off

1 Functions

1-2430

3D Spectrogram Visualization

Generate two seconds of a signal sampled at 10 kHz. Specify the instantaneous frequency of the
signal as a triangular function of time.

fs = 10e3;
t = 0:1/fs:2;
x1 = vco(sawtooth(2*pi*t,0.5),[0.1 0.4]*fs,fs);

Compute and plot the spectrogram of the signal. Use a Kaiser window of length 256 and shape
parameter β = 5. Specify 220 samples of section-to-section overlap and 512 DFT points. Plot the
frequency on the y-axis. Use the default colormap and view.

spectrogram(x1,kaiser(256,5),220,512,fs,'yaxis')

 spectrogram

1-2431

Change the view to display the spectrogram as a waterfall plot. Set the colormap to bone.

view(-45,65)
colormap bone

1 Functions

1-2432

Input Arguments
x — Input signal
vector | gpuArray objects

Input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments:

• If window is an integer, then spectrogram divides x into segments of length window and
windows each segment with a Hamming window of that length.

• If window is a vector, then spectrogram divides x into segments of the same length as the vector
and windows each segment using window.

If the length of x cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then x is truncated accordingly.

 spectrogram

1-2433

If you specify window as empty, then spectrogram uses a Hamming window such that x is divided
into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

• If window is scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then spectrogram uses a number that produces 50% overlap
between segments. If the segment length is unspecified, the function sets noverlap to ⌊Nx/4.5⌋,
where Nx is the length of the input signal and the ⌊⌋ symbols denote the floor function.

nfft — Number of DFT points
positive integer scalar | []

Number of DFT points, specified as a positive integer scalar. If you specify nfft as empty, then
spectrogram sets the parameter to max(256,2p), where p = ⌈log2 Nw⌉, the ⌈⌉ symbols denote the
ceiling function, and

• Nw = window if window is a scalar.
• Nw = length(window) if window is a vector.

w — Normalized frequencies
vector

Normalized frequencies, specified as a vector. w must have at least two elements, because otherwise
the function interprets it as nfft. Normalized frequencies are in rad/sample.
Example: pi./[2 4]

f — Cyclical frequencies
vector

Cyclical frequencies, specified as a vector. f must have at least two elements, because otherwise the
function interprets it as nfft. The units of f are specified by the sample rate, fs.

fs — Sample rate
1 Hz (default) | positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.

freqrange — Frequency range for PSD estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the PSD estimate, specified as 'onesided', 'twosided', or 'centered'. For
real-valued signals, the default is 'onesided'. For complex-valued signals, the default is
'twosided', and specifying 'onesided' results in an error.

1 Functions

1-2434

• 'onesided' — returns the one-sided spectrogram of a real input signal. If nfft is even, then ps
has nfft/2 + 1 rows and is computed over the interval [0, π] rad/sample. If nfft is odd, then ps
has (nfft + 1)/2 rows and the interval is [0, π) rad/sample. If you specify fs, then the intervals
are respectively [0, fs/2] cycles/unit time and [0, fs/2) cycles/unit time.

Note When this argument is set to 'onesided', spectrogram outputs the values in the positive
Nyquist range and does not conserve the total power.

• 'twosided' — returns the two-sided spectrogram of a real or complex signal. ps has nfft rows
and is computed over the interval [0, 2π) rad/sample. If you specify fs, then the interval is [0, fs)
cycles/unit time.

• 'centered' — returns the centered two-sided spectrogram of a real or complex signal. ps has
nfft rows. If nfft is even, then ps is computed over the interval (–π, π] rad/sample. If nfft is
odd, then ps is computed over (–π, π) rad/sample. If you specify fs, then the intervals are
respectively (–fs/2, fs/2] cycles/unit time and (–fs/2, fs/2) cycles/unit time.

spectrumtype — Power spectrum scaling
'psd' (default) | 'power'

Power spectrum scaling, specified as 'psd' or 'power'.

• Omitting spectrumtype, or specifying 'psd', returns the power spectral density.
• Specifying 'power' scales each estimate of the PSD by the equivalent noise bandwidth of the

window. The result is an estimate of the power at each frequency. If the 'reassigned' option is
on, the function integrates the PSD over the width of each frequency bin before reassigning.

freqloc — Frequency display axis
'xaxis' (default) | 'yaxis'

Frequency display axis, specified as 'xaxis' or 'yaxis'.

• 'xaxis' — displays frequency on the x-axis and time on the y-axis.
• 'yaxis' — displays frequency on the y-axis and time on the x-axis.

This argument is ignored if you call spectrogram with output arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: spectrogram(x,100,'OutputTimeDimension','downrows') divides x into segments
of length 100 and windows each segment with a Hamming window of that length The output of the
spectrogram has time dimension down the rows.

MinThreshold — Threshold
-Inf (default) | real scalar

Threshold, specified as the comma-separated pair consisting of MinThreshold and a real scalar
expressed in decibels. spectrogram sets to zero those elements of s such that 10 log10(s) ≤ thresh.

OutputTimeDimension — Output time dimension
acrosscolumns (default) | downrows

 spectrogram

1-2435

Output time dimension, specified as the comma-separated pair consisting of OutputTimeDimension
and acrosscolumns or downrows. Set this value to downrows, if you want the time dimension of s,
ps, fc, and tc down the rows and the frequency dimension along the columns. Set this value to
acrosscolumns, if you want the time dimension of s, ps, fc, and tc across the columns and
frequency dimension along the rows. This input is ignored if the function is called without output
arguments.

Output Arguments
s — Short-time Fourier transform
matrix

Short-time Fourier transform, returned as a matrix. Time increases across the columns of s and
frequency increases down the rows, starting from zero.

• If x is a signal of length Nx, then s has k columns, where

• k = ⌊(Nx – noverlap)/(window – noverlap)⌋ if window is a scalar.
• k = ⌊(Nx – noverlap)/(length(window) – noverlap)⌋ if window is a vector.

• If x is real and nfft is even, then s has (nfft/2 + 1) rows.
• If x is real and nfft is odd, then s has (nfft + 1)/2 rows.
• If x is complex, then s has nfft rows.

s is not affected by the 'reassigned' option.

w — Normalized frequencies
vector

Normalized frequencies, returned as a vector. w has a length equal to the number of rows of s.

t — Time instants
vector

Time instants, returned as a vector. The time values in t correspond to the midpoint of each segment.

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a vector. f has a length equal to the number of rows of s.

ps — Power spectral density or power spectrum
matrix

Power spectral density (PSD) or power spectrum, returned as a matrix.

• If x is real, then ps contains the one-sided modified periodogram estimate of the PSD or power
spectrum of each segment.

• If x is complex, or if you specify a vector of frequencies, then ps contains the two-sided modified
periodogram estimate of the PSD or power spectrum of each segment.

fc, tc — Center-of-energy frequencies and times
matrices

1 Functions

1-2436

Center-of-energy frequencies and times, returned as matrices of the same size as the short-time
Fourier transform. If you do not specify a sample rate, then the elements of fc are returned as
normalized frequencies.

Tips
If a short-time Fourier transform has zeros, its conversion to decibels results in negative infinities
that cannot be plotted. To avoid this potential difficulty, spectrogram adds eps to the short-time
Fourier transform when you call it with no output arguments.

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd

Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[2] Rabiner, Lawrence R., and Ronald W. Schafer. Digital Processing of Speech Signals. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[3] Chassande-Motin, Éric, François Auger, and Patrick Flandrin. “Reassignment.” In Time-Frequency
Analysis: Concepts and Methods. Edited by Franz Hlawatsch and François Auger. London:
ISTE/John Wiley and Sons, 2008.

[4] Fulop, Sean A., and Kelly Fitz. “Algorithms for computing the time-corrected instantaneous
frequency (reassigned) spectrogram, with applications.” Journal of the Acoustical Society of
America. Vol. 119, January 2006, pp. 360–371.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

• Input must be a tall column vector.
• The window argument must always be specified.
• OutputTimeDimension must be always specified and set to 'downrows'.
• The reassigned option is not supported.
• Syntaxes with no output arguments are not supported.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name-value pairs must be compile-time constants.
• Variable sized window must be double precision.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

 spectrogram

1-2437

Usage notes and limitations:

• The syntax with no output arguments is not supported.
• The frequency vector must be uniformly spaced.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Signal Analyzer

Functions
goertzel | periodogram | pspectrum | pwelch

Topics
“Formant Estimation with LPC Coefficients”
“Time-Frequency Gallery”

Introduced before R2006a

1 Functions

1-2438

spectrum
Spectral estimation

Syntax
Hs = spectrum.estmethod(input1,...)

Description

Note The use of spectrum.estmethod is not recommended. Use the corresponding function
instead. See Spectrum Estimation Methods for the functional forms.

Hs = spectrum.estmethod(input1,...) returns a spectral estimation object Hs of type
estmethod. This object contains all the parameter information needed for the specified estimation
method. Each estimation method takes one or more inputs, which are described on the individual
reference pages.

Estimation Methods

Estimation methods for spectrum specify the type of spectral estimation method to use. Available
estimation methods for spectrum are listed below.

Note You must use a spectral estmethod with spectrum.

Spectrum Estimation Methods
spectrum.estmethod Description Corresponding Function
spectrum.burg Burg pburg
spectrum.cov Covariance pcov
spectrum.eigenvector Eigenvector peig
spectrum.mcov Modified covariance pmcov
spectrum.mtm Thomson multitaper pmtm
spectrum.music Multiple Signal Classification pmusic
spectrum.periodogram Periodogram periodogram
spectrum.welch Welch pwelch
spectrum.yulear Yule-Walker pyulear

For more information on each estimation method, use the syntax help spectrum.estmethod at the
MATLAB prompt or refer to its reference page.

Note For estimation methods that use overlap and window length inputs, you specify the number of
overlap samples as a percent overlap and you specify the segment length instead of the window
length.

 spectrum

1-2439

For estimation methods that use windows, if the window uses an additional parameter, a property is
dynamically added to the spectrum object for that parameter. You can change that property using set
(see “Changing Object Properties” on page 1-2447).

Methods

Methods provide ways of performing functions directly on your spectrum object without having to
specify the spectral estimation parameters again. You can apply these methods directly on the
variable you assigned to your spectrum object. For more information on any of these methods, use
the syntax help spectrum/method at the MATLAB prompt or refer to the table below.

1 Functions

1-2440

Spectrum Methods

Method Description
msspectrum Note that the msspectrum method is only available for the periodogram and welch

spectrum estimation objects.

The mean-squared spectrum is intended for discrete spectra (from periodic, discrete-
time signals). The distribution of the mean square value across frequency is the
msspectrum. Unlike the power spectral density (see psd below), the peaks in the
mean-square spectrum reflect the power in the signal at a given frequency. For the
PSD, the power is reflected as the area in a frequency band. The units of the mean-
squared spectrum are units of power.

Hmss = msspectrum(Hs,X) returns a mean-square spectrum object containing the
mean-square (power) estimate of the discrete-time signal X using the spectrum
object Hs. Default for real X is the 'onesided' Nyquist frequency range and for
complex X the default is the 'twosided' Nyquist frequency range.

Hmss contains a vector of normalized frequencies W, at which the mean-square
spectrum is estimated. For real signals, the range of W is [0,π] if the number of FFT
points (NFFT) is even, and [0,π) if NFFT is odd. For complex signals, the range of W is
[0,2π). To estimate the spectrum on a vector of specific frequencies, see FreqPoints
property below.

The msspectrum method includes these properties, which you can set using this
msspectrum method or via the msspectrumopts method. These properties are
listed here and described in the msspectrumopts section below:
SpectrumType — 'onesided' or 'twosided'
NormalizedFrequency – normalizes frequency between 0 and 1
Fs — sampling frequency in Hz
NFFT — number of FFT points
CenterDC — shifts data and frequencies to center DC component
FreqPoints — 'All' or 'User Defined'
FrequencyVector — frequencies at which to compute spectrum
ConfLevel — confidence level to calculate the confidence interval. Value must be
from 0 to 1.

For example, Hmss = msspectrum(Hs,X,'FreqPoints','User Defined',
FreqVector,fvect) returns a mean-square spectrum object where the spectrum is
calculated only on the frequency points defined in the frequency vector, fvect.

msspectrum(...) with no output arguments plots the mean-square spectrum in dB.

 spectrum

1-2441

Method Description
msspectrumopts Hopts = msspectrumopts(Hs) returns an object that contains options for the

spectrum object Hs.

Hopts = msspectrumopts(Hs,X) returns an object with data-specific options and
defaults.

You can pass an Hopts options object as an argument to the msspectrum method.
Any individual option you specify after the Hopts object overrides the value in
Hopts. For example, Hmss = msspectrum(Hs,X,Hopts, 'SpectrumType',
'twosided') overrides the default SpectrumType value in Hopts.

The following properties apply to both msspectrumopts and msspectrum methods.

Hmss = msspectrum (..., 'SpectrumType', 'twosided') returns the two-
sided mean-square spectrum. The spectrum length (NFFT) is computed over [0,2π),
or if Fs is specified, [0,Fs) . Entering 'onesided' returns the one-sided mean-
square spectrum, which contains the total signal power in half the Nyquist range.
Default is 'onesided'.

Hmss = msspectrum(Hs,X,'NormalizedFrequency',true) returns a mean-
square spectrum object with frequency values normalized between 0 and 1. Default
is true.

Hmss = msspectrum(Hs,X,'Fs',Fs) returns a mean-square spectrum object
computed as a function of frequency, where Fs is the sampling frequency in Hz. Note
that you can set Fs only if NormalizedFrequency is set to false.

Hmss = msspectrum(...,'NFFT',nfft) specifies the number of FFT points to
use. Valid values are a positive integer, 'Nextpow2' or 'Auto'. 'Nextpow2' uses
the next power of 2 greater than the input length or 256, whichever is greater.
'Auto' uses the input length or 256, whichever is greater. Default is 'Nextpow2'.
Note that for spectrum.welch, 'Nextpow2' and 'Auto' are compared to the
SegmentLength instead of the input length.

Hmss = msspectrum (..., 'Centerdc', true) shifts the data and frequency
values so that the DC component is at the center of the spectrum. Default is false.

To estimate the spectrum on a vector of specific frequencies, first set the number of
frequency points to 'User Defined', which replaces the NFFT property of
msspectrum with a FrequencyVector property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All', which causes msspectrum to use
the NFFT property as described above.)

Then, specify the frequency vector F to use.
Hopts.FrequencyVector = F
(Note that the default value for FrequencyVector is 'Auto'. In this case, the
number of frequency points used follows the same rule as described for NFFT
'Auto' above.)

Hmms = msspectrum(...,'ConfLevel',p) specifies the confidence level p for
computing the confidence interval, which is an estimate of the error in the calculated

1 Functions

1-2442

Method Description
mean-squared spectrum. The confidence level (p) is between 0 and 1. For example,
Hmss = msspectrum(Hs,X,'ConfLevel',0.95) returns the 95% confidence
interval.

psd Note that music and eigenvector spectrum objects do not support the psd
method. See the pseudospectrum method below.

The power spectral density (PSD) is intended for continuous spectra. The integral of
the PSD over a given frequency band computes the average power in the signal in
that frequency band. In contrast to the msspectrum, the peaks in this spectra do not
reflect the power at a given frequency. The units of the PSD are power per unit of
frequency. See the avgpower method of dspdata for more information.

Hpsd = psd (Hs,X) returns a power spectral density object containing the power
spectral density estimate of the discrete-time signal X using the spectrum object Hs.
The PSD is the distribution of power per unit frequency. Default for real X is
'onesided' and for complex X is 'twosided'.

Hpsd contains a vector of normalized frequencies W, at which the PSD is estimated.
For real signals, the range of W is [0,π] if the number of FFT points (NFFT) is even,
and [0,π) if NFFT is odd. For complex signals, the range of W is [0,2π).

The psd method includes these properties, which you can set using this psd method
or via the psdopts method. These properties are listed here and described in the
psdopts section below:
SpectrumType — 'onesided' or 'twosided'
NormalizedFrequency — normalizes frequency between 0 and 1
Fs — sampling frequency in Hz
NFFT — number of FFT points
CenterDC — shifts data and frequencies to center DC component
FreqPoints — 'All' or 'User Defined'
FrequencyVector – frequencies at which to compute spectrum
ConfLevel — confidence level to calculate the confidence interval. Value must be
from 0 to 1.

For example, Hmss = psd(Hs,X,'FreqPoints','User Defined',
FreqVector,fvect) returns a PSD object where the spectrum is calculated only on
the frequency points defined in the frequency vector, fvect.

psd(...) with no output arguments plots PSD in dB per unit frequency.

 spectrum

1-2443

Method Description
psdopts Hopts = psdopts(Hs) returns an object that contains options for the spectrum

object Hs.

Hopts = psdopts(Hs,X) returns an object with data-specific options and defaults.

You can pass an Hopts options object as an argument to the psd method. Any
individual option you specify after the Hopts object overrides the value in Hopts.
For example, Hpsd = psd(Hs,X,Hopts,'SpectrumType', 'twosided')
overrides the SpectrumType value in Hopts.

The following properties apply to both psdmopts and psd methods.

Hpsd = psd (Hs,X,'SpectrumType','twosided') returns the two-sided power
spectral density of X. The spectrum length is NFFT and is computed over [0,2π) if Fs
is not specified or [0,Fs) if Fs is specified. Entering 'onesided' returns the one-
sided PSD, which contains the total signal power.

Hmss = psd(Hs,X,'NormalizedFrequency',true) returns a power spectral
density object with frequency values normalized between 0 and 1. Default is true.

Hpsd = psd (...,'Fs',Fs) returns a power spectral density object computed as
a function of frequency, where Fs is the sampling frequency in Hz.

Hmss = psd(...,'NFFT',nfft) specifies the number of FFT points to use. Valid
values are a positive integer, 'Nextpow2' or 'Auto'. 'Nextpow2' uses the next
power of 2 greater than the input length or 256, whichever is greater. 'Auto' uses
the input length or 256, whichever is greater. Default is 'Nextpow2'. Note that for
spectrum.welch, 'Nextpow2' and 'Auto' are compared to the SegmentLength
instead of the input length.

Hmss = psd (..., 'Centerdc', true) shifts the data and frequency values so
that the DC component is at the center of the spectrum. Default is false.

To estimate the spectrum on a vector of specific frequencies, first set the number of
frequency points to 'User Defined', which replaces the NFFT property of psd with
a FrequencyVector property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All' which causes psd to use the NFFT
property as described above.)

Hmms = psd(...,'ConfLevel',p) specifies the confidence level p for computing
the confidence interval, which is an estimate of the error in the calculated PSD. The
confidence level (p) is between 0 and 1. For example,
Hmss = psd(Hs,X,'ConfLevel',0.95) returns the 95% confidence interval.

1 Functions

1-2444

Method Description
pseudospectrum Note that this method is used for only music or eigenvector spectrum objects.

Hps = pseudospectrum(Hs,X) returns an object containing the pseudospectrum
estimate of the discrete-time signal X using the spectrum object Hs. Hs must be a
music or eigenvector object. Default for real X is 'half' and for complex X is the
'whole' Nyquist frequency range.

Hps contains a vector of normalized frequencies W, at which the pseudospectrum is
estimated. For real signals, the range of W is [0,π] if the number of FFT points (NFFT)
is even, and [0,π) if NFFT is odd. For complex signals, the range of W is [0,2π).

The pseudospectrum method includes these properties, which you can set using
this pseudospectrum method or via the pseudospectrumopts method. These
properties are described below:
SpectrumRange — 'half' or 'whole'
NormalizedFrequency — normalizes frequency between 0 and 1
Fs — sampling frequency in Hz
NFFT — number of FFT points
CenterDC — shifts data and frequencies to center DC component
FreqPoints — 'All' or 'User Defined'
FrequencyVector — frequencies at which to compute spectrum

For example, Hmss = psd(Hs,X,'FreqPoints','User Defined',
FreqVector,fvect) returns a PSD object where the spectrum is calculated only on
the frequency points defined in the frequency vector, fvect.

pseudospectrum(...) with no output arguments plots the pseudospectrum in dB.

 spectrum

1-2445

Method Description
pseudospectrumopts Hopts = pseudospectrumopts(Hs) returns an object that contains options for

the spectrum object Hs.

Hopts = pseudospectrumopts(Hs,X) returns an object with data-specific
options and defaults. You can pass an Hopts options object as an argument to the
pseudospectrum method. Any individual option you specify after the Hopts object
overrides the value in Hopts. For example,
Hpseudospectrum= pseudospectrum(Hs,X, Hopts,'SpectrumRange',
'whole') overrides the SpectrumRange value in Hopts.

Hmps = pseudospectrum (..., 'SpectrumRange', 'whole') returns the
pseudospectrum over the whole Nyquist range. The spectrum length is NFFT and is
computed over [0,2π) if Fs is not specified or [0,Fs) if Fs is specified. Entering
'half' returns the pseudospectrum calculated over half the Nyquist range.

Hmss = pseudospectrum(Hs,X,'NormalizedFrequency',true) returns a
pseudospectrum object with frequency values normalized between 0 and 1. Default is
true.

Hps = pseudospectrum(Hs,X,'Fs',Fs) returns a pseudospectrum object
computed as a function of frequency, where Fs is the sampling frequency in Hz.

Hps = pseudospectrum(...,'NFFT',nfft) specifies the number of FFT points
to use. Valid values are a positive integer, 'Nextpow2' or 'Auto'. 'Nextpow2'
uses the next power of 2 greater than the input length or 256, whichever is greater.
'Auto' uses the input length or 256, whichever is greater. Default is 'Nextpow2'.

Hps = pseudospectrum(...,'Centerdc',true) shifts the data and frequency
values so that the DC component is at the center of the spectrum. The default value
is false.

To estimate the spectrum on a vector of specific frequencies, first set the number of
frequency points to 'User Defined', which replaces the NFFT property of
pseudospectrum with a FrequencyVector property.
Hopts.FreqPoints = 'User Defined'
(Note that the default for FreqPoints is 'All', which causes pseudospectrum to
use the NFFT property as described above.)

powerest Note that powerest is available only for music and eigenvector spectrum objects.

POW = powerest(Hs,X) returns a vector POW containing estimates of the powers of
the complex sinusoids in X. The input X can be a vector or a matrix. If it is a matrix it
can be a data matrix, where X′*X = R or a correlation matrix R. The value the
InputType property of Hs determines how X is interpreted. Hs must be a music or
eigenvector spectrum object.

[POW,W]=powerest(Hs,X) returns POW and a vector W of the frequencies in rad/
sample of the sinusoids in X.

[POW,F]=powerest(Hs,X,Fs) returns POW and a vector F of the frequencies in Hz
of the sinusoids in X. Fs is the sampling frequency.

1 Functions

1-2446

Viewing Object Properties

As with any object, you can use get to view a spectrum object's properties. To see a specific
property, use

 get(Hs,'property')

where 'property' is the specific property name.

To see all properties for an object, use

get(Hs)

Changing Object Properties

To set specific properties, use

set(Hs,'property1',value, 'property2',value,...)

where 'property1', 'property2', etc. are the specific property names.

To view the options for a property use set without specifying a value

set(Hs,'property')

Note that you must use single quotation marks around the property name. For example, to change the
order of a Burg spectrum object Hs to 6, use

set(Hs,'order',6)

Another example of using set to change an object's properties is this example of changing the
dynamically created window property of a periodogram spectrum object.

Hs=spectrum.periodogram % Create periodogram object

Hs =

 EstimationMethod: 'Periodogram'
 WindowName: 'Rectangular'

set(Hs,'WindowName','Chebyshev') % Change window type
Hs % View changed object

Hs =

 EstimationMethod: 'Periodogram'
 WindowName: 'Chebyshev' % Note changed property
 SidelobeAtten: 100

set(Hs,'SidelobeAtten',150) % Change dynamic property
Hs % View changed object

Hs =

 EstimationMethod: 'Periodogram'
 WindowName: 'Chebyshev'
 SidelobeAtten: 150

 spectrum

1-2447

All spectrum object properties can be changed using the set command, except for the
EstimationMethod property.

Another way to change an object's properties is by using the inspect command which opens the
Property Inspector window where you can edit any property, except dynamic properties, such as
those used with windows.

inspect(Hs)

Copying an Object

To create a copy of an object, use the copy method.

H2 = copy(Hs)

Note Using the syntax H2 = Hs copies only the object handle and does not create a new object.

Examples

PSD via Periodogram

Generate a cosine of frequency 200 Hz sampled at 1 kHz for 300 ms. Add Gaussian white noise. View
its power spectral density estimate generated with the periodogram algorithm.

Fs = 1000;
t = 0:1/Fs:0.3;
x = cos(2*pi*t*200) + randn(size(t));

Hs = spectrum.periodogram;
psd(Hs,x,'Fs',Fs)

1 Functions

1-2448

Refer to the reference pages for each estimation method for more examples.

Introduced before R2006a

 spectrum

1-2449

spectrum.burg
Burg spectrum

Syntax
Hs = spectrum.burg
Hs = spectrum.burg(order)

Description

Note The use of spectrum.burg is not recommended. Use pburg instead.

Hs = spectrum.burg returns a default Burg spectrum object, Hs, that defines the parameters for
the Burg parametric spectral estimation algorithm. The Burg algorithm estimates the spectral
content by fitting an autoregressive (AR) linear prediction filter model of a given order to the signal.

Hs = spectrum.burg(order) returns a spectrum object, Hs with the specified order. The default
value for order is 4.

Note See pburg for more information on the Burg algorithm.

Examples
Define a fourth order autoregressive model and view its power spectral density using the Burg
algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.burg; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also
pburg | pcov | pmcov | pyulear

Introduced before R2006a

1 Functions

1-2450

spectrum.cov
Covariance spectrum

Syntax
Hs = spectrum.cov
Hs = spectrum.cov(order)

Description

Note The use of spectrum.cov is not recommended. Use pcov instead.

Hs = spectrum.cov returns a default covariance spectrum object, Hs, that defines the parameters
for the covariance spectral estimation algorithm. The covariance algorithm estimates the spectral
content by fitting an autoregressive (AR) linear prediction model of a given order to the signal.

Hs = spectrum.cov(order) returns a spectrum object, Hs with the specified order. The default
value for order is 4.

Note See pcov for more information on the covariance algorithm.

Examples
Define a fourth order autoregressive model and view its power spectral density using the covariance
algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.cov; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also
pburg | pcov | pmcov | pyulear

Introduced before R2006a

 spectrum.cov

1-2451

spectrum.eigenvector
Eigenvector spectrum

Syntax
Hs = spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)

Description

Note The use of spectrum.eigenvector is not recommended. Use peig instead.

Hs = spectrum.eigenvector returns a default eigenvector spectrum object, Hs, that defines the
parameters for an eigenanalysis spectral estimation method. This object uses the following default
values:

1 Functions

1-2452

Default Values

Property Name Default Value Description
NSinusoids 2 Number of complex sinusoids
SegmentLength 4 Length of each of the time-based segments

into which the input signal is divided.
OverlapPercent 50 Percent overlap between segments
WindowName 'Rectangular' Window name or 'User Defined' (see

window for valid window names). For more
information on each window, refer to its
reference page.

This argument can also be a cell array
containing the window name or 'User
Defined' and, if used for the particular
window, an optional parameter value. The
syntax is {wname,wparam}.

You can use set to change the value of the
additional parameter or to define the
MATLAB expression and parameters for a
user-defined window (see spectrum for
information on using set).

SubspaceThreshold 0 Threshold is the cutoff for signal and noise
separation. The threshold is multiplied by
λmin , the smallest estimated eigenvalue of the
signal's correlation matrix. Eigenvalues below
the threshold (λmin*threshold) are assigned
to the noise subspace.

InputType 'Vector' Type of input that will be used with this
spectrum object. Valid values are 'Vector',
'DataMatrix' and 'CorrelationMatrix'.

Hs = spectrum.eigenvector(NSinusoids) returns a spectrum object, Hs, with the specified
number of sinusoids and default values for all other properties. Refer to the table above for default
values.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength) returns a spectrum object, Hs,
with the specified segment length.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent) returns a spectrum object, Hs, with the specified overlap between segments.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName) returns a spectrum object, Hs, with the specified window.

Note Window names must be enclosed in single quotes, such as
spectrum.eigenvector(3,32,50,'chebyshev') or spectrum.eigenvector(3,32,50,
{'chebyshev',60}).

 spectrum.eigenvector

1-2453

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold) returns a spectrum object, Hs, with the
specified subspace threshold.

Hs = spectrum.eigenvector(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType) returns a spectrum object, Hs,
with the specified input type.

Note See peig for more information on the eigenanalysis algorithm.

Examples
Define a complex signal with three sinusoids, add noise, and view its pseudospectrum using
eigenanalysis. Set the FFT length to 128.

n=0:99;
s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100);
Hs=spectrum.eigenvector(3,32,95,'rectangular',5);
pseudospectrum(Hs,s,'NFFT',128)

References

[1] Harris, F. J. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.”
Proceedings of the IEEE. Vol. 66 (January 1978).

See Also
peig | pmusic

Introduced before R2006a

1 Functions

1-2454

spectrum.mcov
Modified covariance spectrum

Syntax
Hs = spectrum.mcov
Hs = spectrum.mcov(order)

Description

Note The use of spectrum.mcov is not recommended. Use pmcov instead.

Hs = spectrum.mcov returns a default modified covariance spectrum object, Hs, that defines the
parameters for the modified covariance spectral estimation algorithm. The modified covariance
algorithm estimates the spectral content by fitting an autoregressive (AR) linear prediction filter
model of a given order to the signal.

Hs = spectrum.mcov(order) returns a spectrum object, Hs with the specified order. The default
value for order is 4.

Note See pmcov for more information on the modified covariance algorithm.

Examples
Define a fourth order autoregressive model and view its power spectral density using the modified
covariance algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.mcov; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also
pburg | pcov | pmcov | pyulear

Introduced before R2006a

 spectrum.mcov

1-2455

spectrum.mtm
Thomson multitaper spectrum

Syntax
Hs = spectrum.mtm
Hs = spectrum.mtm(TimeBW)
Hs = spectrum.mtm(DPSS,Concentrations)
Hs = spectrum.mtm(...,CombineMethod)

Description

Note The use of spectrum.mtm is not recommended. Use pmtm instead.

Hs = spectrum.mtm returns a default Thomson multitaper spectrum object, Hs that defines the
parameters for the Thomson multitaper spectral estimation algorithm, which uses a linear or
nonlinear combination of modified periodograms. The periodograms are computed using a sequence
of orthogonal tapers (windows in the frequency domain) specified from discrete prolate spheroidal
sequences (dpss). This object uses the following default values:

Property Name Default Value Description
TimeBW 4 Product of time and bandwidth for the discrete

prolate spheroidal sequences (or Slepian
sequences) used as data windows

CombineMethod 'adaptive' Algorithm for combining the individual spectral
estimates. Valid values are 'adaptive' —
adaptive (nonlinear) 'unity' — unity weights
(linear) 'eigenvector' — Eigenvalue weights
(linear)

Hs = spectrum.mtm(TimeBW) returns a spectrum object, Hs with the specified time-bandwidth
product.

Hs = spectrum.mtm(DPSS,Concentrations) returns a spectrum object, Hs with the specified
dpss data tapers and their concentrations.

Note You can either specify the time-bandwidth product (TimeBW) or the DPSS data tapers and their
Concentrations. See dpss and pmtm for more information.

Hs = spectrum.mtm(...,CombineMethod) returns a spectrum object, Hs, with the specified
method for combining the spectral estimates. Refer to the table above for valid CombineMethod
values.

1 Functions

1-2456

Examples
Define a cosine of 200 Hz, add noise and view its power spectral density using the Thomson
multitaper algorithm with a time-bandwidth product of 3.5.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
Hs=spectrum.mtm(3.5);
psd(Hs,x,'Fs',Fs)

The above example could be done by specifying the data tapers and concentrations instead of the
time-bandwidth product.

Fs=1000;
t=0:1/Fs:.3;
x=cos(2*pi*t*200)+randn(size(t));
[e,v]=dpss(length(x),3.5);
Hs=spectrum.mtm(e,v);
psd(Hs,x,'Fs',Fs)

See Also
periodogram | pmtm | pwelch

Introduced before R2006a

 spectrum.mtm

1-2457

spectrum.music
Multiple signal classification spectrum

Syntax
Hs = spectrum.music
Hs = spectrum.music(NSinusoids)
Hs = spectrum.music(NSinusoids,SegmentLength)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold)
Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType)

Description

Note The use of spectrum.music is not recommended. Use pmusic instead.

Hs = spectrum.music returns a default multiple signal classification (MUSIC) spectrum object, Hs,
that defines the parameters for the MUSIC spectral estimation algorithm, which uses Schmidt's
eigenspace analysis algorithm. This object uses the following default values.

1 Functions

1-2458

Default Values

Property Name Default Value Description
NSinusoids 2 Number of complex sinusoids
SegmentLength 4 Length of each of the time-based

segments into which the input signal is
divided.

OverlapPercent 50 Percent overlap between segments
WindowName 'Rectangular' Window name or 'User Defined' (see

window for valid window names). For
more information on each window, refer
to its reference page).

This argument can also be a cell array
containing the window name or 'User
Defined' and, if used for the particular
window, an optional parameter value.
The syntax is {wname,wparam}.

You can use set to change the value of
the additional parameter or to define the
MATLAB expression and parameters for
a user-defined window (see spectrum
for information on using set).

SubspaceThreshold 0 Threshold is the cutoff for signal and
noise separation. The threshold is
multiplied by λmin , the smallest
estimated eigenvalue of the signal's
correlation matrix. Eigenvalues below
the threshold (λmin*threshold) are
assigned to the noise subspace.

InputType 'Vector' Type of input that will be used with this
spectrum object. Valid values are
'Vector', 'DataMatrix' and
'CorrelationMatrix'.

Hs = spectrum.music(NSinusoids) returns a spectrum object, Hs, with the specified number of
sinusoids and default values for all other properties. Refer to the table above for default values.

Hs = spectrum.music(NSinusoids,SegmentLength) returns a spectrum object, Hs, with the
specified segment length.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent) returns a spectrum object, Hs, with the specified overlap between segments.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName) returns a spectrum object, Hs, with the specified window.

Note Window names must be enclosed in single quotes, such as
spectrum.music(3,32,50,'chebyshev') or spectrum.music(3,32,50,{'chebyshev',60})

 spectrum.music

1-2459

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold) returns a spectrum object, Hs, with the
specified subspace threshold.

Hs = spectrum.music(NSinusoids,SegmentLength,...
OverlapPercent,WindowName,SubspaceThreshold,InputType) returns a spectrum object, Hs,
with the specified input type.

Note See pmusic for more information on the MUSIC algorithm.

Examples

MUSIC Pseudospectrum of a Sinusoidal Signal

Define a complex signal with three sinusoids, add noise, and estimate its pseudospectrum using the
MUSIC algorithm.

n = 0:99;
s = exp(1i*pi/2*n) + 2*exp(1i*pi/4*n) + exp(1i*pi/3*n) + randn(1,100);

Hs = spectrum.music(3,20);

pseudospectrum(Hs,s)

1 Functions

1-2460

References

[1] Harris, Fredric. J. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
peig | pmusic

Introduced before R2006a

 spectrum.music

1-2461

spectrum.periodogram
Periodogram spectrum

Syntax
Hs = spectrum.periodogram
Hs = spectrum.periodogram(winname)
Hs = spectrum.periodogram({windowname,winparameter})

Description

Note The use of spectrum.periodogram is not recommended. Use periodogram instead.

Hs = spectrum.periodogram returns a default periodogram spectrum object, Hs, that defines the
parameters for the periodogram spectral estimation method. This default object uses a rectangular
window and a default FFT length equal to the next power of 2 (NextPow2) that is greater than the
input length.

Hs = spectrum.periodogram(winname) returns a spectrum object, Hs, that uses the specified
window. If the window uses an optional associated window parameter, it is set to the default value.
This object uses the default FFT length.

Hs = spectrum.periodogram({windowname,winparameter}) returns a spectrum object, Hs,
that uses the specified window and optional associated window parameter, if any. You specify the
window and window parameter in a cell array with the window name and the parameter value. This
object uses the default FFT length.

Valid window names are:

'Bartlett'
'Bartlett-Hann'
'Blackman'
'Blackman-Harris'
'Bohman'
'Chebyshev'
'Flat Top'
'Gaussian'
'Hamming'
'Hann'
'Kaiser'
'Nuttall'
'Parzen'
'Rectangular'
'Triangular'
'Tukey'
'User Defined'

See window and the corresponding window function page for window parameter information.

1 Functions

1-2462

You can use set to change the value of the additional parameter or to define the MATLAB expression
and parameters for a user-defined window (see spectrum for information on using set).

Note Window names must be enclosed in single quotes, such as
spectrum.periodogram('Tukey') or spectrum.periodogram({'Tukey',0.7}).

Note See periodogram for more information on the periodogram algorithm.

Examples

Periodogram Spectral Estimate of Sinusoid

Define a cosine of 200 Hz sampled at 1 kHz. Add noise and view the spectral content of the signal
using the periodogram spectral estimation technique with default values.

Fs = 1000;
t = 0:1/Fs:.3;
x = cos(2*pi*t*200)+randn(size(t));
Hs = spectrum.periodogram;
psd(Hs,x,'Fs',Fs)

 spectrum.periodogram

1-2463

References

[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51–83.

See Also
periodogram | pmtm | pwelch

Introduced before R2006a

1 Functions

1-2464

spectrum.welch
Welch spectrum

Syntax
Hs = spectrum.welch
Hs = spectrum.welch(WindowName)
Hs = spectrum.welch(WindowName,SegmentLength)
Hs = spectrum.welch(WindowName,SegmentLength,OverlapPercent)

Description

Note The use of spectrum.welch is not recommended. Use pwelch instead.

Hs = spectrum.welch returns a default Welch spectrum object, Hs, that defines the parameters for
Welch's averaged, modified periodogram spectral estimation method. The object uses these default
values.

Property Name Default Value Description
{WindowName,winparam}

Cell array containing
WindowName and optional
window parameter

'Hamming',

SamplingFlag:
symmetric

Cell array containing the window name
or 'User Defined' and, if used for the
particular window, an optional
parameter value. (See window for valid
window names and for more information
on each window, refer to its reference
page.)

You can use set to change the value of
the additional parameter or to define the
MATLAB expression and parameters for
a user-defined window. (See spectrum
for information on using set.)

 spectrum.welch

1-2465

Property Name Default Value Description
WindowName 'Hamming',

SamplingFlag:
symmetric

Valid windowname options are:
'Bartlett'
'Bartlett-Hann'
'Blackman'
'Blackman-Harris'
'Bohman'
'Chebyshev'
'Flat Top'
'Gaussian'
'Hamming'
'Hann'
'Kaiser'
'Nuttall'
'Parzen'
'Rectangular'
'Triangular'
'Tukey'
'User Defined'

Window names must be enclosed in
single quotes, such as
spectrum.welch('tukey') or
spectrum.welch({'tukey',0.7}).

See window and the corresponding
window function page for window
parameter information. You can use set
to change the value of the additional
window parameter or to define the
MATLAB expression and parameters for
a user-defined window (see spectrum
for information on using set).

SegmentLength 64 Length of each of the time-based
segments into which the input signal is
divided. A modified periodogram is
computed on each segment and the
average of the periodograms forms the
spectral estimate. Choosing the segment
length is a compromise between
estimate reliability (shorter segments)
and frequency resolution (longer
segments). A long segment length
produces better resolution while a short
segment length produces more
averages, and therefore a decrease in
the variance.

OverlapPercent 50% Percent overlap between segments

Hs = spectrum.welch(WindowName) returns a spectrum object, Hs, using Welch's method with
the specified window and the default values for all other parameters. To specify parameters for a
window, use a cell array formatted as spectrum.welch({WindowName,winparam}).

Hs = spectrum.welch(WindowName,SegmentLength) returns a spectrum object, Hs with the
specified segment length.

1 Functions

1-2466

Hs = spectrum.welch(WindowName,SegmentLength,OverlapPercent) returns a spectrum
object, Hs with the specified percentage overlap between segments.

Note See pwelch for more information on the Welch algorithm.

Examples

Spectral Content of Sinusoid

Define a cosine of 200 Hz embedded in white noise.

Fs = 1000;
t = 0:1/Fs:.3;
x = cos(2*pi*t*200)+randn(size(t));

View the spectral content of the signal using the Welch algorithm.

Hs = spectrum.welch;
psd(Hs,x,'Fs',Fs)

 spectrum.welch

1-2467

PSD Estimate Using Hann Window

Define a cosine of 200 Hz embedded in white noise.

Fs = 1000;
t = 0:1/Fs:0.3;
x = cos(2*pi*t*200)+randn(size(t));

Compute Welch's power spectral density estimate of the signal using a Hann window.

window = 33;
noverlap = 32;
nfft = 4097;

h = spectrum.welch('Hann',window,100*noverlap/window);
hpsd = psd(h,x,'NFFT',nfft,'Fs',Fs);

Visualize the power spectral density expressed in decibels.

Pw = hpsd.Data;
Fw = hpsd.Frequencies;
plot(Fw,pow2db(Pw))
xlabel('Hz')
ylabel('dB')

1 Functions

1-2468

References

[1] harris, fredric. j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform.” Proceedings of the IEEE. Vol. 66 (January 1978).

See Also
periodogram | pmtm | pwelch

Introduced before R2006a

 spectrum.welch

1-2469

spectrum.yulear
Yule-Walker spectrum object

Syntax
Hs = spectrum.yulear
Hs = spectrum.yulear(order)

Description

Note The use of spectrum.yulear is not recommended. Use pyulear instead.

Hs = spectrum.yulear returns a default Yule-Walker spectrum object, Hs, that defines the
parameters for the Yule-Walker spectral estimation algorithm. This method is also called the auto-
correlation or windowed method. The Yule-Walker algorithm estimates the spectral content by fitting
an autoregressive (AR) linear prediction filter model of a given order to the signal. This leads to a
set of Yule-Walker equations, which are solved using Levinson-Durbin recursion.

Hs = spectrum.yulear(order) returns a spectrum object, Hs, with the specified order. The
default value for order is 4.

Note See pyulear for more information on the Yule-Walker algorithm.

Examples
Define a fourth order autoregressive model and view its spectral content using the Yule-Walker
algorithm.

x=randn(100,1);
x=filter(1,[1 1/2 1/3 1/4 1/5],x); % 4th order AR filter
Hs=spectrum.yulear; % 4th order AR model
psd(Hs,x,'NFFT',512)

See Also
pburg | pcov | pmcov | pyulear

Introduced before R2006a

1 Functions

1-2470

splitlabels
Find indices to split labels according to specified proportions

Syntax
idxs = splitlabels(lblsrc,p)
idxs = splitlabels(lblsrc,p,'randomized')
idxs = splitlabels(___ ,Name,Value)

Description
Use this function when you are working on a machine or deep learning classification problem and you
want to split a dataset into training, testing, and validation sets that hold the same proportion of label
values.

idxs = splitlabels(lblsrc,p) finds logical indices that split the labels in lblsrc based on the
proportions or number of labels specified in p.

idxs = splitlabels(lblsrc,p,'randomized') randomly assigns the specified proportion of
label values to each index set in idxs.

idxs = splitlabels(___ ,Name,Value) specifies additional input arguments using name-value
pairs. For example, 'UnderlyingDatastoreIndex',3 splits the labels only in the third underlying
datastore of a combined datastore.

Examples

Split Vowels

Read William Shakespeare's sonnets with the fileread function. Extract all the vowels from the text
and convert them to lowercase.

sonnets = fileread("sonnets.txt");
vowels = lower(sonnets(regexp(sonnets,"[AEIOUaeiou]")))';

Count the number of instances of each vowel.

cnts = countlabels(vowels)

cnts=5×3 table
 Label Count Percent
 _____ _____ _______

 a 4940 18.368
 e 9028 33.569
 i 4895 18.201
 o 5710 21.232
 u 2321 8.6302

 splitlabels

1-2471

Split the vowels into a training set containing 500 instances of each vowel, a validation set containing
300, and a testing set with the rest. All vowels are represented with equal weights in the first two
sets but not in the third.

spltn = splitlabels(vowels,[500 300]);

for kj = 1:length(spltn)
 cntsn{kj} = countlabels(vowels(spltn{kj}));
end
cntsn{:}

ans=5×3 table
 Label Count Percent
 _____ _____ _______

 a 500 20
 e 500 20
 i 500 20
 o 500 20
 u 500 20

ans=5×3 table
 Label Count Percent
 _____ _____ _______

 a 300 20
 e 300 20
 i 300 20
 o 300 20
 u 300 20

ans=5×3 table
 Label Count Percent
 _____ _____ _______

 a 4140 18.083
 e 8228 35.94
 i 4095 17.887
 o 4910 21.447
 u 1521 6.6437

Split the vowels into a training set containing 50% of the instances, a validation set containing
another 30%, and a testing set with the rest. All vowels are represented with the same weight across
all three sets.

spltp = splitlabels(vowels,[0.5 0.3]);

for kj = 1:length(spltp)
 cntsp{kj} = countlabels(vowels(spltp{kj}));
end
cntsp{:}

ans=5×3 table
 Label Count Percent
 _____ _____ _______

1 Functions

1-2472

 a 2470 18.367
 e 4514 33.566
 i 2448 18.203
 o 2855 21.23
 u 1161 8.6333

ans=5×3 table
 Label Count Percent
 _____ _____ _______

 a 1482 18.371
 e 2708 33.569
 i 1468 18.198
 o 1713 21.235
 u 696 8.6277

ans=5×3 table
 Label Count Percent
 _____ _____ _______

 a 988 18.368
 e 1806 33.575
 i 979 18.2
 o 1142 21.231
 u 464 8.6261

Split Vowels and Consonants

Read William Shakespeare's sonnets with the fileread function. Remove all nonalphabetic
characters from the text and convert to lowercase.

sonnets = fileread("sonnets.txt");
letters = lower(sonnets(regexp(sonnets,"[A-z]")))';

Classify the letters as consonants or vowels and create a table with the results. Show the first few
rows of the table.

type = repmat("consonant",size(letters));
type(regexp(letters',"[aeiou]")) = "vowel";

T = table(letters,type,'VariableNames',["Letter" "Type"]);
head(T)

ans=8×2 table
 Letter Type
 ______ ___________

 t "consonant"
 h "consonant"
 e "vowel"
 s "consonant"
 o "vowel"

 splitlabels

1-2473

 n "consonant"
 n "consonant"
 e "vowel"

Display the number of instances of each category.

cnt = countlabels(T,'TableVariable',"Type")

cnt=2×3 table
 Type Count Percent
 _________ _____ _______

 consonant 46516 63.365
 vowel 26894 36.635

Split the table into two sets, one containing 60% of the consonants and vowels and the other
containing 40%. Display the number of instances of each category.

splt = splitlabels(T,0.6,'TableVariable',"Type");

sixty = countlabels(T(splt{1},:),'TableVariable',"Type")

sixty=2×3 table
 Type Count Percent
 _________ _____ _______

 consonant 27910 63.366
 vowel 16136 36.634

forty = countlabels(T(splt{2},:),'TableVariable',"Type")

forty=2×3 table
 Type Count Percent
 _________ _____ _______

 consonant 18606 63.363
 vowel 10758 36.637

Split the table into two sets, one containing 60% of each particular letter and the other containing
40%. Exclude the letter y, which sometimes acts as a consonant and sometimes as a vowel. Display
the number of instances of each category.

splt = splitlabels(T,0.6,'Exclude',"y");

sixti = countlabels(T(splt{1},:),'TableVariable',"Type")

sixti=2×3 table
 Type Count Percent
 _________ _____ _______

 consonant 26719 62.346
 vowel 16137 37.654

forti = countlabels(T(splt{2},:),'TableVariable',"Type")

1 Functions

1-2474

forti=2×3 table
 Type Count Percent
 _________ _____ _______

 consonant 17813 62.349
 vowel 10757 37.651

Split the table into two sets of the same size. Include only the letters e and s. Randomize the sets.

halves = splitlabels(T,0.5,'randomized','Include',["e" "s"]);

cnt = countlabels(T(halves{1},:))

cnt=2×3 table
 Letter Count Percent
 ______ _____ _______

 e 4514 64.385
 s 2497 35.615

Split Data in Datastore

Create a dataset that consists of 100 Gaussian random numbers. Label 40 of the numbers as A, 30 as
B, and 30 as C. Store the data in a combined datastore containing two datastores. The first datastore
has the data and the second datastore contains the labels.

dsData = arrayDatastore(randn(100,1));
dsLabels = arrayDatastore([repmat("A",40,1); repmat("B",30,1); repmat("C",30,1)]);
dsDataset = combine(dsData,dsLabels);
cnt = countlabels(dsDataset,'UnderlyingDatastoreIndex',2)

cnt=3×3 table
 Label Count Percent
 _____ _____ _______

 A 40 40
 B 30 30
 C 30 30

Split the data set into two sets, one containing 60% of the numbers and the other with the rest.

splitIndices = splitlabels(dsDataset,0.6,'UnderlyingDatastoreIndex',2);

dsDataset1 = subset(dsDataset,splitIndices{1});
cnt1 = countlabels(dsDataset1,'UnderlyingDatastoreIndex',2)

cnt1=3×3 table
 Label Count Percent
 _____ _____ _______

 A 24 40
 B 18 30

 splitlabels

1-2475

 C 18 30

dsDataset2 = subset(dsDataset,splitIndices{2});
cnt2 = countlabels(dsDataset2,'UnderlyingDatastoreIndex',2)

cnt2=3×3 table
 Label Count Percent
 _____ _____ _______

 A 16 40
 B 12 30
 C 12 30

Input Arguments
lblsrc — Input label source
categorical vector | string vector | logical vector | numeric vector | cell array | table | datastore |
CombinedDatastore object

Input label source, specified as one of these:

• A categorical vector.
• A string vector or a cell array of character vectors.
• A numeric vector or a cell array of numeric scalars.
• A logical vector or a cell array of logical scalars.
• A table with variables containing any of the previous data types.
• A datastore whose readall function returns any of the previous data types.
• A CombinedDatastore object containing an underlying datastore whose readall function

returns any of the previous data types. In this case, you must specify the index of the underlying
datastore that has the label values.

lblsrc must contain labels that can be converted to a vector with a discrete set of categories.
Example: lblsrc = categorical(["B" "C" "A" "E" "B" "A" "A" "B" "C" "A"],["A"
"B" "C" "D"]) creates the label source as a ten-sample categorical vector with four categories: A,
B, C, and D.
Example: lblsrc = [0 7 2 5 11 17 15 7 7 11] creates the label source as a ten-sample
numeric vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | table | cell | categorical

p — Proportions or numbers of labels
integer scalar | scalar in (0, 1) | vector of integers | vector of fractions

Proportions or numbers of labels, specified as an integer scalar, a scalar in the range (0, 1), a vector
of integers, or a vector of fractions.

• If p is a scalar, splitlabels finds two splitting index sets and returns a two-element cell array in
idxs.

1 Functions

1-2476

• If p is an integer, the first element of idxs contains a vector of indices pointing to the first p
values of each label category. The second element of idxs contains indices pointing to the
remaining values of each label category.

• If p is a value in the range (0, 1) and lblsrc has Ki elements in the ith category, the first
element of idxs contains a vector of indices pointing to the first p × Ki values of each label
category. The second element of idxs contains the indices of the remaining values of each
label category.

• If p is a vector with N elements of the form p1, p2, …, pN, splitlabels finds N + 1 splitting index
sets and returns an (N + 1)-element cell array in idxs.

• If p is a vector of integers, the first element of idxs is a vector of indices pointing to the first
p1 values of each label category, the next element of idxs contains the next p2 values of each
label category, and so on. The last element in idxs contains the remaining indices of each
label category.

• If p is a vector of fractions and lblsrc has Ki elements of the ith category, the first element of
idxs is a vector of indices concatenating the first p1 × Ki values of each category, the next
element of idxs contains the next p2 × Ki values of each label category, and so on. The last
element in idxs contains the remaining indices of each label category.

Note

• If p contains fractions, then the sum of its elements must not be greater than one.
• If p contains numbers of label values, then the sum of its elements must not be greater than the

smallest number of labels available for any of the label categories.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TableVariable',"AreaCode",'Exclude',["617" "508"] specifies that the
function split labels based on telephone area code and exclude numbers from Boston and Natick.

Include — Labels to include in index sets
vector of label categories | cell array of label categories

Labels to include in the index sets, specified as a vector or cell array of label categories. The
categories specified with this argument must be of the same type as the labels in lblsrc. Each
category in the vector or cell array must match one of the label categories in lblsrc.

Exclude — Labels to exclude from index sets
vector of label categories | cell array of label categories

Labels to exclude from the index sets, specified as a vector or cell array of label categories. The
categories specified with this argument must be of the same type as the labels in lblsrc. Each
category in the vector or cell array must match one of the label categories in lblsrc.

 splitlabels

1-2477

TableVariable — Table variable to read
first table variable (default) | character vector | string scalar

Table variable to read, specified as a character vector or string scalar. If this argument is not
specified, then splitlabels uses the first table variable.

UnderlyingDatastoreIndex — Underlying datastore index
integer scalar

Underlying datastore index, specified as an integer scalar. This argument applies when lblsrc is a
CombinedDatastore object. splitlabels counts the labels in the datastore obtained using the
UnderlyingDatastores property of lblsrc.

Output Arguments
idxs — Splitting indices
cell array

Splitting indices, returned as a cell array.

See Also
Signal Labeler | labeledSignalSet | signalLabelDefinition | countlabels |
folders2labels

Introduced in R2021a

1 Functions

1-2478

sptool
(To be removed) Open interactive digital signal processing tool

Note SPTool will be removed in a future release.

• For signal and spectral analysis, use the Signal Analyzer app instead.
• For filter design, use the Filter Designer app instead.
• For filter visualization, use FVTool instead.

Syntax
sptool
s = sptool('Signals')
f = sptool('Filters')
s = sptool('Spectra')
[s,ind] = sptool(___)
s = sptool(___ ,0)
struc = sptool('create',paramlist)
sptool('load',struc)
struc = sptool('load',paramlist)

Description
The command, sptool, opens SPTool, a suite of four tools: Signal Browser, Filter Design and Analysis
Tool, FVTool, and Spectrum Viewer. These tools provide access to many of the signal, filter, and
spectral analysis functions in the toolbox. When you type sptool at the command line, the SPTool
suite opens.

 sptool

1-2479

Using SPTool, you can:

• Analyze signals listed in the Signals list box with the Signal Browser.
• Design or edit filters with the Filter Design and Analysis Tool (includes a Pole/Zero Editor).
• Analyze filter responses for filters listed in the Filters list box with FVTool.
• Apply filters in the Filters list box to signals in the Signals list box.
• Create and analyze signal spectra with the Spectrum Viewer.
• Print the Signal Browser, Filter Design and Analysis Tool, and Spectrum Viewer.

You can activate all four integrated signal processing tools from SPTool.

• “Signal Browser” on page 1-2480
• “Filter Designer App” on page 1-2489
• “Filter Visualization Tool” on page 1-2489
• “Spectrum Viewer” on page 1-2489

Signal Browser
The Signal Browser, hereafter referred to as the scope, allows you to view, measure, and analyze the
time-domain information of one or more signals. To activate the Signal Browser, press the View
button under the Signals list box in SPTool.

1 Functions

1-2480

See the following sections for more information on the Signal Browser:

• “Displaying Multiple Signals” on page 1-2481
• “Signal Display” on page 1-2482
• “Measurements Panels” on page 1-2484
• “Visuals — Time Domain Options” on page 1-2484
• “Style Dialog Box” on page 1-2487

Displaying Multiple Signals
Multiple Signal Input

Select more than one signal in the Signals list box to show multiple signals within the same display
or on separate displays. By default, the signals appear as different-colored lines on the same display.
The signals can have different dimensions, sample rates, and data types. Each signal can be either
real or complex valued.

Multiple Signal Colors

By default, Signal Browser has a white axes background and chooses line colors for each channel in a
manner similar to the MATLAB plot function. Signal Browser considers each of the real and
imaginary components of the input signals to be a channel, and assigns each channel a line color in
the following order:

1 Blue
2 Dark Green
3 Red

 sptool

1-2481

4 Cyan
5 Purple
6 Dark Yellow
7 Black

If there are more than 7 channels, the scope repeats this order to assign line colors to the remaining
channels. For example, if you select 4 complex-valued input signals, the following legend appears in
the display.

If all the input signals are real-valued, Signal Browser skips the line colors that would be associated
with their imaginary components. For example, if you select 4 real-valued input signals, the following
legend appears in the display.

To manually modify any line color, select View > Style to open the Style dialog box. Next to
Properties for line, select the signal name whose color you want to change. Then, next to Line,

click the line color button () and select any color from the palette. To change the axes

background color, click the Axes background color button (), and select any color from the
palette.

Use Multiple Displays

You can display multiple channels of data on different displays in the window. In the toolbar, select

View > Layout, or select the Layout button ().

You can tile the window into multiple displays. For example, if there are three inputs to the tool, you
can display the signals in three separate displays. The layout grid shows a 4 by 4 grid, but you can
select up to 16 by 16 by clicking and dragging within the layout grid.

When you use the Layout option to tile the window into multiple displays, the display highlighted in
blue is referred to as the active display. The dialog boxes reference the active display.

Signal Display
The Signal Browser uses the longest time length of all the input signals selected in the Signals list
box for the time range. To communicate the array of times that corresponds to the current display,

1 Functions

1-2482

the scope uses the Minimum time-axis limit, Time units, and Maximum time-axis limit
indicators on the scope window. The following figure highlights these aspects of the Signal Browser
window.

• Minimum time-axis limit — The Signal Browser sets the minimum time-axis limit to 0.
• Maximum time-axis limit — The Signal Browser sets the maximum time-axis limit to the final

time step of the longest input signal.
• Time units — The units used to describe the time-axis. The Signal Browser sets the time units

using the value of the Time Units parameter on the Main tab of the Visuals:Time Domain Options
dialog box. By default, this parameter is set to Metric (based on Time Span) and displays in
metric units such as microseconds, milliseconds, minutes, days, etc. You can change the unit of
measure to Seconds to always display the time-axis values in units of seconds. You can change it
to None to suppress the display of units of measure on the time-axis. When you set this parameter
to None, then the Signal Browser shows only the word Time on the time-axis.

To hide both the word Time and the values on the time-axis, set the Show time-axis labels
parameter to None. To hide both the word Time and the values on the time-axis in all displays
except the bottom ones in each column of displays, set this parameter to Bottom Displays
Only. This behavior differs from that of the Simulink Scope block, which always shows the values
but never shows a label on the x-axis.

Signal Names and Legend Text

Signal Browser uses the names of the signals in the SPTool as the text displayed in the legends. If you
change the name of any selected signal in the Signals list box, its corresponding legend entry in
Signal Browser changes immediately. To change the name of any selected signal, from the SPTool
menu select Edit > Name. Signal Browser automatically updates the legend to reflect the new signal
name you entered. Similarly, if you modify any entry in a legend in Signal Browser, then SPTool
updates the corresponding signal name in the Signals list box.

Axes Maximization

You can specify whether to display the Signal Browser in maximized axes mode. In this mode, the
axes are expanded to fill the entire display. In each display, there is no space to show titles or axis
labels. The minimum and maximum time-axis limits are located at the far-left and far-right edges of
the display. The values at the axis tick marks appear as grid lines on top of the axes. The following
figure highlights how three displays appear in maximized axes mode in the Signal Browser window.

 sptool

1-2483

To enable or disable this mode, in the Signal Browser menu, select View > Properties to bring up
the Visuals:Time Domain Options dialog box. In the Main pane, you can set the Maximize axes
parameter to one of the following options:

• Auto — In this mode, the axes appear maximized in all displays only if the Title and Y-Axis label
parameters are empty for every display. If you enter any value in any display for either of these
parameters, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any values entered into the Title
and Y-Axis label parameters are hidden.

• Off — In this mode, none of the axes appear maximized.

See the “Visuals — Time Domain Options” on page 1-2484 section for more information.

Measurements Panels
The Measurements panels are the five panels that appear at the right side of the Signal Browser.
These panels are labeled Trace selection, Cursor measurements, Signal statistics, Bilevel
measurements, and Peak finder.

Visuals — Time Domain Options
The Visuals — Time Domain Properties dialog box controls the visual configuration settings of the
Signal Browser display. From the menu, select View > Configuration Properties to open this dialog
box.

Main Pane

The Main pane of the Visuals — Time Domain Properties dialog box appears as follows.

1 Functions

1-2484

Time units

Specify the units used to describe the time-axis. The default setting is Metric. You can select one of
the following options.

• Metric — In this mode, the Signal Browser converts the times on the time-axis to some metric
units such as milliseconds, microseconds, days, etc. The Signal Browser chooses the appropriate
metric units, based on the minimum time-axis limit and the maximum time-axis limit of the
window.

• Seconds — In this mode, the Signal Browser always displays the units on the time-axis as
seconds.

• None — In this mode, the Signal Browser displays no units on the time-axis. The Signal Browser
shows only the word Time on the time-axis.

Time-axis labels

Specify how to display the time units used to describe the time-axis. The default setting is All. You
can select one of the following options.

• All — In this mode, the time-axis labels appear in all displays.
• None — In this mode, the time-axis labels do not appear in the displays.
• Bottom Displays Only — In this mode, the time-axis labels appear only in the bottom row of

the displays.

Show time-axis label

Select to turn on time-axis label display.

Maximize axes

Specify whether to display the Signal Browser in maximized axes mode. In this mode, each of the
axes is expanded to fit into the entire display. In each display, there is no space to show labels. Tick

 sptool

1-2485

mark values are shown on top of the plotted data. The default setting is Auto. You can select one of
the following options:

• Auto — In this mode, the axes appear maximized in all displays only if the Title and Y-Axis label
parameters are empty for every display. If you enter any value in any display for either of these
parameters, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any values entered into the Title
and Y-Axis label parameters are hidden.

• Off — In this mode, none of the axes appear maximized.

Display Pane

The Display pane of the Visuals — Time Domain Properties dialog box appears as follows.

Active display

Specify the active display as an integer to get and set relevant properties. The number of a display
corresponds to its column-wise placement index. Set this property to control which display has its
axes colors, line properties, marker properties, and visibility changed.

When you use the Layout option to tile the window into multiple displays, the display highlighted in
blue is referred to as the active display. The default setting is 1.

Title

Specify the active display title as text. By default, the active display has no title.

Show legend

Select this check box to show the legend in the display. The channel legend displays a name for each
channel of each input signal. When the legend appears, you can place it anywhere inside of the scope
window. To turn off the legend, clear the Show legend check box.

1 Functions

1-2486

You can edit the name of any channel in the legend by double-clicking the current name and entering
a new channel name. By default, if the signal has multiple channels, the scope uses an index number
to identify each channel of that signal. To change the appearance of any channel of any input signal in
the scope window, from the scope menu, select View > Style. The legend lets you modify what
signals are shown. To show only one signal, click the signal name. To toggle a signal on/off, right-click
the signal name.

Show grid

When you select this check box, a grid appears in the display of the scope figure. To hide the grid,
clear this check box.

Plot signals as magnitude and phase

When you select this check box, the scope splits the display into a magnitude plot and a phase plot.
By default, this check box is cleared. If the input signal has complex values, the scope plots the real
and imaginary portions on the same axes. These real and imaginary portions appear as different-
colored lines on the same axes. Selecting this check box and clicking the Apply or OK button
changes the display. The magnitude of the input signal appears on the top axes and its phase, in
degrees, appears on the bottom axes.

This feature is useful for complex-valued input signals. If the input is a real-valued signal, selecting
this check box returns the absolute value of the signal for the magnitude. The phase is 0 degrees for
nonnegative input and 180 degrees for negative input.

Y-limits (Minimum)

Specify the minimum value of the y-axis.

When you select the Plot signal(s) as magnitude and phase check box, the value of this property
always applies to the magnitude plot on the top axes. The phase plot on the bottom axes is always
limited to a minimum value of -180 degrees.

Y-limits (Maximum)

Specify the maximum value of the y-axis.

When you select the Plot signal(s) as magnitude and phase check box, the value of this property
always applies to the magnitude plot on the top axes. The phase plot on the bottom axes is always
limited to a maximum value of 180 degrees.

Y-label

Specify the text for the scope to display to the left of the y-axis.

This property becomes invisible when you select the Plot signal(s) as magnitude and phase check
box. When you enable that property, the y-axis label always appears as Magnitude on the top axes
and Phase on the bottom axes.

Style Dialog Box
In the Style dialog box, you can customize the style of displays. You can change the color of the figure
containing the displays, the background and foreground colors of display axes, and properties of lines
in a display. From the Signal Browser menu, select View > Style.

 sptool

1-2487

Properties

The Style dialog box allows you to modify the following properties of the Signal Browser:
Figure color

Specify the color that you want to apply to the background of the Signal Browser. By default, the
figure color is gray.
Plot type

Specify the type of plot to use. The default setting is Line. Valid values for Plot type are:

• Line — Displays input signal as lines connecting each of the sampled values. This approach is
similar to the functionality of the MATLAB line or plot function.

• Stairs — Displays input signal as a stairstep graph. A stairstep graph is made up of only
horizontal lines and vertical lines. Each horizontal line represents the signal value for a discrete
sample period and is connected to two vertical lines. Each vertical line represents a change in
values occurring at a sample. This approach is equivalent to the MATLAB stairs function.
Stairstep graphs are useful for drawing time history graphs of digitally sampled data.

Select display

Specify the active display as a number, where a display number corresponds to the index of the input
signal. The number of a display corresponds to its column-wise placement index. The default setting
is 1. Set this parameter to control which display should have its axes colors, line properties, marker
properties, and visibility changed.
Axes colors

Specify the color that you want to apply to the background of the axes for the active display.
Preserve colors for copy to clipboard

Specify whether or not to use the displayed color of the scope when copying.

When you select File > Copy to Clipboard, the software changes the color of the scope to be printer
friendly (white background, visible lines). If you want to copy and paste the scope with the colors
displayed, select this check box.

Default: Off
Properties for line

Specify the signal for which you want to modify the visibility, line properties, and marker properties.
Visible

Specify whether the selected signal on the active display should be visible. If you clear this check box,
the line disappears.
Line

Specify the line style, line width, and line color for the selected signal on the active display.
Marker

Specify marks for the selected signal on the active display to show at data points. This parameter is
similar to the Marker property for the MATLAB Handle Graphics® plot objects.

1 Functions

1-2488

Filter Designer App
The Filter Designer app allows you to design and edit FIR and IIR filters. To launch the app, press
either the New button or the Edit button under the Filters list box in SPTool.

The Filter Designer app has a Pole/Zero Editor you can access by selecting the icon in the left
column.

Filter Visualization Tool
The Filter Visualization Tool (FVTool) allows you to view the characteristics of a designed or
imported filter, including its magnitude response, phase response, group delay, phase delay, pole-zero
plot, impulse response, and step response. To activate FVTool, click the View button under the
Filters list box in SPTool.

Spectrum Viewer
The Spectrum Viewer allows you to analyze frequency-domain data graphically using a variety of
methods of spectral density estimation, including the Burg method, the FFT method, the multitaper
method, the MUSIC eigenvector method, Welch’s method, and the Yule-Walker autoregressive
method. To activate the Spectrum Viewer:

• Click the Create button under the Spectra list box to compute the power spectral density for a
signal selected in the Signals list box in SPTool. You may need to click Apply to view the spectra.

• Click the View button to analyze spectra selected under the Spectra list box in SPTool.
• Click the Update button under the Spectra list box in SPTool to modify a selected power spectral

density signal.

 sptool

1-2489

In addition, you can right-click in any plot display area to modify signal properties.

Controlling SPTool from the MATLAB Command Line
You can import or export data from SPTool using the command line.

Exporting Component Structures from SPTool

The following commands export component structures from the currently open SPTool:

• s = sptool('Signals') returns a structure array of all the signals.
• f = sptool('Filters') returns a structure array of all the filters.
• s = sptool('Spectra') returns a structure array of all the spectra.
• [s,ind] = sptool(___) returns an index vector indicating which of the elements of s are

currently selected in SPTool.
• s = sptool(___ ,0) returns only the currently selected objects.

Creating and Loading Component Structures

The following commands create component structures and load them into SPTool, opening SPTool if
necessary:

• struc = sptool('create',paramlist) creates in the workspace a component structure,
struc, defined by paramlist.

sptool('load',struc) loads struc into SPTool.
• struc = sptool('load',paramlist) loads the component structure defined by paramlist

into SPTool. If you specify an output argument, then the command also creates a component
structure in the workspace.

Example: Create and load a 5th-order Butterworth filter with a cutoff frequency of 0.5π rad/sample.
Specify the filter in state-space representation, label it Butterworth within SPTool, and set it to
filter digital signals sampled at 1 kHz.

1 Functions

1-2490

[z,p,k] = butter(5,0.5);
struc = sptool('create','Filter','zpk',z,p,k,1e3,'Butterworth');
sptool('load',struc)

Example: Load into SPTool the periodogram PSD estimate of a 512-sample sinusoidal signal
embedded in white noise. Work in normalized units and specify a sinusoid frequency of π/4 rad/
sample. Label the spectrum PSD within SPTool.

n = 0:511;
x = sin(pi/4*n)+randn(size(n))/10;
[pxx,w] = periodogram(x);
sptool('load','Spectrum',pxx,w,'PSD')

Example: Create and load a quadratic chirp modulated by a Gaussian. Specify a sample rate of 2 kHz
and a signal duration of 2 seconds. Generate a copy of the structure in the workspace.

t = 0:1/2000:2-1/2000;
q = chirp(t-2,4,1/2,6,'quadratic',100,'convex').*exp(-4*(t-1).^2);
Chirp = sptool('load',q,2000)

Chirp =

 struct with fields:

 data: [4000×1 double]
 Fs: 2000
 type: 'vector'
 lineinfo: []
 SPTIdentifier: [1×1 struct]
 label: 'sig'

The parameters in paramlist must be input in the following order:

Component paramlist Parameters
Signals component_name, data, fs, label
Filters component_name, form, filter_params, fs,

label
Spectra component_name, data, f, label

The parameters are defined as follows:

Parameter Definition
component_name Specify as one of 'Signal', 'Filter', or

'Spectrum'. If omitted, component_name
defaults to 'Signal'.

form Form or structure of a filter. Specify as one of
'tf', 'ss', 'sos', or 'zpk'.

data Vector of doubles representing a signal or
spectrum.

 sptool

1-2491

Parameter Definition
filter_params Filter representation.

• Specify num and den when form is 'tf'.
• Specify an SOS matrix when form is 'sos'.
• Specify z, p, and k when form is 'zpk'.
• Specify A, B, C, and D when form is 'ss'.

fs Optional parameter that specifies the sample
rate. If omitted, fs defaults to 1.

f Frequency vector. This parameter applies only if
component_name is 'Spectrum'.

label Optional parameter that specifies the variable
name of the component within SPTool. If omitted,
label defaults to:

• 'sig' if component_name is 'Signal'
• 'filt' if component_name is 'Filter'
• 'spec' if component_name is 'Spectrum'

See Also
Apps
Filter Designer | Signal Analyzer

Functions
findpeaks | FVTool

Introduced before R2006a

1 Functions

1-2492

square
Square wave

Syntax
x = square(t)
x = square(t,duty)

Description
x = square(t) generates a square wave with period 2π for the elements of the time array t.
square is similar to the sine function but creates a square wave with values of –1 and 1.

x = square(t,duty) generates a square wave with specified duty cycle duty. The duty cycle is the
percent of the signal period in which the square wave is positive.

Examples

Generate Square Waves

Create a vector of 100 equally spaced numbers from 0 to 3π. Generate a square wave with a period of
2π.

t = linspace(0,3*pi)';
x = square(t);

Plot the square wave and overlay a sine. Normalize the x-axis by π. The generated square wave has a
value of 1 for intervals [nπ, n + 1 π) with even n and a value of −1 for intervals [nπ, n + 1 π) with
odd n. The wave never has a value of 0.

plot(t/pi,x,'.-',t/pi,sin(t))
xlabel('t / \pi')
grid on

 square

1-2493

Repeat the calculation, but now evaluate square(2*t) at 121 equally spaced numbers between −π
and 2π. Change the amplitude to 1 . 15. Plot the wave and overlay a sine with the same parameters.
This new wave is negative at t = 0 and positive at the endpoints, −π and 2π.

t = linspace(-pi,2*pi,121);
x = 1.15*square(2*t);

plot(t/pi,x,'.-',t/pi,1.15*sin(2*t))
xlabel('t / \pi')
grid on

1 Functions

1-2494

Duty Cycle of Square Wave

Generate a 30 Hz square wave sampled at 1 kHz for 70 ms. Specify a duty cycle of 37%. Add white
Gaussian noise with a variance of 1/100.

t = 0:1/1e3:0.07;
y = square(2*pi*30*t,37)+randn(size(t))/10;

Compute the duty cycle of the wave. Plot the waveform and annotate the duty cycle.

dutycycle(y,t)

 square

1-2495

ans = 0.3639

Input Arguments
t — Time array
vector | matrix | N-D array

Time array, specified as a vector, matrix, or N-D array. square operates along the first array
dimension of t with size greater than 1.
Data Types: single | double

duty — Duty cycle
50 (default) | real scalar from 0 to 100

Duty cycle, specified as a real scalar from 0 to 100.
Data Types: single | double

Output Arguments
x — Square wave
vector | matrix | N-D array

Square wave, returned as a vector, matrix, or N-D array.

1 Functions

1-2496

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin | tripuls

Introduced before R2006a

 square

1-2497

ss
Convert digital filter to state-space representation

Syntax
[A,B,C,D] = ss(d)

Description
[A,B,C,D] = ss(d) converts a digital filter, d, to its state-space representation.

The state-space representation of a filter is given by

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x is the state vector, u is the input vector, and y is the output vector.

Examples

State-Space Representation of a Lowpass IIR Filter

Design a lowpass IIR filter of order 6. Specify a normalized passband frequency of 0 . 2π rad/sample.
Compute the state-space representation of the filter.

d = designfilt('lowpassiir','FilterOrder',6,'PassbandFrequency',0.2);
[A,B,C,D] = ss(d)

A = 6×6

 1.5640 -0.9294 0 0 0 0
 1.0000 0 0 0 0 0
 0.1795 0.0036 1.6097 -0.8112 0 0
 0 0 1.0000 0 0 0
 0.0020 0.0000 0.0408 0.0021 1.6956 -0.7409
 0 0 0 0 1.0000 0

B = 6×1

 0.0913
 0
 0.0046
 0
 0.0001
 0

C = 1×6

 0.0020 0.0000 0.0408 0.0021 3.6956 0.2591

1 Functions

1-2498

D = 5.2030e-05

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
A — State matrix
matrix

State matrix, returned as a matrix.
Data Types: double

B — Input-to-state matrix
matrix

Input-to-state matrix, returned as a matrix.
Data Types: double

C — State-to-output matrix
matrix

State-to-output matrix, returned as a matrix.
Data Types: double

D — Feedthrough matrix
matrix

Feedthrough matrix, returned as a matrix.
Data Types: double

See Also
designfilt | digitalFilter | tf | zpk

Introduced in R2014a

 ss

1-2499

ss2sos
Convert digital filter state-space parameters to second-order sections form

Syntax
[sos,g] = ss2sos(A,B,C,D)
[sos,g] = ss2sos(A,B,C,D,iu)
[sos,g] = ss2sos(A,B,C,D,order)
[sos,g] = ss2sos(A,B,C,D,iu,order)
[sos,g] = ss2sos(A,B,C,D,iu,order,scale)
sos = ss2sos(___)

Description
[sos,g] = ss2sos(A,B,C,D) returns second-order section form sos with gain g that is equivalent
to the state-space system represented by input arguments A, B, C, and D. The input state-space
system must be single-output and real.

[sos,g] = ss2sos(A,B,C,D,iu) specifies index iu that indicates which input of the state-space
system A, B, C, D the function uses in the conversion.

[sos,g] = ss2sos(A,B,C,D,order) specifies the order of the rows in sos with order.

[sos,g] = ss2sos(A,B,C,D,iu,order) specifies both the index ui and the order of the rows
order.

[sos,g] = ss2sos(A,B,C,D,iu,order,scale) specifies the desired scaling of the gain and the
numerator coefficients of all second-order sections.

sos = ss2sos(___) embeds the overall system gain g in the first section. You can specify an input
combination from any of the previous syntaxes.

Examples

Second-Order Section Form of Filter

Design a fifth-order Butterworth lowpass filter, specifying a cutoff frequency of 0 . 2π rad/sample and
expressing the output in state-space form. Convert the state-space result to second-order sections.
Visualize the frequency response of the filter.

[A,B,C,D] = butter(5,0.2);
sos = ss2sos(A,B,C,D)

sos = 3×6

 0.0013 0.0013 0 1.0000 -0.5095 0
 1.0000 1.9996 0.9996 1.0000 -1.0966 0.3554
 1.0000 2.0000 1.0000 1.0000 -1.3693 0.6926

1 Functions

1-2500

freqz(sos)

Mass-Spring System

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to a wall by a
spring of unit elastic constant. A sensor measures the acceleration, a, of the mass.

The system is sampled at Fs = 5 Hz. Generate 50 time samples. Define the sampling interval
Δt = 1/Fs.

Fs = 5;
dt = 1/Fs;
N = 50;
t = dt*(0:N-1);

The oscillator can be described by the state-space equations

 ss2sos

1-2501

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r v T is the state vector, r and v are respectively the position and velocity of the mass, and
the matrices

A =
cosΔt sinΔt
−sinΔt cosΔt

, B =
1 − cosΔt

sinΔt
, C = −1 0 , D = 1 .

A = [cos(dt) sin(dt);-sin(dt) cos(dt)];
B = [1-cos(dt);sin(dt)];
C = [-1 0];
D = 1;

The system is excited with a unit impulse in the positive direction. Use the state-space model to
compute the time evolution of the system starting from an all-zero initial state.

u = [1 zeros(1,N-1)];

x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

Plot the acceleration of the mass as a function of time.

stem(t,y,'filled')

1 Functions

1-2502

Compute the time-dependent acceleration using the transfer function to filter the input. Express the
transfer function as second-order sections. Plot the result.

sos = ss2sos(A,B,C,D);
yt = sosfilt(sos,u);
stem(t,yt,'filled')

 ss2sos

1-2503

The result is the same in both cases.

Input Arguments
A — State matrix
matrix

State matrix, specified as a matrix. If the system has p inputs and q outputs and is described by n
state variables, then A is of size n-by-n.

B — Input-to-state matrix
matrix

Input-to-state matrix, specified as a matrix. If the system has p inputs and q outputs and is described
by n state variables, then B is of size n-by-p.

C — Output-to-state matrix
matrix

Output-to-state matrix, specified as a matrix. If the system has p inputs and q outputs and is
described by n state variables, then C is of size q-by-n.

D — Feedthrough matrix
matrix

1 Functions

1-2504

Feedthrough matrix, specified as a matrix. If the system has p inputs and q outputs and is described
by n state variables, then D is of size q-by-p.

iu — Index
1 (default) | integer

Index, specified as an integer.

order — Row order
'up' (default) | 'down'

Row order in sos, specified as one of these values:

• 'down' — Order the sections so that the first row of sos contains the poles that are closest to the
unit circle.

• 'up' — Order the sections so that the first row of sos contains the poles that are farthest from
the unit circle.

The zeros are paired with the poles that are closest to them.

scale — Scaling of gain and numerator coefficients
'none' (default) | 'inf'

Scaling of the gain and numerator coefficients, specified as one of these values:

• 'none' — Apply no scaling.
• 'inf' — Apply infinity-norm scaling.
• 'two' — Apply 2-norm scaling.

Using infinity-norm scaling in conjunction with up-ordering minimizes the probability of overflow in
the realization. Using 2-norm scaling in conjunction with down-ordering minimizes the peak round-off
noise.

Note Infinity-norm and 2-norm scaling are appropriate for only direct-form II implementations.

Output Arguments
sos — Second-order section representation
matrix

Second-order section representation, returned as a matrix. sos is an L-by-6 matrix of the form

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z), which is given by

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2

 ss2sos

1-2505

g — Overall system gain
real-valued scalar

Overall system gain, returned as a real-valued scalar.

If you call the function with one output argument, the function embeds the gain in the first section,
H1(z), so that

H(z) = ∏
k = 1

L
Hk(z)

Note Embedding the gain in the first section when scaling a direct-form II structure is not
recommended and can result in erratic scaling. To avoid embedding the gain, use the function with
two outputs: sos and g.

Algorithms
The ss2sos function uses this four-step algorithm to determine the second-order section
representation for an input state-space system.

1 Find the poles and zeros of the system given by A, B, C, and D.
2 Use the function zp2sos, which first groups the zeros and poles into complex conjugate pairs

using the cplxpair function. zp2sos then forms the second-order sections by matching the
pole and zero pairs according to these rules:

a Match the poles that are closest to the unit circle with the zeros that are closest to those
poles.

b Match the poles that are next closest to the unit circle with the zeros that are closest to
those poles.

c Continue this process until all of the poles and zeros are matched.

The ss2sos function groups real poles into sections with the real poles that are closest to them
in absolute value. The same rule holds for real zeros.

3 Order the sections according to the proximity of the pole pairs to the unit circle. The ss2sos
function normally orders the sections with poles that are closest to the unit circle last in the
cascade. You can specify for ss2sos to order the sections in the reverse order by setting the
order input to 'down'.

4 Scale the sections by the norm specified by the scale input. For arbitrary H(ω), the scaling is
defined by

H p = 1
2π ∫

0

2π
H(ω) pdω

1/p

where p can be either ∞ or 2. For details, see the references. This scaling is an attempt to
minimize overflow or peak round-off noise in fixed-point filter implementations.

1 Functions

1-2506

References
[1] Jackson, Leland B. Digital Filters and Signal Processing. Boston: Kluwer Academic Publishers,

1996.

[2] Mitra, Sanjit Kumar. Digital Signal Processing: A Computer-Based Approach. New York: McGraw-
Hill, 1998.

[3] Vaidyanathan, P. P. “Robust Digital Filter Structures.” Handbook for Digital Signal Processing (S.
K. Mitra and J. F. Kaiser, eds.). New York: John Wiley & Sons, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any character or string input must be a constant at compile time.

See Also
cplxpair | sos2ss | ss2tf | ss2zp | tf2sos | zp2sos

Introduced before R2006a

 ss2sos

1-2507

ss2zp
Convert state-space filter parameters to zero-pole-gain form

Syntax
[z,p,k] = ss2zp(A,B,C,D)
[z,p,k] = ss2zp(A,B,C,D,ni)

Description
[z,p,k] = ss2zp(A,B,C,D) converts a state-space representation

ẋ = Ax + Bu
y = Cx + Du

of a given continuous-time or discrete-time system to an equivalent zero-pole-gain representation

H(s) = Z(s)
P(s) = k

(s− z1)(s− z2)⋯(s− zn)
(s− p1)(s− p2)⋯(s− pn)

whose zeros, poles, and gains represent the transfer function in factored form.

[z,p,k] = ss2zp(A,B,C,D,ni) indicates that the system has multiple inputs and that the nith
input has been excited by a unit impulse.

Examples

Zeros, Poles, and Gain of a Discrete-Time System

Consider a discrete-time system defined by the transfer function

H(z) = 2 + 3z−1

1 + 0 . 4z−1 + z−2 .

Determine its zeros, poles, and gain directly from the transfer function. Pad the numerator with zeros
so it has the same length as the denominator.

b = [2 3 0];
a = [1 0.4 1];
[z,p,k] = tf2zp(b,a)

z = 2×1

 0
 -1.5000

p = 2×1 complex

 -0.2000 + 0.9798i

1 Functions

1-2508

 -0.2000 - 0.9798i

k = 2

Express the system in state-space form and determine the zeros, poles, and gain using ss2zp.

[A,B,C,D] = tf2ss(b,a);
[z,p,k] = ss2zp(A,B,C,D,1)

z = 2×1

 -1.5000
 0.0000

p = 2×1 complex

 -0.2000 + 0.9798i
 -0.2000 - 0.9798i

k = 2

Input Arguments
A — State matrix
matrix

State matrix. If the system has r inputs and q outputs and is described by n state variables, then A is
n-by-n.
Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix. If the system has r inputs and q outputs and is described by n state variables,
then B is n-by-r.
Data Types: single | double

C — State-to-output matrix
matrix

Input-to-state matrix. If the system has r inputs and q outputs and is described by n state variables,
then C is q-by-n.
Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix. If the system has r inputs and q outputs and is described by n state variables,
then D is q-by-r.
Data Types: single | double

 ss2zp

1-2509

ni — Input index
1 (default) | integer scalar

Input index, specified as an integer scalar. If the system has r inputs, use ss2zp with a trailing
argument ni = 1, …, r to compute the response to a unit impulse applied to the nith input.
Specifying this argument causes ss2zp to use the nith columns of B and D.
Data Types: single | double

Output Arguments
z — Zeros
matrix

Zeros of the system, returned as a matrix. z contains the numerator zeros in its columns. z has as
many columns as there are outputs (rows in C).

p — Poles
column vector

Poles of the system, returned as a column vector. p contains the pole locations of the denominator
coefficients of the transfer function.

k — Gains
column vector

Gains of the system, returned as a column vector. k contains the gains for each numerator transfer
function.

Algorithms
ss2zp finds the poles from the eigenvalues of the A array. The zeros are the finite solutions to a
generalized eigenvalue problem:

z = eig([A B;C D],diag([ones(1,n) 0]);

In many situations, this algorithm produces spurious large, but finite, zeros. ss2zp interprets these
large zeros as infinite.

ss2zp finds the gains by solving for the first nonzero Markov parameters.

References
[1] Laub, A. J., and B. C. Moore. "Calculation of Transmission Zeros Using QZ Techniques."

Automatica. Vol. 14, 1978, p. 557.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-2510

• Outputs z and p are always complex.
• The order of outputs, z and p, might be different in MATLAB and the generated code.

See Also
sos2zp | ss2sos | ss2tf | tf2zp | tf2zpk | zp2ss

Introduced before R2006a

 ss2zp

1-2511

statelevels
State-level estimation for bilevel waveform with histogram method

Syntax
levels = statelevels(x)
levels = statelevels(x,nbins)
levels = statelevels(x,nbins,method)
levels = statelevels(x,nbins,method,bounds)

[levels,histogram] = statelevels(___)
[levels,histogram,binlevels] = statelevels(___)

statelevels(___)

Description
levels = statelevels(x) estimates the low and high state levels in the bilevel waveform x using
the histogram method. For more information, see “Algorithms” on page 1-2518.

levels = statelevels(x,nbins) specifies the number of bins to use in the histogram as a
positive scalar.

levels = statelevels(x,nbins,method) estimates state levels using the mean or mode of the
subhistograms.

levels = statelevels(x,nbins,method,bounds) specifies the lower and upper bounds of the
histogram in the two-element real row vector bounds. statelevels ignores any values of x that lie
outside these bounds when it computes the histogram.

[levels,histogram] = statelevels(___) returns the histogram of the values in x.

[levels,histogram,binlevels] = statelevels(___) returns the centers of the histogram
bins.

statelevels(___) displays a plot of the signal and the corresponding histogram.

Examples

Display State Levels and Subhistograms

Estimate the low- and high-state levels of 2.3 V underdamped clock data. Plot the data with the
estimated state levels and subhistograms.

load('clockex.mat','x')

statelevels(x)

1 Functions

1-2512

ans = 1×2

 0.0027 2.3068

State Levels with 100 Bins and Modes of Subhistograms

Estimate the low- and high-state levels of 2.3 V underdamped clock data sampled at 4 MHz.

Use the default number of bins and modes of the subhistograms to estimate the state levels.

load('clockex.mat','x','t')
levs = statelevels(x)

levs = 1×2

 0.0027 2.3068

Plot the clock data with the lines indicating the estimated low- and high-state levels.

statelevels(x)

 statelevels

1-2513

ans = 1×2

 0.0027 2.3068

State Levels Using Means of Subhistograms

Estimate the low- and high-state levels of 2.3 V underdamped clock data sampled at 4 MHz.

Use the default number of bins and means of the subhistograms to estimate the state levels. Plot the
clock data with the lines indicating the estimated low- and high-state levels.

load('clockex.mat','x','t')

statelevels(x,1e3,'mean')

1 Functions

1-2514

ans = 1×2

 -0.0014 2.3014

Histogram Counts and Histogram Bin Centers

Estimate the low- and high-state levels of 2.3 V underdamped clock data sampled at 4 MHz. Return
the histogram counts and histogram bin centers used in the histogram method. Use four bins.

load('clockex.mat','x','t')
[levs,histog,bilevs] = statelevels(x,4)

levs = 1×2

 0.2427 2.0428

histog = 4×1

 50
 0
 0
 50

 statelevels

1-2515

bilevs = 4×1

 0.2427
 0.8427
 1.4428
 2.0428

Plot the waveform and annotate the levels.

statelevels(x,4)

ans = 1×2

 0.2427 2.0428

Input Arguments
x — Bilevel waveform
real vector

Bilevel waveform, specified as a real-valued vector.

nbins — Number of histogram bins
100 (default) | positive integer

1 Functions

1-2516

Number of histogram bins, specified as a real positive scalar.

method — State-level estimation method
'mode' (default) | 'mean'

State-level estimation method in the subhistograms, specified as 'mode' or 'mean'. method
specifies the statistic to use for the estimation of the low- and high-state levels. See “Algorithms” on
page 1-2518.

bounds — Histogram lower and upper bounds
two-element real row vector

Histogram lower and upper bounds, specified as a two-element real row vector. statelevels
ignores any values of x that lie outside these bounds when it computes the histogram.

Output Arguments
levels — Levels of low and high states
two-element positive row vector

Levels of low and high states, returned as a two-element positive row vector. The vector of state
levels is estimated by the histogram method. The first element of levels is the low-state level and
the second element is the high-state level.

histogram — Histogram counts
column vector

Histogram counts, returned as a column vector with nbins elements containing the number of data
values in each histogram bin.

binlevels — Histogram bin centers
column vector

Histogram bin centers, returned as a column vector. The column vectors contain the bin centers for
the histogram counts in histogram

More About
State

A state is a particular level, which can be associated with an upper- and lower-state boundary. States
are ordered from the most negative to the most positive. In a bilevel waveform, the most negative
state is the low state. The most positive state is the high state.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

 statelevels

1-2517

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

Algorithms
statelevels uses the histogram method to estimate the states of a bilevel waveform. The histogram
method is described in [1] on page 1-2519. The steps of this method are:

1 Determine the maximum and minimum amplitudes and amplitude range of the data.
2 For the specified number of histogram bins, determine the bin width, which is the ratio of the

amplitude range to the number of bins.
3 Sort the data values into the histogram bins.
4 Identify the lowest-indexed histogram bin, ilow, and highest-indexed histogram bin, ihigh, with

nonzero counts.
5 Divide the histogram into two subhistograms:

The indices of the lower histogram bins are ilow ≤ i ≤ 1
2(ihigh− ilow).

The indices of the upper histogram bins are ilow + 1
2(ihigh− ilow) ≤ i ≤ ihigh.

1 Functions

1-2518

6 Compute the state levels by determining the mode or mean of the lower and upper histograms.

References
[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181, 2003, pp. 15–

17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
midcross | overshoot | risetime | undershoot

Introduced in R2012a

 statelevels

1-2519

stepz
Step response of digital filter

Syntax
[h,t] = stepz(b,a)
[h,t] = stepz(sos)
[h,t] = stepz(d)

[h,t] = stepz(___ ,n)
[h,t] = stepz(___ ,n,fs)

stepz(___)

Description
[h,t] = stepz(b,a) returns the step response vector h and the corresponding sample times t for
the digital filter with transfer function coefficients stored in b and a.

[h,t] = stepz(sos) returns the step response corresponding to the second-order sections matrix
sos.

[h,t] = stepz(d) returns the step response for the digital filter d.

[h,t] = stepz(___ ,n) computes the first n samples of the step response. This syntax can include
any combination of input arguments from the previous syntaxes.

[h,t] = stepz(___ ,n,fs) computes n samples and produces a vector t so that the samples are
spaced 1/fs units apart.

stepz(___) with no output arguments plots the step response of the filter. If you input a
digitalFilter, the step response is displayed in FVTool.

Examples

Step Response of a Butterworth Filter

Create a third-order Butterworth filter with normalized half-power frequency 0 . 4π rad/sample.
Display its step response.

[b,a] = butter(3,0.4);
stepz(b,a)
grid

1 Functions

1-2520

Create an identical filter using designfilt and display its step response using fvtool.

d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.4);
stepz(d)

 stepz

1-2521

Step Response of an Elliptic Filter

Design a fourth-order lowpass elliptic filter with normalized passband frequency 0 . 4π rad/sample.
Specify a passband ripple of 0.5 dB and a stopband attenuation of 20 dB. Plot the first 50 samples of
the filter's step response.

[b,a] = ellip(4,0.5,20,0.4);
stepz(b,a,50)
grid

1 Functions

1-2522

Create the same filter using designfilt and display its step response using fvtool.

d = designfilt('lowpassiir','FilterOrder',4,'PassbandFrequency',0.4, ...
 'PassbandRipple',0.5,'StopbandAttenuation',20, ...
 'DesignMethod','ellip');
stepz(d,50)

 stepz

1-2523

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(e jω) = B(e jω)
A(e jω)

= b(1)+b(2) e− jω + b(3) e− j2ω +⋯+ b(M) e− j(M − 1)ω

a(1)+a(2) e− jω + a(3) e− j2ω +⋯+ a(N) e− j(N − 1)ω .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

n — Number of evaluation points
positive integer scalar | positive integer vector

Number of evaluation points, specified as a positive integer scalar or positive integer vector. If n is a
positive integer scalar (t = [0:n-1]'), the function computes the first n samples of the step
response. If n is a vector of integers, the step response is computed only at those integer values, with
0 denoting the time origin.

1 Functions

1-2524

Data Types: double

sos — Second-order section coefficients
matrix

Second-order section coefficients, specified as a matrix. sos is a K-by-6 matrix, where the number of
sections, K, must be greater than or equal to 2. If the number of sections is less than 2, the function
treats the input as a numerator vector. Each row of sos corresponds to the coefficients of a second-
order (biquad) filter. The ith row of sos corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2)
ai(3)].
Example: s = [2 4 2 6 0 2;3 3 0 6 0 0] specifies a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double | single
Complex Number Support: Yes

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. When the unit of time is seconds, fs is expressed in hertz.
Data Types: double

Output Arguments
h — Step response
column vector

Step response, returned as a column vector. If the input to stepz is single precision, the function
computes the step response using single-precision arithmetic. The output h is single precision.

t — Sample times
vector

Sample times, returned as a vector.

Algorithms
stepz filters a length n step sequence using

filter(b,a,ones(1,n))

and plots the results using stem.

To compute n in the auto-length case, stepz either uses n = length(b) for the FIR case, or first
finds the poles using p = roots(a) if length(a) is greater than 1.

 stepz

1-2525

If the filter is unstable, n is chosen to be the point at which the term from the largest pole reaches
106 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the largest amplitude pole is
5 × 10–5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), stepz computes five periods of the slowest
oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal five periods of the slowest
oscillation or the point at which the term due to the pole of largest nonunit amplitude is 5 × 10–5

times its original amplitude, whichever is greater.

stepz also allows for delays in the numerator polynomial. The number of delays is incorporated into
the computation for the number of samples.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If the first input to stepz is a variable-size matrix at compile time, then it must not become a vector
at runtime.

See Also
designfilt | digitalFilter | freqz | grpdelay | impz | phasez | zplane

Introduced before R2006a

1 Functions

1-2526

stft
Short-time Fourier transform

Syntax
s = stft(x)
s = stft(x,fs)
s = stft(x,ts)

s = stft(___ ,Name,Value)

[s,f] = stft(___)
[s,f,t] = stft(___)

stft(___)

Description
s = stft(x) returns the “Short-Time Fourier Transform” on page 1-2539 (STFT) of x.

s = stft(x,fs) returns the STFT of x using sample rate fs.

s = stft(x,ts) returns the STFT of x using sample time ts.

s = stft(___ ,Name,Value) specifies additional options using name-value pair arguments.
Options include the FFT window and length. These arguments can be added to any of the previous
input syntaxes.

[s,f] = stft(___) returns the frequencies f at which the STFT is evaluated.

[s,f,t] = stft(___) returns the times at which the STFT is evaluated.

stft(___) with no output arguments plots the magnitude of the STFT in the current figure window.

Examples

3D STFT Visualization

Generate two seconds of a voltage controlled oscillator output, controlled by a sinusoid sampled at 10
kHz.

fs = 10e3;
t = 0:1/fs:2;
x = vco(sin(2*pi*t),[0.1 0.4]*fs,fs);

Compute and plot the STFT of the signal. Use a Kaiser window of length 256 and shape parameter
β = 5. Specify the length of overlap as 220 samples and DFT length as 512 points. Plot the STFT with
default colormap and view.

stft(x,fs,'Window',kaiser(256,5),'OverlapLength',220,'FFTLength',512);

 stft

1-2527

Change the view to display the STFT as a waterfall plot. Set the colormap to jet.

view(-45,65)
colormap jet

1 Functions

1-2528

STFT of Quadratic Chirp

Generate a quadratic chirp sampled at 1 kHz for 2 seconds. The instantaneous frequency is 100 Hz at
t = 0 and crosses 200 Hz at t = 1 second.

ts = 0:1/1e3:2;

f0 = 100;
f1 = 200;

x = chirp(ts,f0,1,f1,'quadratic',[],'concave');

Compute and display the STFT of the quadratic chirp with a duration of 1 ms.

d = seconds(1e-3);
win = hamming(100,'periodic');

stft(x,d,'Window',win,'OverlapLength',98,'FFTLength',128);

 stft

1-2529

STFT Frequency Ranges

Generate a signal sampled at 5 kHz for 4 seconds. The signal consists of a set of pulses of decreasing
duration separated by regions of oscillating amplitude and fluctuating frequency with an increasing
trend. Plot the signal.

fs = 5000;
t = 0:1/fs:4-1/fs;

x = besselj(0,600*(sin(2*pi*(t+1).^3/30).^5));

plot(t,x)

1 Functions

1-2530

Compute the one-sided, two-sided, and centered short-time Fourier transforms of the signal. In all
cases, use a 202-sample Kaiser window with shape factor β = 10 to window the signal segments.
Display the frequency range used to compute each transform.

rngs = ["onesided" "twosided" "centered"];

for kj = 1:length(rngs)

 opts = {'Window',kaiser(202,10),'FrequencyRange',rngs(kj)};

 [~,f] = stft(x,fs,opts{:});
 subplot(length(rngs),1,kj)
 stft(x,fs,opts{:})
 title(sprintf('''%s'': [%5.3f, %5.3f] kHz',rngs(kj),[f(1) f(end)]/1000))

end

 stft

1-2531

Repeat the computation, but now change the length of the Kaiser window to 203, an odd number. The
'twosided' frequency interval does not change. The other two frequency intervals become open at
the higher end.

for kj = 1:length(rngs)

 opts = {'Window',kaiser(203,10),'FrequencyRange',rngs(kj)};

 [~,f] = stft(x,fs,opts{:});
 subplot(length(rngs),1,kj)
 stft(x,fs,opts{:})
 title(sprintf('''%s'': [%5.3f, %5.3f] kHz',rngs(kj),[f(1) f(end)]/1000))

end

1 Functions

1-2532

STFT of Multichannel Signals

Generate a three-channel signal consisting of three different chirps sampled at 1 kHz for one second.

1 The first channel consists of a concave quadratic chirp with instantaneous frequency 100 Hz at t
= 0 and crosses 300 Hz at t = 1 second. It has an initial phase equal to 45 degrees.

2 The second channel consists of a convex quadratic chirp with instantaneous frequency 100 Hz at
t = 0 and crosses 500 Hz at t = 1 second.

3 The third channel consists of a logarithmic chirp with instantaneous frequency 300 Hz at t = 0
and crosses 500 Hz at t = 1 second.

Compute the STFT of the multichannel signal using a periodic Hamming window of length 128 and an
overlap length of 50 samples.

fs = 1e3;
t = 0:1/fs:1-1/fs;

x = [chirp(t,100,1,300,'quadratic',45,'concave');
 chirp(t,100,1,500,'quadratic',[],'convex');
 chirp(t,300,1,500,'logarithmic')]';

[S,F,T] = stft(x,fs,'Window',hamming(128,'periodic'),'OverlapLength',50);

 stft

1-2533

Visualize the STFT of each channel as a waterfall plot. Control the behavior of the axes using the
helper function helperGraphicsOpt.

waterfall(F,T,abs(S(:,:,1))')
helperGraphicsOpt(1)

waterfall(F,T,abs(S(:,:,2))')
helperGraphicsOpt(2)

1 Functions

1-2534

waterfall(F,T,abs(S(:,:,3))')
helperGraphicsOpt(3)

 stft

1-2535

This helper function sets the appearance and behavior of the current axes.

function helperGraphicsOpt(ChannelId)
ax = gca;
ax.XDir = 'reverse';
ax.ZLim = [0 30];
ax.Title.String = ['Input Channel: ' num2str(ChannelId)];
ax.XLabel.String = 'Frequency (Hz)';
ax.YLabel.String = 'Time (seconds)';
ax.View = [30 45];
end

Input Arguments
x — Input signal
vector | matrix | timetable

Input signal, specified as a vector, a matrix, or a MATLAB timetable.

Note If you invert s using istft and want the result to be the same length as x, the value of
(length(x)-noverlap)/(length(window)-noverlap) must be an integer.

• If the input has multiple channels, specify x as a matrix where each column corresponds to a
channel.

1 Functions

1-2536

• For timetable input, x must contain uniformly increasing finite row times. If a timetable has
missing or duplicate time points, you can fix it using the tips in “Clean Timetable with Missing,
Duplicate, or Nonuniform Times”.

• For multichannel timetable input, specify x as a timetable with a single variable containing a
matrix or a timetable with multiple variables each containing a column vector. All variables must
have the same precision.

Each channel of x must have a length greater than or equal to the window length.
Example: chirp(0:1/4e3:2,250,1,500,'quadratic') specifies a single-channel chirp.
Example: timetable(rand(5,2),'SampleRate',1) specifies a two-channel random variable
sampled at 1 Hz for 4 seconds.
Example: timetable(rand(5,1),rand(5,1),'SampleRate',1) specifies a two-channel random
variable sampled at 1 Hz for 4 seconds.
Data Types: double | single
Complex Number Support: Yes

fs — Sample rate
2π (default) | positive scalar

Sample rate, specified as a positive scalar. This argument applies only when x is a vector or a matrix.
Data Types: double | single

ts — Sample time
duration scalar

Sample time, specified as a duration scalar. This argument applies only when x is a vector or a
matrix
Example: seconds(1) is a duration scalar representing a 1-second time difference between
consecutive signal samples.
Data Types: duration

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(100),'OverlapLength',50,'FFTLength',128 windows the data
using a 100-sample Hamming window, with 50 samples of overlap between adjoining segments and a
128-point FFT.

Window — Spectral window
hann(128,'periodic') (default) | vector

Spectral window, specified as a vector. If you do not specify the window or specify it as empty, the
function uses a Hann window of length 128. The length of 'Window' must be greater than or equal to
2.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.

 stft

1-2537

Data Types: double | single

OverlapLength — Number of overlapped samples
75% of window length (default) | nonnegative integer

Number of overlapped samples, specified as a positive integer smaller than the length of 'Window'.
If you omit 'OverlapLength' or specify it as empty, it is set to the largest integer less than 75% of
the window length, which is 96 samples for the default Hann window.
Data Types: double | single

FFTLength — Number of DFT points
128 (default) | positive integer

Number of DFT points, specified as a positive integer. The value must be greater than or equal to the
window length. If the length of the input signal is less than the DFT length, the data is padded with
zeros.
Data Types: double | single

FrequencyRange — STFT frequency range
'centered' (default) | 'twosided' | 'onesided'

STFT frequency range, specified as 'centered', 'twosided', or 'onesided'.

• 'centered' — Compute a two-sided, centered STFT. If 'FFTLength' is even, then s is
computed over the interval (–π, π] rad/sample. If 'FFTLength' is odd, then s is computed over
the interval (–π, π) rad/sample. If you specify time information, then the intervals are (–fs, fs/2]
cycles/unit time and (–fs, fs/2) cycles/unit time, respectively, where fs is the effective sample rate.

• 'twosided' — Compute a two-sided STFT over the interval [0, 2π) rad/sample. If you specify
time information, then the interval is [0, fs) cycles/unit time.

• 'onesided' — Compute a one-sided STFT. If 'FFTLength' is even, then s is computed over the
interval [0, π] rad/sample. If 'FFTLength' is odd, then s is computed over the interval [0, π) rad/
sample. If you specify time information, then the intervals are [0, fs/2] cycles/unit time and [0, fs/2)
cycles/unit time, respectively, where fs is the effective sample rate. This option is valid only for real
signals.

Note When this argument is set to 'onesided', stft outputs the values in the positive Nyquist
range and does not conserve the total power.

For an example, see “STFT Frequency Ranges” on page 1-2530.
Data Types: char | string

OutputTimeDimension — Output time dimension
'acrosscolumns' (default) | 'downrows'

Output time dimension, specified as 'acrosscolumns' or 'downrows'. Set this value to
'downrows' if you want the time dimension of s down the rows and the frequency dimension across
the columns. Set this value to 'acrosscolumns' if you want the time dimension of s across the
columns and the frequency dimension down the rows. This input is ignored if the function is called
without output arguments.

1 Functions

1-2538

Output Arguments
s — Short-time Fourier transform
matrix | 3-D array

Short-time Fourier transform, returned as a matrix or a 3-D array. Time increases across the columns
of s and frequency increases down the rows. The third dimension, if present, corresponds to the input
channels.

• If the signal x has Nx time samples, then s has k columns, where k = ⌊(Nx–L)/(M–L)⌋, M is the
length of 'Window', L is the 'OverlapLength', and the ⌊ ⌋ symbols denote the floor function.

• The number of rows in s is equal to the value specified in 'FFTLength'.

Data Types: double | single

f — Frequencies
vector

Frequencies at which the STFT is evaluated, returned as a vector.
Data Types: double | single

t — Time instants
vector

Time instants, returned as a vector. t contains the time values corresponding to the centers of the
data segments used to compute short-time power spectrum estimates.

• If a sample rate fs is provided, then the vector contains time values in seconds.
• If a sample time ts is provided, then the vector is a duration array with the same time format as

the input.
• If no time information is provided, then the vector contains sample numbers.

Data Types: double | single

More About
Short-Time Fourier Transform

The short-time Fourier transform (STFT) is used to analyze how the frequency content of a
nonstationary signal changes over time.

The STFT of a signal is calculated by sliding an analysis window of length M over the signal and
calculating the discrete Fourier transform of the windowed data. The window hops over the original
signal at intervals of R samples. Most window functions taper off at the edges to avoid spectral
ringing. If a nonzero overlap length L is specified, overlap-adding the windowed segments
compensates for the signal attenuation at the window edges. The DFT of each windowed segment is
added to a matrix that contains the magnitude and phase for each point in time and frequency. The
number of columns in the STFT matrix is given by

k =
Nx− L
M − L ,

 stft

1-2539

where Nx is the length of the original signal x(n) and the ⌊⌋ symbols denote the floor function. The
number of rows in the matrix equals NDFT, the number of DFT points, for centered and two-sided
transforms and ⌊NDFT/2⌋ + 1 for one-sided transforms.

The STFT matrix is given by X(f) = X1(f) X2(f) X3(f) ⋯ Xk(f) such that the mth element of this
matrix is

Xm(f) = ∑
n = −∞

∞
x(n)g(n−mR)e− j2πfn,

where

• g(n) — Window function of length M.
• Xm(f) — DFT of windowed data centered about time mR.

• R — Hop size between successive DFTs. The hop size is the difference between the window length
Mand the overlap length L.

The magnitude squared of the STFT yields the spectrogram representation of the power spectral
density of the function.

1 Functions

1-2540

Perfect Reconstruction

In general, computing the STFT of an input signal and inverting it does not result in perfect
reconstruction. If you want the output of ISTFT to match the original input signal as closely as
possible, the signal and the window must satisfy the following conditions:

• Input size — If you invert the output of stft using istft and want the result to be the same
length as the input signal x, the value of k = (length(x) − noverlap)

(length(window) − noverlap) must be an integer.

• COLA compliance — Use COLA-compliant windows, assuming that you have not modified the
short-time Fourier transform of the signal.

• Padding — If the length of the input signal is such that the value of k is not an integer, zero-pad
the signal before computing the short-time Fourier transform. Remove the extra zeros after
inverting the signal.

References
[1] Mitra, Sanjit K. Digital Signal Processing: A Computer-Based Approach. 2nd Ed. New York:

McGraw-Hill, 2001.

[2] Sharpe, Bruce. Invertibility of Overlap-Add Processing. https://gauss256.github.io/blog/cola.html,
accessed July 2019.

[3] Smith, Julius Orion. Spectral Audio Signal Processing. https://ccrma.stanford.edu/~jos/sasp/,
online book, 2011 edition, accessed Nov 2018.

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

Usage notes and limitations:

'OutputTimeDimension' must always be specified and set to 'downrows'.

For more information, see “Tall Arrays”.

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

 stft

1-2541

https://gauss256.github.io/blog/cola.html
https://ccrma.stanford.edu/~jos/sasp/

Usage notes and limitations:

• The syntax with no output arguments is not supported.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
dlstft | istft | iscola | pspectrum | stftmag2sig

Objects
stftLayer

Topics
“Time-Frequency Gallery”

Introduced in R2019a

1 Functions

1-2542

stftLayer
Short-time Fourier transform layer

Description
An STFT layer computes the short-time Fourier transform of the input. Use of this layer requires
Deep Learning Toolbox.

Creation

Syntax
layer = stftLayer
layer = stftLayer(Name=Value)

Description

layer = stftLayer creates a “Short-Time Fourier Transform” on page 1-2548 (STFT) layer. The
input to stftLayer must be a dlarray object in "CBT" format with a size along the time dimension
greater than the length of Window.

layer = stftLayer(Name=Value) specifies optional parameters using name-value arguments.
You can specify the analysis window and the format of the output, among others.

Properties
STFT

Window — Analysis window
hann(128,'periodic') (default) | vector

This property is read-only.

Analysis window used to compute the STFT, specified as a vector with two or more elements.
Example: (1-cos(2*pi*(0:127)'/127))/2 and hann(128) both specify a Hann window of length
128.
Data Types: double | single

OverlapLength — Number of overlapped samples
96 (default) | positive integer

This property is read-only.

Number of overlapped samples, specified as a positive integer strictly smaller than the length of
Window.

 stftLayer

1-2543

The stride between consecutive windows is the difference between the window length and the
number of overlapped samples.
Data Types: double | single

FFTLength — Number of DFT points
128 (default) | positive integer

This property is read-only.

Number of frequency points used to compute the discrete Fourier transform, specified as a positive
integer greater than or equal to the window length. If not specified, this argument defaults to the
length of the window.

If the length of the input data along the time dimension is less than the number of DFT points,
stftLayer right-pads the data and the window with zeros so they have a length equal to
FFTLength.
Data Types: double | single

TransformMode — Layer transform mode
"mag" (default) | "squaremag" | "logmag" | "logsquaremag" | "realimag"

Layer transform mode, specified as one of these:

• "mag" — STFT magnitude
• "squaremag" — STFT squared magnitude
• "logmag" — Natural logarithm of the STFT magnitude
• "logsquaremag" — Natural logarithm of the STFT squared magnitude
• "realimag" — Real and imaginary parts of the STFT, concatenated along the channel dimension

Data Types: char | string

OutputMode — Layer output mode
"spatiotemporal" (default) | "spatial" | "temporal"

Layer output mode, specified as one of these:

• "spatiotemporal" — Format the output as a sequence of 1-D images where the image height
corresponds to frequency, the second dimension corresponds to channel, the third dimension
corresponds to batch, and the fourth dimension corresponds to time.

You can use this output mode to feed the output of stftLayer to a 1-D convolutional layer when
you want to convolve along frequency. For more information, see convolution1dLayer.

• "spatial" — Format the output as a sequence of 2-D images where the image height
corresponds to frequency and the image width corresponds to time. The third and fourth
dimensions correspond to channel and batch, respectively.

You can use this output mode to feed the output of stftLayer to a 2-D convolutional layer when
you want to convolve along the two spatial dimensions. For more information, see
convolution2dLayer.

• "temporal" — Format the output as a 1-D sequence. This format takes the "spatiotemporal"
output format and flattens the image height into the channel dimension. The second dimension of
the STFT output corresponds to batch and the third dimension corresponds to time.

1 Functions

1-2544

You can use this output mode to feed the output of stftLayer to a 1-D convolutional layer when
you want to convolve along time. For more information, see convolution1dLayer. You can also
use this output mode to use stftLayer as part of a recurrent neural network. For more
information, see lstmLayer and gruLayer.

Data Types: char | string

Layer

WeightLearnRateFactor — Multiplier for weight learning rate
0 (default) | nonnegative scalar

Multiplier for weight learning rate, specified as a nonnegative scalar. If not specified, this property
defaults to zero, resulting in weights that do not update with training. You can also set this property
using the setLearnRateFactor function.
Data Types: double | single

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with Name set to ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{'in'} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

 stftLayer

1-2545

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Short-Time Fourier Transform of Chirp

Generate a signal sampled at 600 Hz for 2 seconds. The signal consists of a chirp with sinusoidally
varying frequency content. Store the signal in a deep learning array with "CTB" format.

fs = 6e2;
x = vco(sin(2*pi*(0:1/fs:2)),[0.1 0.4]*fs,fs);

dlx = dlarray(x,"CTB");

Create a short-time Fourier transform layer with default properties. Create a dlnetwork object
consisting of a sequence input layer and the short-time Fourier transform layer. Specify a minimum
sequence length of 128 samples. Run the signal through the predict method of the network.

ftl = stftLayer;

dlnet = dlnetwork([sequenceInputLayer(1,MinLength=128) ftl]);
netout = predict(dlnet,dlx);

Convert the network output to a numeric array. Use the squeeze function to remove the length-1
channel and batch dimensions. Plot the magnitude of the STFT. The first dimension of the array
corresponds to frequency and the second to time.

q = extractdata(netout);

waterfall(squeeze(q)')
set(gca,XDir="reverse",View=[30 45])
xlabel("Frequency")
ylabel("Time")

1 Functions

1-2546

Short-Time Fourier Transform of Sinusoid

Generate a 3 × 160 (× 1) array containing one batch of a three-channel, 160-sample sinusoidal signal.
The normalized sinusoid frequencies are π/4 rad/sample, π/2 rad/sample, and 3π/4 rad/sample. Save
the signal as a dlarray, specifying the dimensions in order. dlarray permutes the array dimensions
to the "CBT" shape expected by a deep learning network.

nch = 3;
N = 160;
x = dlarray(cos(pi.*(1:nch)'/4*(0:N-1)),"CTB");

Create a short-time Fourier transform layer that can be used with the sinusoid. Specify a 64-sample
rectangular window, 48 samples of overlap between adjoining windows, and 1024 DFT points. Specify
the layer output mode as "spatial". By default, the layer outputs the magnitude of the STFT.

stfl = stftLayer(Window=rectwin(64), ...
 OverlapLength=48, ...
 FFTLength=1024, ...
 OutputMode="spatial");

Create a two-layer dlnetwork object containing a sequence input layer and the STFT layer you just
created. Treat each channel of the sinusoid as a feature. Specify the signal length as the minimum
sequence length for the input layer.

 stftLayer

1-2547

layers = [sequenceInputLayer(nch,MinLength=N) stfl];
dlnet = dlnetwork(layers);

Run the sinusoid through the forward method of the network.

dataout = forward(dlnet,x);

Convert the network output to a numeric array. Use the squeeze function to collapse the size-1 batch
dimension. Plot the STFT magnitude separately for each channel in a waterfall plot.

q = squeeze(extractdata(dataout));

for kj = 1:nch
 subplot(nch,1,kj)
 waterfall(q(:,:,kj)')
 view(30,45)
 zlabel("Ch. "+string(kj))
end

More About
Short-Time Fourier Transform

The short-time Fourier transform (STFT) is used to analyze how the frequency content of a
nonstationary signal changes over time.

1 Functions

1-2548

The STFT of a signal is calculated by sliding an analysis window of length M over the signal and
calculating the discrete Fourier transform of the windowed data. The window hops over the original
signal at intervals of R samples. Most window functions taper off at the edges to avoid spectral
ringing. If a nonzero overlap length L is specified, overlap-adding the windowed segments
compensates for the signal attenuation at the window edges. The DFT of each windowed segment is
added to a matrix that contains the magnitude and phase for each point in time and frequency. The
number of columns in the STFT matrix is given by

k =
Nx− L
M − L ,

where Nx is the length of the original signal x(n) and the ⌊⌋ symbols denote the floor function. The
number of rows in the matrix equals NDFT, the number of DFT points, for centered and two-sided
transforms and ⌊NDFT/2⌋ + 1 for one-sided transforms.

The STFT matrix is given by X(f) = X1(f) X2(f) X3(f) ⋯ Xk(f) such that the mth element of this
matrix is

Xm(f) = ∑
n = −∞

∞
x(n)g(n−mR)e− j2πfn,

where

• g(n) — Window function of length M.
• Xm(f) — DFT of windowed data centered about time mR.
• R — Hop size between successive DFTs. The hop size is the difference between the window length

Mand the overlap length L.

The magnitude squared of the STFT yields the spectrogram representation of the power spectral
density of the function.

 stftLayer

1-2549

See Also
Apps
Deep Network Designer

Objects
dlarray | dlnetwork

Functions
dlstft | stft | istft | stftmag2sig

Topics
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2021b

1 Functions

1-2550

stftmag2sig
Signal reconstruction from STFT magnitude

Syntax
x = stftmag2sig(s,nfft)
x = stftmag2sig(s,nfft,fs)
x = stftmag2sig(s,nfft,ts)

x = stftmag2sig(___ ,Name,Value)

[x,t,info] = stftmag2sig(___)

Description
x = stftmag2sig(s,nfft) returns a reconstructed time-domain real signal, x, estimated from the
“Short-Time Fourier Transform” on page 1-2561 (STFT) magnitude, s, based on the Griffin-Lim
algorithm. The function assumes s was computed using discrete Fourier transform (DFT) length
nfft.

x = stftmag2sig(s,nfft,fs) returns the reconstructed signal assuming that s was sampled at
rate fs.

x = stftmag2sig(s,nfft,ts) returns the reconstructed signal assuming that s was sampled
with sample time ts.

x = stftmag2sig(___ ,Name,Value) specifies additional options using name-value pair
arguments. Options include, among others, the FFT window and the method to specify initial phases.
These arguments can be added to any of the previous input syntaxes. For example,
'FrequencyRange','onesided','InitializePhaseMethod','random' specifies that the
signal is reconstructed from a one-sided STFT with random initial phases.

[x,t,info] = stftmag2sig(___) also returns the time instants at which the signal is
reconstructed and a structure that contains information about the reconstruction process.

Examples

Reconstruct Sinusoid from STFT Magnitude

Consider 512 samples of a sinusoid with a normalized frequency of π/60 rad/sample and a DC value
of 1. Compute the STFT of the signal.

n = 512;

x = cos(pi/60*(0:n-1)')+1;

S = stft(x);

Reconstruct the sinusoid from the magnitude of the STFT. Plot the original and reconstructed signals.

 stftmag2sig

1-2551

xr = stftmag2sig(abs(S),size(S,1));

plot(x)
hold on
plot(xr,'--','LineWidth',2)
hold off
legend('Original','Reconstructed')

Repeat the computation, but now pad the signal with zeros to decrease edge effects.

xz = circshift([x; zeros(n,1)],n/2);

Sz = stft(xz);
xr = stftmag2sig(abs(Sz),size(Sz,1));

xz = xz(n/2+(1:n));
xr = xr(n/2+(1:n));

plot(xz)
hold on
plot(xr,'--','LineWidth',2)
hold off
legend('Original','Reconstructed')

1 Functions

1-2552

Repeat the computation, but now decrease edge effects by assuming that x is a segment of a signal
twice as long.

xx = cos(pi/60*(-n/2:n/2+n-1)')+1;

Sx = stft(xx);
xr = stftmag2sig(abs(Sx),size(Sx,1));

xx = xx(n/2+(1:n));
xr = xr(n/2+(1:n));

plot(xx)
hold on
plot(xr,'--','LineWidth',2)
hold off
legend('Original','Reconstructed')

 stftmag2sig

1-2553

Reconstruct Audio Signal from STFT Magnitude

Load an audio signal that contains two decreasing chirps and a wideband splatter sound. The signal
is sampled at 8192 Hz. Plot the STFT of the signal. Divide the waveform into 128-sample segments
and window the segments using a Hamming window. Specify 64 samples of overlap between
adjoining segments and 1024 FFT points.

load splat
ty = (0:length(y)-1)/Fs;

% To hear, type sound(y,Fs)

wind = hamming(128);
olen = 64;
nfft = 1024;

stft(y,Fs,'Window',wind,'OverlapLength',olen,'FFTLength',nfft)

1 Functions

1-2554

Compute the magnitude and phase of the STFT.

s = stft(y,Fs,'Window',wind,'OverlapLength',olen,'FFTLength',nfft);

smag = abs(s);
sphs = angle(s);

Reconstruct the signal based on the magnitude of the STFT. Use the same parameters that you used
to compute the STFT. By default, stftmag2sig initializes the phases to zero and uses 100
optimization iterations.

[x,tx,info] = stftmag2sig(smag,nfft,Fs,'Window',wind,'OverlapLength',olen);

% To hear, type sound(x,Fs)

Plot the original and reconstructed signals. For better comparison, offset the reconstructed signal up
and to the right.

plot(ty,y,tx+500/Fs,x+1)
legend('Original','Reconstructed','Location','best')

 stftmag2sig

1-2555

Output the relative improvement toward convergence between the last two iterations.

impr = info.Inconsistency

impr = 0.0424

Improve the reconstruction by doubling the number of optimization iterations and setting the initial
phases to the actual phases from the STFT. Plot the original and reconstructed signals. For better
comparison, plot the negative of the reconstructed signal and offset it up and to the right.

[x,tx,info] = stftmag2sig(smag,nfft,Fs,'Window',wind,'OverlapLength',olen, ...
 'MaxIterations',200,'InitialPhase',sphs);

% To hear, type sound(x,Fs)

plot(ty,y,tx+500/Fs,-x+1)
legend('Original','Reconstructed','Location','best')

1 Functions

1-2556

Output the relative improvement toward convergence between the last two iterations.

impr = info.Inconsistency

impr = 1.3919e-16

Input Arguments
s — STFT magnitude
matrix

STFT magnitude, specified as a matrix. s must correspond to a single-channel, real-valued signal.
Example: abs(stft(sin(pi/2*(0:255)),'FFTLength',128)) specifies the STFT magnitude of
a sinusoid.
Example: abs(stft(chirp(0:1/1e3:1,25,1,50))) specifies the STFT magnitude of a chirp
sampled at 1 kHz.
Data Types: single | double

nfft — Number of DFT points
positive integer scalar

Number of DFT points, specified as a positive integer scalar. This argument is always required.
Data Types: single | double

 stftmag2sig

1-2557

fs — Sample rate
2π (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.

ts — Sample time
duration scalar

Sample time, specified as a duration scalar. Specifying ts is equivalent to setting a sample rate fs =
1/ts.
Example: seconds(1) is a duration scalar representing a 1-second time difference between
consecutive signal samples.
Data Types: duration

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FrequencyRange','onesided','InitializePhaseMethod','random' specifies
that the signal is reconstructed from a one-sided STFT with random initial phases.

Display — Inconsistency display option
false (default) | true

Inconsistency display option, specified as the comma-separated pair consisting of 'Display' and a
logical value. If this option is set to true, then stftmag2sig displays the normalized inconsistency
after every 20 optimization iterations, and it also displays stopping information at the end of the run.
Data Types: logical

FrequencyRange — Frequency range of STFT magnitude
'centered' (default) | 'twosided' | 'onesided'

Frequency range of STFT magnitude, specified as the comma-separated pair consisting of
'FrequencyRange' and 'centered', 'twosided', or 'onesided'.

• 'centered' — Treat s as the magnitude of a two-sided, centered STFT. If nfft is even, then s is
taken to have been computed over the interval (–π, π] rad/sample. If nfft is odd, then s is taken
to have been computed over the interval (–π, π) rad/sample. If you specify time information, then
the intervals are (–fs, fs/2] cycles/unit time and (–fs, fs/2) cycles/unit time, respectively, where fs is
the sample rate.

• 'twosided' — Treat s as the magnitude of a two-sided STFT computed over the interval [0, 2π)
rad/sample. If you specify time information, then the interval is [0, fs) cycles/unit time.

• 'onesided' — Treat s as the magnitude of a one-sided STFT. If nfft is even, then s is taken to
have been computed over the interval [0, π] rad/sample. If nfft is odd, then s is taken to have
been computed over the interval [0, π) rad/sample. If you specify time information, then the
intervals are [0, fs/2] cycles/unit time and [0, fs/2) cycles/unit time, respectively, where fs is the
sample rate.

Data Types: char | string

1 Functions

1-2558

InconsistencyTolerance — Inconsistency tolerance of reconstruction process
1e-4 (default) | positive scalar

Inconsistency tolerance of reconstruction process, specified as the comma-separated pair consisting
of 'InconsistencyTolerance' and a positive scalar. The reconstruction process stops when the
“Normalized Inconsistency” on page 1-2563 is lower than the tolerance.
Data Types: single | double

InitializePhaseMethod — Phase initialization
'zeros' (default) | 'random'

Phase initialization, specified as the comma-separated pair consisting of
'InitializePhaseMethod' and 'zeros' or 'random'. Specify only one of
'InitializePhaseMethod' or 'InitialPhase'.

• 'zeros' — The function initializes the phases as zeros.
• 'random' — The function initializes the phases as random numbers distributed uniformly in the

interval [–π, π].

Data Types: char | string

InitialPhase — Initial phases
real numeric matrix in the range [–π, π]

Initial phases, specified as the comma-separated pair consisting of 'InitialPhase' and a real
numeric matrix in the range [–π, π]. The matrix must have the same size as s. Specify only one of
'InitializePhaseMethod' or 'InitialPhase'.
Example: angle(stft(randn(1000,1))) specifies the phases of the short-time Fourier transform
of a random signal.
Example: 2*pi*(rand(size(stft(randn(1000,1))))-1/2) specifies a matrix of random phases
distributed uniformly in the interval [–π, π]. The matrix has the same size as the short-time Fourier
transform of a random signal.

.
Data Types: single | double

InputTimeDimension — Input time dimension
'acrosscolumns' (default) | 'downrows'

Input time dimension, specified as the comma-separated pair consisting of 'InputTimeDimension'
and 'acrosscolumns' or 'downrows'.

• 'acrosscolumns' — The function assumes that the time dimension of s is across the columns
and the frequency dimension is down the rows.

• 'downrows' — The function assumes that the time dimension of s is down the rows and the
frequency dimension is across the columns.

Data Types: char | string

MaxIterations — Maximum number of optimization iterations
100 (default) | positive integer scalar

 stftmag2sig

1-2559

Maximum number of optimization iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer scalar. The reconstruction process stops when the number
of iterations is greater than 'MaxIterations'.
Data Types: single | double

Method — Signal reconstruction algorithm
'gla' (default) | 'fgla' | 'legla'

Signal reconstruction algorithm, specified as the comma-separated pair consisting of 'Method' and
one of these:

• 'gla' — The original reconstruction algorithm, proposed by Griffin and Lim and described in [1].
• 'fgla' — A fast Griffin-Lim algorithm proposed by Perraudin, Balazs, and Søndergaard and

described in [2].
• 'legla' — A fast algorithm proposed by Le Roux, Kameoka, Ono, and Sagayama and described

in [3].

Data Types: char | string

OverlapLength — Number of overlapped samples
75% of window length (default) | nonnegative integer

Number of overlapped samples between adjoining segments, specified as the comma-separated pair
consisting of 'OverlapLength' and a positive integer smaller than the length of 'Window'.
Successful signal reconstruction requires 'OverlapLength' to match the number of overlapped
segments used to generate the STFT magnitude. If you omit 'OverlapLength' or specify it as
empty, it is set to the largest integer less than or equal to 75% of the window length, which is 96
samples for the default Hann window.
Data Types: double | single

TruncationOrder — Truncation order for 'legla' update rule
positive integer

Truncation order for 'legla' update rule, specified as the comma-separated pair consisting of
'TruncationOrder' and a positive integer. This argument applies only when 'Method' is set to
'legla' and controls the number of phase values updated in each iteration of that method. If not
specified, 'TruncationOrder' is determined using an adaptive algorithm.
Data Types: single | double

UpdateParameter — Update parameter for fast Griffin-Lim algorithm
0.99 (default) | positive scalar

Update parameter for the fast Griffin-Lim algorithm, specified as the comma-separated pair
consisting of 'UpdateParameter' and a positive scalar. This argument applies only when 'Method'
is set to 'fgla' and specifies the parameter for that method's update rule.
Data Types: single | double
Complex Number Support: Yes

Window — Spectral window
hann(128,'periodic') (default) | vector

Spectral window, specified as the comma-separated pair consisting of 'Window' and a vector.
Successful signal reconstruction requires 'Window' to match the window used to generate the STFT

1 Functions

1-2560

magnitude. If you do not specify the window or specify it as empty, the function uses a periodic Hann
window of length 128. The length of 'Window' must be greater than or equal to 2.

For a list of available windows, see “Windows”.
Example: hann(128,'periodic') and (1-cos(2*pi*(128:-1:1)'/128))/2 both specify the
default window used by stftmag2sig.
Data Types: double | single

Output Arguments
x — Reconstructed time-domain signal
vector

Reconstructed time-domain signal, returned as a vector.

t — Time instants
vector

Time instants at which the signal is reconstructed, returned as a vector.

info — Reconstruction process information
structure

Reconstruction process information, returned as a structure containing these fields:

• ExitFlag — Termination flag.

• A value of 0 indicates the algorithm stopped when it reached the maximum number of
iterations.

• A value of 1 indicates the algorithm stopped when it met the relative tolerance.
• NumIterations — Total number of iterations.
• Inconsistency — Average relative improvement toward convergence between the last two

iterations.
• ReconstructedPhase — Reconstructed phase at the last iteration.
• ReconstructedSTFT — Reconstructed short-time Fourier transform at the last iteration.

More About
Short-Time Fourier Transform

The short-time Fourier transform (STFT) is used to analyze how the frequency content of a
nonstationary signal changes over time.

The STFT of a signal is calculated by sliding an analysis window of length M over the signal and
calculating the discrete Fourier transform of the windowed data. The window hops over the original
signal at intervals of R samples. Most window functions taper off at the edges to avoid spectral
ringing. If a nonzero overlap length L is specified, overlap-adding the windowed segments
compensates for the signal attenuation at the window edges. The DFT of each windowed segment is
added to a matrix that contains the magnitude and phase for each point in time and frequency. The
number of columns in the STFT matrix is given by

 stftmag2sig

1-2561

k =
Nx− L
M − L ,

where Nx is the length of the original signal x(n) and the ⌊⌋ symbols denote the floor function. The
number of rows in the matrix equals NDFT, the number of DFT points, for centered and two-sided
transforms and ⌊NDFT/2⌋ + 1 for one-sided transforms.

The STFT matrix is given by X(f) = X1(f) X2(f) X3(f) ⋯ Xk(f) such that the mth element of this
matrix is

Xm(f) = ∑
n = −∞

∞
x(n)g(n−mR)e− j2πfn,

where

• g(n) — Window function of length M.
• Xm(f) — DFT of windowed data centered about time mR.
• R — Hop size between successive DFTs. The hop size is the difference between the window length

Mand the overlap length L.

The magnitude squared of the STFT yields the spectrogram representation of the power spectral
density of the function.

1 Functions

1-2562

Normalized Inconsistency

The normalized inconsistency measures the improvement toward convergence of the reconstruction
process in successive optimization iterations.

The normalized inconsistency is defined as

Inconsistency =
STFT ISTFT sest − sest

sest
,

where sest is the complex short-time Fourier transform estimated at each iteration, the brackets
denote the matrix norm, STFT denotes the short-time Fourier transform, and ISTFT denotes its
inverse. stftmag2sig uses the MATLAB function norm to compute matrix norms. For more
information about the STFT and its inverse, see “Short-Time Fourier Transform” on page 1-2561 and
“Inverse Short-Time Fourier Transform” on page 1-1162.

References
[1] Griffin, Daniel W., and Jae S. Lim. "Signal Estimation from Modified Short-Time Fourier

Transform." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. 32, Number
2, April 1984, pp. 236–243. https://doi.org/10.1109/TASSP.1984.1164317.

 stftmag2sig

1-2563

[2] Perraudin, Nathanaël, Peter Balazs, and Peter L. Søndergaard. "A Fast Griffin-Lim Algorithm." In
2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz,
NY, October 20–23, 2013. https://doi.org/10.1109/WASPAA.2013.6701851.

[3] Le Roux, Jonathan, Hirokazu Kameoka, Nobutaka Ono, and Shigeki Sagayama. "Fast Signal
Reconstruction from Magnitude STFT Spectrogram Based on Spectrogram Consistency." In
Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz,
Austria, September 6–10, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• 'legla' method is not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
Functions
iscola | istft | pspectrum | spectrogram | stft

Introduced in R2020b

1 Functions

1-2564

stmcb
Compute linear model using Steiglitz-McBride iteration

Syntax
[b,a] = stmcb(h,nb,na)
[b,a] = stmcb(h,nb,na,niter)
[b,a] = stmcb(h,nb,na,niter,ai)
[b,a] = stmcb(y,x, ___)

Description
[b,a] = stmcb(h,nb,na) finds the coefficients b and a of the system b(z)/a(z) with approximate
impulse response h, exactly nb zeros, and exactly na poles.

[b,a] = stmcb(h,nb,na,niter) uses niter iterations. The default number of iterations is 5.

[b,a] = stmcb(h,nb,na,niter,ai) uses the vector ai as the initial estimate of the denominator
coefficients.

[b,a] = stmcb(y,x, ___) finds the coefficients with system output y and input x replacing h. y
and x must be the same length.

Examples

Steiglitz-McBride Approximation of Filter

Approximate the impulse response of an IIR filter with a system of a lower order.

Specify a 6th-order Butterworth filter with normalized 3-dB frequency of 0 . 2π rad/sample.

d = designfilt('lowpassiir','FilterOrder',6, ...
 'HalfPowerFrequency',0.2,'DesignMethod','butter');

Use the Steiglitz-McBride iteration to approximate the filter with a 4th-order system.

h = impz(d);
[bb,aa] = stmcb(h,4,4);

Plot the frequency responses of the two systems.

hfvt = fvtool(d,bb,aa,'Analysis','freq');
legend(hfvt,'Butterworth','Steiglitz-McBride')

 stmcb

1-2565

Input Arguments
h — Impulse response
vector

Impulse response, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

nb, na — Numerator and denominator orders
positive integer scalars

Numerator and denominator orders, specified as positive integer scalars.

• If you want an all-pole transfer function, specify nb as 0.
• If you want an all-zero transfer function, specify na as 0.

Data Types: single | double

niter — Number of iterations
5 (default) | positive scalar

Number of iterations, specified as a positive scalar.

1 Functions

1-2566

ai — Estimate of denominator coefficients
vector

Initial estimate of denominator coefficients, specified as a vector. If not specified, the stmcb function
uses the output of prony with the order of the numerator set to 0.
Data Types: single | double
Complex Number Support: Yes

y — Output signal
vector

Output signal of the system, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

x — Input signal
vector

Input signal of the system, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
b, a — IIR filter coefficients
row vectors

IIR filter coefficients, returned as row vectors. b has length nb + 1 and a has length na + 1. The filter
coefficients are ordered in descending powers of z.

H(z) = B(z)
A(z) = b(1) + b(2)z−1 +⋯+ b(nb + 1)z−nb

a(1) + a(2)z−1 +⋯+ a(na + 1)z−na

Algorithms
The stmcb function attempts to minimize the squared error between the impulse response h of
b(z)/a(z) and the input signal x.

min
a, b
∑

i = 0

∞
x(i) − h(i) 2

The function iterates using two steps:

1 It prefilters h and x using 1/a(z).
2 It solves a system of linear equations for b and a using \.

The function repeats this process niter times. The function does not check to see if the b and a
coefficients have converged in fewer than niter iterations.

 stmcb

1-2567

References
[1] Steiglitz, K., and L. McBride. “A Technique for the Identification of Linear Systems.” IEEE

Transactions on Automatic Control 10, no. 4 (October 1965): 461–64. https://doi.org/10.1109/
TAC.1965.1098181.

[2] Ljung, Lennart. System Identification: Theory for the User. 2nd ed. Prentice Hall Information and
System Sciences Series. Upper Saddle River, NJ: Prentice Hall PTR, 1999.

See Also
levinson | lpc | aryule | prony

Introduced before R2006a

1 Functions

1-2568

strips
Strip plot

Syntax
strips(x)
strips(x,n)
strips(x,sd,fs)
strips(x,sd,fs,scale)

Description
strips(x) plots x in horizontal strips of length 250.

strips(x,n) plots x in strips that are each n samples long.

strips(x,sd,fs) plots x in strips of duration sd given the sample rate of fs samples per second.

strips(x,sd,fs,scale) also scales the vertical axes.

Examples

Strip Plot of Frequency-Modulated Sinusoid

Plot two seconds of a frequency-modulated sinusoid in 0.25-second strips. Specify a sample rate of 1
kHz.

fs = 1000;
t = 0:1/fs:2;
x = vco(sin(2*pi*t),[10 490],fs);

strips(x,0.25,fs)

 strips

1-2569

Strip Plot of Speech Signal

Load a speech signal sampled at Fs = 7418 Hz. The file contains the recording of a female voice
saying the word "MATLAB®."

load mtlb

Plot the signal in 0.18-second long strips. Scale the vertical axes to 125%.

strips(mtlb,0.18,Fs,1.25)

1 Functions

1-2570

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a matrix, the strips function plots each column
of x as a horizontal strip on the same plot. The function ignores the imaginary part of complex-valued
x.
Data Types: single | double
Complex Number Support: Yes

n — Length
250 (default) | real positive scalar

Length of strips, specified as a real positive scalar.

sd — Duration
real positive scalar

Duration in seconds, specified as a real positive scalar. If sd is specified, then you must also specify
fs.

fs — Sample rate
real positive scalar

 strips

1-2571

Sample rate, specified as a real positive scalar. fs has units of hertz.

scale — Scale factor
scalar

Scale factor, specified as a scalar. The strips function ignores the imaginary part of complex-valued
scale.
Data Types: single | double
Complex Number Support: Yes

See Also
plot | stem

Introduced before R2006a

1 Functions

1-2572

taylorwin
Taylor window

Syntax
w = taylorwin(L)
w = taylorwin(L,nbar)
w = taylorwin(L,nbar,sll)

Description
w = taylorwin(L) returns an L-point Taylor window.

w = taylorwin(L,nbar) returns an L-point Taylor window with a number (nbar) of nearly
constant-level sidelobes adjacent to the mainlobe.

w = taylorwin(L,nbar,sll) returns an L-point Taylor window with a maximum sidelobe level of
sll dB relative to the mainlobe peak.

Examples

Taylor Window

Generate a 64-point Taylor window with four nearly constant-level sidelobes and a peak sidelobe level
of -35 dB relative to the mainlobe peak. Visualize the result with wvtool.

w = taylorwin(64,4,-35);
wvtool(w)

 taylorwin

1-2573

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

nbar — Number of constant level sidelobes
4 (default) | positive integer

Number of nearly constant-level sidelobes adjacent to the mainlobe, specified as a positive integer.
These sidelobes are “nearly constant-level” because some decay occurs in the transition region.

sll — Maximum sidelobe level relative to mainlobe peak
-30 (default) | real negative scalar

Maximum sidelobe level relative to mainlobe peak, specified as a real negative scalar in dB. It
produces sidelobes with peaks sll dB down below the mainlobe peak.

1 Functions

1-2574

Output Arguments
w — Taylor window
column vector

Taylor window, returned as a column vector.

Algorithms
Taylor windows are similar to Chebyshev windows. A Chebyshev window has the narrowest possible
mainlobe for a specified sidelobe level, but a Taylor window allows you to make tradeoffs between the
mainlobe width and the sidelobe level. The Taylor distribution avoids edge discontinuities, so Taylor
window sidelobes decrease monotonically. Taylor window coefficients are not normalized. Taylor
windows are typically used in radar applications, such as weighting synthetic aperture radar images
and antenna design.

References
[1] Brookner, Eli. Practical Phased Array Antenna Systems. Boston: Artech House, 1991.

[2] Carrara, Walter G., Ronald M. Majewski, and Ron S. Goodman. Spotlight Synthetic Aperture
Radar: Signal Processing Algorithms. Boston: Artech House, 1995, Appendix D.2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
blackman | WVTool | hamming | hann

Introduced in R2006a

 taylorwin

1-2575

tachorpm
Extract RPM signal from tachometer pulses

Syntax
rpm = tachorpm(x,fs)
[rpm,t,tp] = tachorpm(x,fs)

[___] = tachorpm(x,fs,Name,Value)

tachorpm(___)

Description
rpm = tachorpm(x,fs) extracts a rotational speed signal, rpm, from a tachometer pulse signal
vector, x, that has been sampled at a rate of fs Hz.

If you do not have a tachometer pulse signal, use rpmtrack to extract rpm from a vibration signal.

[rpm,t,tp] = tachorpm(x,fs) also returns the time vector, t, and the detected pulse locations,
tp.

[___] = tachorpm(x,fs,Name,Value) specifies options using Name,Value pairs and any of the
previous syntaxes.

tachorpm(___) with no output arguments plots the generated RPM signal and the tachometer
signal with the detected pulses.

Examples

RPM Peak

Load a simulated tachometer signal sampled at 300 Hz.

load tacho

Compute and visualize the RPM signal using tachorpm with the default values.

tachorpm(Yn,fs)

1 Functions

1-2576

Increase the number of fit points to capture the RPM peak. Too many points result in overfitting.
Verify this result by zooming in on the area around the peak.

tachorpm(Yn,fs,'FitPoints',600)

axis([0.47 0.65 1320 1570])

 tachorpm

1-2577

Choose a moderate number of points to obtain a better result.

tachorpm(Yn,fs,'FitPoints',100)

1 Functions

1-2578

Add white Gaussian noise to the tachometer signal. The default pulse-finding mechanism misses
pulses and returns a jagged signal profile. Verify this result by zooming in on a two-second time
interval.

rng default
wgn = randn(size(Yn))/10;
Yn = Yn+wgn;

[rpm,t,tp] = tachorpm(Yn,fs,'FitPoints',100);

figure
plot(t,Yn,tp,mean(interp1(t,Yn,tp))*ones(size(tp)),'+')
hold on
sl = statelevels(Yn);
plot(t,sl(1)*ones(size(t)),t,sl(2)*ones(size(t)))
hold off
xlim([9 10])

 tachorpm

1-2579

Adjust the state levels to improve the pulse finding.

sl = [0 0.75];

[rpm,t,tp] = tachorpm(Yn,fs,'FitPoints',100,'StateLevels',sl);

plot(t,Yn,tp,mean(interp1(t,Yn,tp))*ones(size(tp)),'+')
hold on
plot(t,sl(1)*ones(size(t)),t,sl(2)*ones(size(t)))
hold off
xlim([9 10])

1 Functions

1-2580

Input Arguments
x — Tachometer pulse signal
vector

Tachometer pulse signal, specified as a row or column vector.
Example: double(chirp((-1.5:1/2e2:1.5),14,1.1,8,'quadratic')>0.98) resembles a
tachometer signal, sampled for three seconds at 200 Hz, and obtained during a quadratic run-up/
coast-down test.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar expressed in Hz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PulsesPerRev',3,'OutputFs',1e3 specifies that there are three tachometer pulses
per revolution and that the returned RPM signal is to be sampled at 1 kHz.

PulsesPerRev — Number of tachometer pulses per revolution
1 (default) | real scalar

 tachorpm

1-2581

Number of tachometer pulses per revolution, specified as the comma-separated pair consisting of
'PulsesPerRev' and a real scalar.

StateLevels — State levels used to identify pulses
two-element real vector

State levels used to identify pulses, specified as the comma-separated pair consisting of
'StateLevels' and a two-element real vector. The first element of the vector corresponds to the
low-state level and the second element corresponds to the high-state level. Choose the state levels so
that all pulse edges cross within 10% of both of them. If this option is not specified, then tachorpm
computes the levels automatically using the histogram method, as in the statelevels function.

OutputFs — Output sample rate
fs (default) | real scalar

Output sample rate, specified as the comma-separated pair consisting of 'OutputFs' and a real
scalar.

FitType — Fitting method
'smooth' (default) | 'linear'

Fitting method, specified as the comma-separated pair consisting of 'FitType' and one of either
'smooth' or 'linear'.

• 'smooth' — Fit a least-squares B-spline to the pulse RPM values.
• 'linear' — Interpolate linearly between pulse RPM values.

FitPoints — B-spline breakpoints
10 (default) | real scalar

B-spline breakpoints, specified as the comma-separated pair consisting of 'FitPoints' and a real
scalar. The number of breakpoints is a trade-off between curve smoothness and closeness to the
underlying data. Choosing too many breakpoints can result in overfitting. This argument is ignored if
'FitType' is set to 'linear'.

Output Arguments
rpm — Rotational speeds
vector

Rotational speeds, returned as a vector expressed in revolutions per minute. rpm has the same length
as x.

t — Time vector
vector of positive values

Time vector, returned as a vector of positive values expressed in seconds.

tp — Pulse locations
vector of positive values

Pulse locations, returned as a vector of positive values expressed in seconds.

1 Functions

1-2582

Algorithms
The tachorpm function performs these steps:

1 Uses statelevels to determine the low and high states of the tachometer signal.
2 Uses risetime and falltime to find the times at which each pulse starts and ends. It then

averages these readings to locate the time of each pulse.
3 Uses diff to determine the time intervals between pulse centers and computes the RPM values

at the interval midpoints using RPM = 60 / Δt.
4 If 'FitType' is specified as 'smooth', then the function performs least-squares fitting using

splines. If 'FitType' is specified as 'linear', then the function performs linear interpolation
using interp1.

References
[1] Brandt, Anders. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures.

Chichester, UK: John Wiley & Sons, 2011.

[2] Vold, Håvard, and Jan Leuridan. “High Resolution Order Tracking at Extreme Slew Rates Using
Kalman Tracking Filters.” Shock and Vibration. Vol. 2, 1995, pp. 507–515.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
orderspectrum | ordertrack | orderwaveform | rpmfreqmap | rpmordermap | rpmtrack |
statelevels

Introduced in R2016b

 tachorpm

1-2583

tf
Convert digital filter to transfer function

Syntax
[num,den] = tf(d)

Description
[num,den] = tf(d) converts a digital filter, d, to numerator and denominator vectors.

Examples

Highpass Filter Transfer Function

Design a 6th-order highpass FIR filter with a passband frequency of 75 kHz and a passband ripple of
0.2 dB. Specify a sample rate of 200 kHz. Compute the coefficients of the equivalent transfer
function.

hpFilt = designfilt('highpassiir','FilterOrder',6, ...
 'PassbandFrequency',75e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
[b,a] = tf(hpFilt)

b = 1×7

 0.0003 -0.0019 0.0048 -0.0064 0.0048 -0.0019 0.0003

a = 1×7

 1.0000 4.0580 7.5656 8.1243 5.2561 1.9348 0.3164

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
num — Numerator coefficients
row vector

1 Functions

1-2584

Numerator coefficients, returned as a row vector.
Data Types: double

den — Denominator coefficients
row vector

Denominator coefficients, returned as a row vector.
Data Types: double

See Also
designfilt | digitalFilter | ss | zpk

Introduced in R2014a

 tf

1-2585

tf2latc
Convert transfer function filter parameters to lattice filter form

Syntax
[k,v] = tf2latc(b,a)
k = tf2latc(1,a)
[k,v] = tf2latc(1,a)
k = tf2latc(b)
k = tf2latc(b,'phase')

Description
[k,v] = tf2latc(b,a) finds the lattice parameters k and the ladder parameters v for an IIR
(ARMA) lattice-ladder filter, normalized by a(1). Note that an error is generated if one or more of the
lattice parameters are exactly equal to 1.

k = tf2latc(1,a) finds the lattice parameters k for an IIR all-pole (AR) lattice filter.

[k,v] = tf2latc(1,a) returns the scalar ladder coefficient at the correct position in vector v. All
other elements of v are zero.

k = tf2latc(b) finds the lattice parameters k for an FIR (MA) lattice filter, normalized by b(1).

k = tf2latc(b,'phase') specifies the type of FIR (MA) lattice filter, where 'phase' is

• 'max', for a maximum phase filter.
• 'min', for a minimum phase filter.

See Also
latc2tf | latcfilt | tf2sos | tf2ss | tf2zp | tf2zpk

Introduced before R2006a

1 Functions

1-2586

tf2sos
Convert digital filter transfer function data to second-order sections form

Syntax
[sos,g] = tf2sos(b,a)
[sos,g] = tf2sos(b,a,order)
[sos,g] = tf2sos(b,a,order,scale)
sos = tf2sos(___)

Description
[sos,g] = tf2sos(b,a) finds a matrix sos in second-order section form with gain g that is
equivalent to the digital filter represented by transfer function coefficient vectors b and a.

[sos,g] = tf2sos(b,a,order) specifies the order of the rows in sos.

[sos,g] = tf2sos(b,a,order,scale) specifies the scaling of the gain and numerator
coefficients of all second-order sections.

sos = tf2sos(___) embeds the overall system gain in the first section.

Examples

Second-Order Section Implementation of a Butterworth Filter

Design a Butterworth 4th-order lowpass filter using the function butter. Specify the cutoff
frequency as half the Nyquist frequency. Implement the filter as second-order sections. Verify that the
two representations are identical by comparing their numerators and denominators.

[nm,dn] = butter(4,0.5);
[ss,gn] = tf2sos(nm,dn);
numers = [conv(ss(1,1:3),ss(2,1:3))*gn;nm]

numers = 2×5

 0.0940 0.3759 0.5639 0.3759 0.0940
 0.0940 0.3759 0.5639 0.3759 0.0940

denoms = [conv(ss(1,4:6),ss(2,4:6));dn]

denoms = 2×5

 1.0000 0.0000 0.4860 0.0000 0.0177
 1.0000 0.0000 0.4860 0.0000 0.0177

 tf2sos

1-2587

Input Arguments
b, a — Transfer function coefficients
vectors

Transfer function coefficients, specified as vectors. Express the transfer function in terms of b and a
as

H(z) = B(z)
A(z) =

b1 + b2z−1 +⋯+ bn + 1z−n

a1 + a2z−1 +⋯+ am + 1z−m .

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3 dB frequency 0.5π rad/sample.
Data Types: double

order — Row order
'up' (default) | 'down'

Row order, specified as one of the following:

• 'up' — Order the sections so the first row of sos contains the poles farthest from the unit circle.
• 'down' — Order the sections so the first row of sos contains the poles closest to the unit circle.

Data Types: char

scale — Scaling of gain and numerator coefficients
'none' (default) | 'inf' | 'two'

Scaling of gain and numerator coefficients, specified as one of the following:

• 'none' — Apply no scaling.
• 'inf' — Apply infinity-norm scaling.
• 'two' — Apply 2-norm scaling.

Using infinity-norm scaling with 'up'-ordering minimizes the probability of overflow in the
realization. Using 2-norm scaling with 'down'-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for direct-form II implementations.

Data Types: char

Output Arguments
sos — Second-order section representation
matrix

Second-order section representation, returned as a matrix. sos is an L-by-6 matrix

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

1 Functions

1-2588

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z):

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

g — Overall system gain
real scalar

Overall system gain, returned as a real scalar.

If you call tf2sos with one output argument, the function embeds the overall system gain in the first
section, H1(z), so that

H(z) = ∏
k = 1

L
Hk(z) .

Note Embedding the gain in the first section when scaling a direct-form II structure is not
recommended and can result in erratic scaling. To avoid embedding the gain, use tf2sos with two
outputs.

Algorithms
tf2sos uses a four-step algorithm to determine the second-order section representation for an input
transfer function system:

1 It finds the poles and zeros of the system given by b and a.
2 It uses the function zp2sos, which first groups the zeros and poles into complex conjugate pairs

using the cplxpair function. zp2sos then forms the second-order sections by matching the
pole and zero pairs according to the following rules:

a Match the poles closest to the unit circle with the zeros closest to those poles.
b Match the poles next closest to the unit circle with the zeros closest to those poles.
c Continue until all of the poles and zeros are matched.

tf2sos groups real poles into sections with the real poles closest to them in absolute value. The
same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit circle. tf2sos
normally orders the sections with poles closest to the unit circle last in the cascade. You can tell
tf2sos to order the sections in the reverse order by specifying order as 'down'.

4 tf2sos scales the sections by the norm specified in scale. For arbitrary H(ω), the scaling is
defined by

H p = 1
2π ∫

0

2π
H(ω) pdω

1/p

where p can be either ∞ or 2. See the references for details on the scaling. The algorithm follows
this scaling in an attempt to minimize overflow or peak round-off noise in fixed-point filter
implementations.

 tf2sos

1-2589

References
[1] Jackson, L. B. Digital Filters and Signal Processing. 3rd ed. Boston: Kluwer Academic Publishers,

1996.

[2] Mitra, S. K. Digital Signal Processing: A Computer-Based Approach. New York: McGraw-Hill,
1998.

[3] Vaidyanathan, P. P. “Robust Digital Filter Structures.” Handbook for Digital Signal Processing (S.
K. Mitra and J. F. Kaiser, eds.). New York: John Wiley & Sons, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any character or string input must be a constant at compile time.

See Also
cplxpair | sos2tf | ss2sos | tf2ss | tf2zp | tf2zpk | zp2sos

Introduced before R2006a

1 Functions

1-2590

tf2ss
Convert transfer function filter parameters to state-space form

Syntax
[A,B,C,D] = tf2ss(b,a)

Description
[A,B,C,D] = tf2ss(b,a) converts a continuous-time or discrete-time single-input transfer
function into an equivalent state-space representation.

Examples

Convert Transfer Function to State-Space Form

Consider the system described by the transfer function

H(s) =

2s + 3
s2 + 2s + 1

s2 + 0 . 4s + 1
.

Convert it to state-space form using tf2ss.

b = [0 2 3; 1 2 1];
a = [1 0.4 1];
[A,B,C,D] = tf2ss(b,a)

A = 2×2

 -0.4000 -1.0000
 1.0000 0

B = 2×1

 1
 0

C = 2×2

 2.0000 3.0000
 1.6000 0

D = 2×1

 0
 1

 tf2ss

1-2591

Mass-Spring System

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to a wall by a
spring of unit elastic constant. A sensor samples the acceleration, a, of the mass at Fs = 5 Hz.

Generate 50 time samples. Define the sampling interval Δt = 1/Fs.

Fs = 5;
dt = 1/Fs;
N = 50;
t = dt*(0:N-1);
u = [1 zeros(1,N-1)];

The transfer function of the system has an analytic expression:

H z = 1 − z−1 1 + cosΔt + z−2cosΔt
1 − 2z−1cosΔt + z−2 .

The system is excited with a unit impulse in the positive direction. Compute the time evolution of the
system using the transfer function. Plot the response.

bf = [1 -(1+cos(dt)) cos(dt)];
af = [1 -2*cos(dt) 1];
yf = filter(bf,af,u);

stem(t,yf,'o')
xlabel('t')

1 Functions

1-2592

Find the state-space representation of the system. Compute the time evolution starting from an all-
zero initial state. Compare it to the transfer function prediction.

[A,B,C,D] = tf2ss(bf,af);

x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

hold on
stem(t,y,'*')
hold off
legend('tf','ss')

 tf2ss

1-2593

Input Arguments
b — Transfer function numerator coefficients
vector | matrix

Transfer function numerator coefficients, specified as a vector or matrix. If b is a matrix, then each
row of b corresponds to an output of the system.

• For discrete-time systems, b contains the coefficients in descending powers of z.
• For continuous-time systems, b contains the coefficients in descending powers of s.

For discrete-time systems, b must have a number of columns equal to the length of a. If the numbers
differ, make them equal by padding zeros. You can use the function eqtflength to accomplish this.

a — Transfer function denominator coefficients
vector

Transfer function denominator coefficients, specified as a vector.

• For discrete-time systems, a contains the coefficients in descending powers of z.
• For continuous-time systems, a contains the coefficients in descending powers of s.

1 Functions

1-2594

Output Arguments
A — State matrix
matrix

State matrix, returned as a matrix. If the system is described by n state variables, then A is n-by-n.
Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix, returned as a matrix. If the system is described by n state variables, then B is n-
by-1.
Data Types: single | double

C — State-to-output matrix
matrix

State-to-output matrix, returned as a matrix. If the system has q outputs and is described by n state
variables, then C is q-by-n.
Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix, returned as a matrix. If the system has q outputs, then D is q-by-1.
Data Types: single | double

More About
Transfer Function

tf2ss converts the parameters of a transfer function representation of a given system to those of an
equivalent state-space representation.

• For discrete-time systems, the state-space matrices relate the state vector x, the input u, and the
output y:

x k + 1 = Ax k + Bu k ,
y k = Cx k + Du k .

The transfer function is the Z-transform of the system’s impulse response. It can be expressed in
terms of the state-space matrices as

H z = C zI − A −1B + D .
• For continuous-time systems, the state-space matrices relate the state vector x, the input u, and

the output y:

ẋ = Ax + Bu,
y = Cx + Du .

 tf2ss

1-2595

The transfer function is the Laplace transform of the system’s impulse response. It can be
expressed in terms of the state-space matrices as

H(s) = B(s)
A(s) =

b1sn− 1 +⋯+ bn− 1s + bn
a1sm− 1 +⋯+ am− 1s + am

= C sI − A −1B + D .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sos2ss | ss2tf | tf2sos | tf2zp | tf2zpk | zp2ss

Introduced before R2006a

1 Functions

1-2596

tf2zp
Convert transfer function filter parameters to zero-pole-gain form

Syntax
[z,p,k] = tf2zp(b,a)

Description
[z,p,k] = tf2zp(b,a) finds the matrix of zeros z, the vector of poles p, and the associated vector
of gains k from the transfer function parameters b and a. The function converts a polynomial
transfer-function representation

H(s) = B(s)
A(s) =

b1sn− 1 +⋯+ bn− 1s + bn
a1sm− 1 +⋯+ am− 1s + am

of a single-input/multi-output (SIMO) continuous-time system to a factored transfer function form

H(s) = Z(s)
P(s) = k

(s− z1)(s− z2)⋯(s− zm)
(s− p1)(s− p2)⋯(s− pn) .

Note Use tf2zp when working with positive powers (s2 + s + 1), such as in continuous-time transfer
functions. A similar function, tf2zpk, is more useful when working with transfer functions expressed
in inverse powers (1 + z–1 + z–2).

Examples

Zeros, Poles, and Gain of Continuous-Time System

Generate a system with the following transfer function.

H(s) = 2s2 + 3s
s2 + 1

2s + 1
4

=
2 (s− 0) (s− (− 3

2))

(s− −1
2 2 (1 − j)) (s− −1

2 2 (1 + j))

Find the zeros, poles, and gain of the system. Use eqtflength to ensure the numerator and
denominator have the same length.

b = [2 3];
a = [1 1/sqrt(2) 1/4];

[b,a] = eqtflength(b,a);
[z,p,k] = tf2zp(b,a)

z = 2×1

 0

 tf2zp

1-2597

 -1.5000

p = 2×1 complex

 -0.3536 + 0.3536i
 -0.3536 - 0.3536i

k = 2

Plot the poles and zeros to verify that they are in the expected locations.

fvtool(b,a,'polezero')
text(real(z)+.1,imag(z),'Zero')
text(real(p)+.1,imag(p),'Pole')

Input Arguments
b — Transfer function numerator coefficients
vector | matrix

Transfer function numerator coefficients, specified as a vector or matrix. If b is a matrix, then each
row of b corresponds to an output of the system. b contains the coefficients in descending powers of
s. The number of columns of b must be less than or equal to the length of a.
Data Types: single | double

1 Functions

1-2598

a — Transfer function denominator coefficients
vector

Transfer function denominator coefficients, specified as a vector. a contains the coefficients in
descending powers of s.
Data Types: single | double

Output Arguments
z — Zeros
matrix

Zeros of the system, returned as a matrix. z contains the numerator zeros in its columns. z has as
many columns as there are outputs.

p — Poles
column vector

Poles of the system, returned as a column vector. p contains the pole locations of the denominator
coefficients of the transfer function.

k — Gains
column vector

Gains of the system, returned as a column vector. k contains the gains for each numerator transfer
function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The complexity of outputs, z and k, might be different in MATLAB and the generated code.
• The order of outputs, z and p, might be different in MATLAB and the generated code.

See Also
sos2zp | ss2zp | tf2sos | tf2ss | tf2zpk | zp2tf

Introduced before R2006a

 tf2zp

1-2599

tf2zpk
Convert transfer function filter parameters to zero-pole-gain form

Syntax
[z,p,k] = tf2zpk(b,a)

Description
[z,p,k] = tf2zpk(b,a) finds the matrix of zeros z, the vector of poles p, and the associated
vector of gains k from the transfer function parameters b and a. The function converts a polynomial
transfer-function representation

H(z) = B(z)
A(z) =

b1 + b2z−1⋯+ bn− 1z−n + bnz−n− 1

a1 + a2z−1⋯+ am− 1z−m + amz−m− 1

of a single-input/multi-output (SIMO) discrete-time system to a factored transfer function form

H(z) = Z(z)
P(z) = k

(z − z1)(z − z2)⋯(z − zm)
(z − p1)(z − p2)⋯(z − pn) .

Note Use tf2zpk when working with transfer functions expressed in inverse powers (1 + z–1 + z–2).
A similar function, tf2zp, is more useful for working with positive powers (s2 + s + 1), such as in
continuous-time transfer functions.

Examples

Poles, Zeros, and Gain of IIR Filter

Design a 3rd-order Butterworth filter with normalized cutoff frequency 0 . 4π rad/sample. Find the
poles, zeros, and gain of the filter.

[b,a] = butter(3,.4);
[z,p,k] = tf2zpk(b,a)

z = 3×1 complex

 -1.0000 + 0.0000i
 -1.0000 - 0.0000i
 -1.0000 + 0.0000i

p = 3×1 complex

 0.2094 + 0.5582i
 0.2094 - 0.5582i
 0.1584 + 0.0000i

1 Functions

1-2600

k = 0.0985

Plot the poles and zeros to verify that they are where expected.

fvtool(b,a,'polezero')
text(real(z)-0.1,imag(z)-0.1,'\bfZeros','color',[0 0.4 0])
text(real(p)-0.1,imag(p)-0.1,'\bfPoles','color',[0.6 0 0])

Input Arguments
b — Transfer function numerator coefficients
vector | matrix

Transfer function numerator coefficients, specified as a vector or matrix. If b is a matrix, then each
row of b corresponds to an output of the system. b contains the coefficients in descending powers of
z. The number of columns of b must be equal to the length of a. If the numbers differ, make them
equal by padding zeros. You can use the function eqtflength to accomplish this.
Data Types: single | double

a — Transfer function denominator coefficients
vector

Transfer function denominator coefficients, specified as a vector. a contains the coefficients in
descending powers of z.

 tf2zpk

1-2601

Data Types: single | double

Output Arguments
z — Zeros
matrix

Zeros of the system, returned as a matrix. z contains the numerator zeros in its columns. z has as
many columns as there are outputs.

p — Poles
column vector

Poles of the system, returned as a column vector. p contains the pole locations of the denominator
coefficients of the transfer function

k — Gains
column vector

Gains of the system, returned as a column vector. k contains the gains for each numerator transfer
function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The complexity of outputs, z and k, might be different in MATLAB and the generated code.
• The order of outputs, z and p, might be different in MATLAB and the generated code.

See Also
sos2zp | ss2zp | tf2sos | tf2ss | tf2zp | zp2tf

Introduced before R2006a

1 Functions

1-2602

tfestimate
Transfer function estimate

Syntax
txy = tfestimate(x,y)
txy = tfestimate(x,y,window)
txy = tfestimate(x,y,window,noverlap)
txy = tfestimate(x,y,window,noverlap,nfft)

txy = tfestimate(___ ,'mimo')

[txy,w] = tfestimate(___)
[txy,f] = tfestimate(___ ,fs)

[txy,w] = tfestimate(x,y,window,noverlap,w)
[txy,f] = tfestimate(x,y,window,noverlap,f,fs)

[___] = tfestimate(x,y, ___ ,freqrange)

[___] = tfestimate(___ ,'Estimator',est)

tfestimate(___)

Description
txy = tfestimate(x,y) finds a transfer function estimate, txy, given an input signal, x, and an
output signal, y.

• If x and y are both vectors, they must have the same length.
• If one of the signals is a matrix and the other is a vector, then the length of the vector must equal

the number of rows in the matrix. The function expands the vector and returns a matrix of column-
by-column transfer function estimates.

• If x and y are matrices with the same number of rows but different numbers of columns, then txy
is a multi-input/multi-output (MIMO) transfer function that combines all input and output signals.
txy is a three-dimensional array. If x has m columns and y has n columns, then txy has n columns
and m pages. See “Transfer Function” on page 1-2619 for more information.

• If x and y are matrices of equal size, then tfestimate operates column-wise: txy(:,n) =
tfestimate(x(:,n),y(:,n)). To obtain a MIMO estimate, append 'mimo' to the argument
list.

txy = tfestimate(x,y,window) uses window to divide x and y into segments and perform
windowing.

txy = tfestimate(x,y,window,noverlap) uses noverlap samples of overlap between
adjoining segments.

txy = tfestimate(x,y,window,noverlap,nfft) uses nfft sampling points to calculate the
discrete Fourier transform.

 tfestimate

1-2603

txy = tfestimate(___ ,'mimo') computes a MIMO transfer function for matrix inputs. This
syntax can include any combination of input arguments from previous syntaxes.

[txy,w] = tfestimate(___) returns a vector of normalized frequencies, w, at which the transfer
function is estimated.

[txy,f] = tfestimate(___ ,fs) returns a vector of frequencies, f, expressed in terms of the
sample rate, fs, at which the transfer function is estimated. fs must be the sixth numeric input to
tfestimate. To input a sample rate and still use the default values of the preceding optional
arguments, specify these arguments as empty [].

[txy,w] = tfestimate(x,y,window,noverlap,w) returns the transfer function estimate at the
normalized frequencies specified in w.

[txy,f] = tfestimate(x,y,window,noverlap,f,fs) returns the transfer function estimate at
the frequencies specified in f.

[___] = tfestimate(x,y, ___ ,freqrange) returns the transfer function estimate over the
frequency range specified by freqrange. Valid options for freqrange are 'onesided',
'twosided', and 'centered'.

[___] = tfestimate(___ ,'Estimator',est) estimates transfer functions using the estimator
est. Valid options for est are 'H1' and 'H2'.

tfestimate(___) with no output arguments plots the transfer function estimate in the current
figure window.

Examples

Transfer Function Between Two Sequences

Compute and plot the transfer function estimate between two sequences, x and y. The sequence x
consists of white Gaussian noise. y results from filtering x with a 30th-order lowpass filter with
normalized cutoff frequency 0 . 2π rad/sample. Use a rectangular window to design the filter. Specify
a sample rate of 500 Hz and a Hamming window of length 1024 for the transfer function estimate.

h = fir1(30,0.2,rectwin(31));
x = randn(16384,1);
y = filter(h,1,x);

fs = 500;
tfestimate(x,y,1024,[],[],fs)

1 Functions

1-2604

Use fvtool to verify that the transfer function approximates the frequency response of the filter.

fvtool(h,1,'Fs',fs)

 tfestimate

1-2605

Obtain the same result by returning the transfer function estimate in a variable and plotting its
absolute value in decibels.

[Txy,f] = tfestimate(x,y,1024,[],[],fs);

plot(f,mag2db(abs(Txy)))

1 Functions

1-2606

SISO Transfer Function

Estimate the transfer function for a simple single-input/single-output system and compare it to the
definition.

A one-dimensional discrete-time oscillating system consists of a unit mass, m, attached to a wall by a
spring of unit elastic constant. A sensor samples the acceleration, a, of the mass at Fs = 1 Hz. A
damper impedes the motion of the mass by exerting on it a force proportional to speed, with damping
constant b = 0 . 01.

Generate 2000 time samples. Define the sampling interval Δt = 1/Fs.

Fs = 1;
dt = 1/Fs;
N = 2000;

 tfestimate

1-2607

t = dt*(0:N-1);
b = 0.01;

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r v T is the state vector, r and v are respectively the position and velocity of the mass, u is
the driving force, and y = a is the measured output. The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C = −1 −b , D = 1,

I is the 2 × 2 identity, and the continuous-time state-space matrices are

Ac =
0 1
−1 −b

, Bc =
0
1

.

Ac = [0 1;-1 -b];
A = expm(Ac*dt);

Bc = [0;1];
B = Ac\(A-eye(size(A)))*Bc;

C = [-1 -b];
D = 1;

The mass is driven by random input for half of the measurement interval. Use the state-space model
to compute the time evolution of the system starting from an all-zero initial state. Plot the
acceleration of the mass as a function of time.

rng default

u = zeros(1,N);
u(1:N/2) = randn(1,N/2);

y = 0;
x = [0;0];
for k = 1:N
 y(k) = C*x + D*u(k);
 x = A*x + B*u(k);
end

plot(t,y)

1 Functions

1-2608

Estimate the transfer function of the system as a function of frequency. Use 2048 DFT points and
specify a Kaiser window with a shape factor of 15. Use the default value of overlap between adjoining
segments.

nfs = 2048;
wind = kaiser(N,15);

[txy,ft] = tfestimate(u,y,wind,[],nfs,Fs);

The frequency-response function of a discrete-time system can be expressed as the Z-transform of the
time-domain transfer function of the system, evaluated at the unit circle. Verify that the estimate
computed by tfestimate coincides with this definition.

[b,a] = ss2tf(A,B,C,D);

fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);
frf = polyval(b,z)./polyval(a,z);

plot(ft,20*log10(abs(txy)))
hold on
plot(fz,20*log10(abs(frf)))
hold off
grid
ylim([-60 40])

 tfestimate

1-2609

Plot the estimate using the built-in functionality of tfestimate.

tfestimate(u,y,wind,[],nfs,Fs)

1 Functions

1-2610

Transfer Function of MIMO System

Estimate the transfer function for a simple multi-input/multi-output system.

An ideal one-dimensional oscillating system consists of two masses, m1 and m2, confined between two
walls. The units are such that m1 = 1 and m2 = μ. Each mass is attached to the nearest wall by a
spring with an elastic constant k. An identical spring connects the two masses. Three dampers
impede the motion of the masses by exerting on them forces proportional to speed, with damping
constant b. Sensors sample a1 and a2, the accelerations of the masses, at Fs = 50 Hz.

Generate 30000 time samples, equivalent to 600 seconds. Define the sampling interval Δt = 1/Fs.

Fs = 50;
dt = 1/Fs;

 tfestimate

1-2611

N = 30000;
t = dt*(0:N-1);

The system can be described by the state-space model

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where x = r1 v1 r2 v2
T is the state vector, ri and vi are respectively the location and the velocity of

the ith mass, u = u1 u2
T is the vector of input driving forces, and y = a1 a2

T is the output vector.
The state-space matrices are

A = exp(AcΔt), B = Ac
−1(A− I)Bc, C =

−2k −2b k b
k/μ b/μ −2k/μ −2b/μ

, D =
1 0
0 1/μ

,

I is the 4 × 4 identity, and the continuous-time state-space matrices are

Ac =

0 1 0 0
−2k −2b k b

0 0 0 1
k/μ b/μ −2k/μ −2b/μ

, Bc =

0 0
1 0
0 0
0 1/μ

.

Set k = 400, b = 0, and μ = 1/10.

k = 400;
b = 0;
m = 1/10;

Ac = [0 1 0 0;-2*k -2*b k b;0 0 0 1;k/m b/m -2*k/m -2*b/m];
A = expm(Ac*dt);
Bc = [0 0;1 0;0 0;0 1/m];
B = Ac\(A-eye(4))*Bc;
C = [-2*k -2*b k b;k/m b/m -2*k/m -2*b/m];
D = [1 0;0 1/m];

The masses are driven by random input throughout the measurement. Use the state-space model to
compute the time evolution of the system starting from an all-zero initial state.

rng default
u = randn(2,N);

x = [0;0;0;0];
for kk = 1:N
 y(:,kk) = C*x + D*u(:,kk);
 x = A*x + B*u(:,kk);
end

Use the input and output data to estimate the transfer function of the system as a function of
frequency. Specify the 'mimo' option to produce all four transfer functions. Use a 5000-sample Hann
window to divide the signals into segments. Specify 2500 samples of overlap between adjoining
segments and 214 DFT points. Plot the estimates.

wind = hann(5000);
nov = 2500;

1 Functions

1-2612

[q,fq] = tfestimate(u',y',wind,nov,2^14,Fs,'mimo');

Compute the theoretical transfer function as the Z-transform of the time-domain transfer function,
evaluated at the unit circle.

nfs = 2^14;

fz = 0:1/nfs:1/2-1/nfs;
z = exp(2j*pi*fz);

[b1,a1] = ss2tf(A,B,C,D,1);
[b2,a2] = ss2tf(A,B,C,D,2);

frf(1,:,1) = polyval(b1(1,:),z)./polyval(a1,z);
frf(1,:,2) = polyval(b1(2,:),z)./polyval(a1,z);

frf(2,:,1) = polyval(b2(1,:),z)./polyval(a2,z);
frf(2,:,2) = polyval(b2(2,:),z)./polyval(a2,z);

Plot the theoretical transfer functions and their corresponding estimates.

for jk = 1:2
 for kj = 1:2
 subplot(2,2,2*(jk-1)+kj)
 plot(fq,20*log10(abs(q(:,jk,kj))))
 hold on
 plot(fz*Fs,20*log10(abs(frf(jk,:,kj))))
 hold off
 grid
 title(['Input ' int2str(kj) ', Output ' int2str(jk)])
 axis([0 Fs/2 -50 100])
 end
end

 tfestimate

1-2613

The transfer functions have maxima at the expected values, ω1, 2/2π, where the ω are the eigenvalues
of the modal matrix.

sqrt(eig(k*[2 -1;-1/m 2/m]))/(2*pi)

ans = 2×1

 3.8470
 14.4259

Add damping to the system by setting b = 0 . 1. Compute the time evolution of the damped system
with the same driving forces. Compute the H2 estimate of the MIMO transfer function using the same
window and overlap. Plot the estimates using the tfestimate functionality.

b = 0.1;

Ac = [0 1 0 0;-2*k -2*b k b;0 0 0 1;k/m b/m -2*k/m -2*b/m];
A = expm(Ac*dt);
B = Ac\(A-eye(4))*Bc;
C = [-2*k -2*b k b;k/m b/m -2*k/m -2*b/m];

x = [0;0;0;0];
for kk = 1:N
 y(:,kk) = C*x + D*u(:,kk);
 x = A*x + B*u(:,kk);
end

1 Functions

1-2614

clf
tfestimate(u',y',wind,nov,[],Fs,'mimo','Estimator','H2')
legend('I1, O1','I1, O2','I2, O1','I2, O2')

yl = ylim;

Compare the estimates to the theoretical predictions.

[b1,a1] = ss2tf(A,B,C,D,1);
[b2,a2] = ss2tf(A,B,C,D,2);

frf(1,:,1) = polyval(b1(1,:),z)./polyval(a1,z);
frf(1,:,2) = polyval(b1(2,:),z)./polyval(a1,z);

frf(2,:,1) = polyval(b2(1,:),z)./polyval(a2,z);
frf(2,:,2) = polyval(b2(2,:),z)./polyval(a2,z);

plot(fz*Fs,20*log10(abs(reshape(permute(frf,[2 1 3]),[nfs/2 4]))))
legend('I1, O1','I1, O2','I2, O1','I2, O2')
ylim(yl)
grid

 tfestimate

1-2615

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

y — Output signal
vector | matrix

Output signal, specified as a vector or matrix.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments.

1 Functions

1-2616

• If window is an integer, then tfestimate divides x and y into segments of length window and
windows each segment with a Hamming window of that length.

• If window is a vector, then tfestimate divides x and y into segments of the same length as the
vector and windows each segment using window.

If the length of x and y cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then the signals are truncated accordingly.

If you specify window as empty, then tfestimate uses a Hamming window such that x and y are
divided into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length
N + 1.
Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

• If window is scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then tfestimate uses a number that produces 50% overlap
between segments.
Data Types: double | single

nfft — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer. If you specify nfft as empty, then
tfestimate sets this argument to max(256,2p), where p = ⌈log2 N⌉ for input signals of length N and
the ⌈ ⌉ symbols denote the ceiling function.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.
Example: w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector

 tfestimate

1-2617

Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.
Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for transfer function estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the transfer function estimate, specified as a one of 'onesided', 'twosided',
or 'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals.

• 'onesided' — Returns the one-sided estimate of the transfer function between two real-valued
input signals, x and y. If nfft is even, txy has nfft/2 + 1 rows and is computed over the interval
[0,π] rad/sample. If nfft is odd, txy has (nfft + 1)/2 rows and the interval is [0,π) rad/sample. If
you specify fs, the corresponding intervals are [0,fs/2] cycles/unit time for even nfft and
[0,fs/2) cycles/unit time for odd nfft.

• 'twosided' — Returns the two-sided estimate of the transfer function between two real-valued
or complex-valued input signals, x and y. In this case, txy has nfft rows and is computed over
the interval [0,2π) rad/sample. If you specify fs, the interval is [0,fs) cycles/unit time.

• 'centered' — Returns the centered two-sided estimate of the transfer function between two
real-valued or complex-valued input signals, x and y. In this case, txy has nfft rows and is
computed over the interval (–π,π] rad/sample for even nfft and (–π,π) rad/sample for odd nfft. If
you specify fs, the corresponding intervals are (–fs/2, fs/2] cycles/unit time for even nfft and (–
fs/2, fs/2) cycles/unit time for odd nfft.

est — Transfer function estimator
'H1' (default) | 'H2'

Transfer function estimator, specified as 'H1' or 'H2'.

• Use 'H1' when the noise is uncorrelated with the input signals.
• Use 'H2' when the noise is uncorrelated with the output signals. In this case, the number of input

signals must equal the number of output signals.

See “Transfer Function” on page 1-2619 for more information.

Output Arguments
txy — Transfer function estimate
vector | matrix | three-dimensional array

Transfer function estimate, returned as a vector, matrix, or three-dimensional array.

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector.

f — Cyclical frequencies
vector

1 Functions

1-2618

Cyclical frequencies, returned as a real-valued column vector.

More About
Transfer Function

The relationship between the input x and output y is modeled by the linear, time-invariant transfer
function txy. In the frequency domain, Y(f) = H(f)X(f).

• For a single-input/single-output system, the H1 estimate of the transfer function is given by

H1(f) =
Pyx f
Pxx f ,

where Pyx is the cross power spectral density of x and y, and Pxx is the power spectral density of x.
This estimate assumes that the noise is not correlated with the system input.

For multi-input/multi-output (MIMO) systems, the H1 estimator becomes

H1(f) = PYX(f)PXX
−1(f) =

Py1x1(f) Py1x2(f) ⋯ Py1xm(f)

Py2x1(f) Py2x2(f) ⋯ Py2xm(f)

⋮ ⋮ ⋱ ⋮
Pynx1(f) Pynx2(f) ⋯ Pynxm(f)

Px1x1(f) Px1x2(f) ⋯ Px1xm(f)

Px2x1(f) Px2x2(f) ⋯ Px2xm(f)

⋮ ⋮ ⋱ ⋮
Pxmx1(f) Pxmx2(f) ⋯ Pxmxm(f)

−1

for m inputs and n outputs, where:

• Pyixk
 is the cross power spectral density of the kth input and the ith output.

• Pxixk
 is the cross power spectral density of the kth and ith inputs.

For two inputs and two outputs, the estimator is the matrix

H1(f) =

Py1x1(f)Px2x2(f) − Py1x2(f)Px2x1(f) Py1x2(f)Px1x1(f) − Py1x1(f)Px1x2(f)

Py2x1(f)Px2x2(f) − Py2x2(f)Px2x1(f) Py2x2(f)Px1x1(f) − Py2x1(f)Px1x2(f)
Px1x1(f)Px2x2(f) − Px1x2(f)Px2x1(f) .

• For a single-input/single-output system, the H2 estimate of the transfer function is given by

H2 f =
Pyy f
Pxy f ,

where Pyy is the power spectral density of y and Pxy = P*
yx is the complex conjugate of the cross

power spectral density of x and y. This estimate assumes that the noise is not correlated with the
system output.

For MIMO systems, the H2 estimator is well-defined only for equal numbers of inputs and outputs:
n = m. The estimator becomes

H2(f) = PYY(f)PXY
−1(f) =

Py1y1(f) Py1y2(f) ⋯ Py1yn(f)

Py2y1(f) Py2y2(f) ⋯ Py2yn(f)

⋮ ⋮ ⋱ ⋮
Pyny1(f) Pyny2(f) ⋯ Pynyn(f)

Px1y1(f) Px1y2(f) ⋯ Px1yn(f)

Px2y1(f) Px2y2(f) ⋯ Px2yn(f)

⋮ ⋮ ⋱ ⋮
Pxny1(f) Pxny2(f) ⋯ Pxnyn(f)

−1

,

 tfestimate

1-2619

where:

• Pyiyk
 is the cross power spectral density of the kth and ith outputs.

• Pxiyk
 is the complex conjugate of the cross power spectral density of the ith input and the kth

output.

Algorithms
tfestimate uses Welch's averaged periodogram method. See pwelch for details.

References
[1] Vold, Håvard, John Crowley, and G. Thomas Rocklin. “New Ways of Estimating Frequency

Response Functions.” Sound and Vibration. Vol. 18, November 1984, pp. 34–38.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name value pairs must be compile time constants.
• Variable sized window must be double precision.

See Also
cpsd | mscohere | periodogram | pwelch

Introduced before R2006a

1 Functions

1-2620

tfridge
Time-frequency ridges

Syntax
fridge = tfridge(tfm,f)
[fridge,iridge] = tfridge(tfm,f)
[fridge,iridge,lridge] = tfridge(tfm,f)

[___] = tfridge(tfm,f,penalty)

[___] = tfridge(___ ,'NumRidges',nr)
[___] = tfridge(___ ,'NumRidges',nr,'NumFrequencyBins',nbins)

Description
fridge = tfridge(tfm,f) extracts the maximum-energy time-frequency ridge from the time-
frequency matrix, tfm, and the frequency vector, f, and outputs the time-dependent frequency,
fridge.

[fridge,iridge] = tfridge(tfm,f) also returns the row-index vector corresponding to the
maximum-energy ridge.

[fridge,iridge,lridge] = tfridge(tfm,f) also returns the linear indices, lridge, such that
tfm(lridge) are the values of tfm along the maximum-energy ridge.

[___] = tfridge(tfm,f,penalty) penalizes changes in frequency by scaling the squared
distance between frequency bins by penalty.

[___] = tfridge(___ ,'NumRidges',nr) extracts the nr time-frequency ridges with the
highest energy. This syntax accepts any combination of input arguments from previous syntaxes.

[___] = tfridge(___ ,'NumRidges',nr,'NumFrequencyBins',nbins) specifies the number
of frequency bins around a ridge that are removed from tfm when extracting multiple ridges.

Examples

Find Ridge of Noisy Signal

Create a matrix that resembles a time-frequency matrix with a sharp ridge. Visualize the matrix in
three dimensions.

t = 0:0.05:10;
f = 0:0.2:8;
rv = 1;

[F,T] = ndgrid(f,t);

S = zeros(size(T));
S(abs((F-4)-cos((T-6).^2))<0.1) = rv;

 tfridge

1-2621

mesh(T,F,S)
view(-30,60)

Add noise to the matrix and redisplay the plot.

S = S+rand(size(S))/10;

mesh(T,F,S)
view(-30,60)
xlabel('Time')
ylabel('Frequency')

1 Functions

1-2622

Extract the ridge and plot the result.

[fridge,~,lridge] = tfridge(S,f);

rvals = S(lridge);

hold on
plot3(t,fridge,rvals,'k','linewidth',4)
hold off

 tfridge

1-2623

Extract High-Energy Ridges from Multicomponent Signal

Generate a signal that is sampled at 3 kHz for one second. The signal consists of two tones and a
quadratic chirp.

• The first tone has a frequency of 1000 Hz and unit amplitude.
• The second tone has a frequency of 1200 Hz and unit amplitude.
• The chirp has an initial frequency of 500 Hz and reaches 750 Hz at the end of the sampling. It has

an amplitude of six.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = 6*chirp(t,fs/6,t(end),fs/4,'quadratic');
x2 = sin(2*pi*fs/3*t);
x3 = sin(2*pi*fs/2.5*t);

x = x1+x2+x3;

Compute and display the Fourier synchrosqueezed transform of the signal.

[sst,f] = fsst(x,fs);
mx = max(abs(sst(:)))*ones(size(t));

1 Functions

1-2624

mesh(t,f,abs(sst))
view(2)

Extract and plot the two highest-energy signal components. Set no penalty for changing frequency.

penval = 0;

fridge = tfridge(sst,f,penval,'NumRidges',2);

hold on
plot3(t,fridge,mx,'w','linewidth',5)
hold off

 tfridge

1-2625

The two tones have the same amplitude, and the algorithm jumps between them. Set the penalty for
changing frequency to 1.

penval = 1;

fridge = tfridge(sst,f,penval,'NumRidges',2);

mesh(t,f,abs(sst))
view(2)
xlabel('Time (s)')
ylabel('Frequency (Hz)')

hold on
plot3(t,fridge,mx,'w','linewidth',5)
hold off

1 Functions

1-2626

Set the penalty to a high value for comparison. The chirp is penalized because its frequency is not
constant.

penval = 1000;

fridge = tfridge(sst,f,penval,'NumRidges',2);

mesh(t,f,abs(sst))
view(2)
xlabel('Time (s)')
ylabel('Frequency (Hz)')

hold on
plot3(t,fridge,mx,'w','linewidth',5)
hold off

 tfridge

1-2627

Effect of Neighbor Bin Removal

Generate a signal composed of two quadratic chirps. The signal is sampled at 1 kHz for 3 seconds.
The chirps are such that the instantaneous frequency is symmetric about the halfway point of the
sampling interval. One chirp is concave and the other chirp is convex. The concave chirp has twice
the amplitude of the convex chirp.

fs = 1e3;
t = 0:1/fs:3;

x = chirp(t-1.5,100,1.1,200,'quadratic',[],'convex');
y = 2*chirp(t-1.5,300,1.1,400,'quadratic',[],'concave');

% To hear, type soundsc(x+y,fs)

Compute and display the Fourier synchrosqueezed transform of the signal.

sig = x+y;

[sst,f,t] = fsst(sig,fs);

fsst(sig,fs,'yaxis')

1 Functions

1-2628

Extract the two time-frequency ridges that have the highest energy. Specify a penalty of 1 for changes
in frequency. Remove 1 frequency bin around the ridge with the highest energy before extracting the
second ridge. Plot the ridges.

nfb = 1;
[fr,ir] = tfridge(sst,f,1,'NumRidges',2,'NumFrequencyBins',nfb);

plot(t,fr)

 tfridge

1-2629

One bin is insufficient: The function finds a second ridge that is partly on the slope of the first.
Increase to 50 the number of bins to remove and repeat the calculation.

nfb = 50;
[fr,ir] = tfridge(sst,f,1,'NumRidges',2,'NumFrequencyBins',nfb);

plot(t,fr)

1 Functions

1-2630

Removing too many bins distorts lower-energy ridges. Decrease the number to 15 and repeat the
calculation.

nfb = 15;
[fr,ir] = tfridge(sst,f,1,'NumRidges',2,'NumFrequencyBins',nfb);

plot(t,fr)

 tfridge

1-2631

Invert the transform corresponding to the two ridges. Add the ridges to reconstruct the signal. Plot
the difference between the reconstructed signal and the chirps.

itr = ifsst(sst,[],ir,'NumFrequencyBins',nfb);
xrec = sum(itr');

plot(t,xrec-(x+y))
ylim([-.1 .1])

1 Functions

1-2632

% To hear, type soundsc(xrec,fs)

The agreement is good most of the time but deteriorates at the ends, where frequencies change most
rapidly.

Input Arguments
tfm — Time-frequency matrix
matrix

Time-frequency matrix, specified as a matrix.
Example: fsst(cos(pi/4*(0:159))) specifies the synchrosqueezed transform of a sinusoid.
Data Types: single | double
Complex Number Support: Yes

f — Sampling frequencies
vector

Sampling frequencies, specified as a vector. The length of f must equal the number of rows in tfm.
Data Types: single | double

penalty — Penalty for changing frequency
0 (default) | nonnegative real scalar

 tfridge

1-2633

Penalty for changing frequency, specified as a nonnegative real scalar.
Data Types: single | double

nr — Number of time-frequency ridges to extract
1 (default) | positive integer scalar

Number of time-frequency ridges to extract, specified as the comma-separated pair consisting of
'NumRidges' and a positive integer scalar. You can specify this name-value pair anywhere after tfm
in the input argument list.

When nr is greater than 1, tfridge:

1 Extracts the time-frequency ridge with the highest energy
2 Removes from tfm the energy contained in the ridge it extracted and in the nbins adjacent

frequency bins on either side of the ridge
3 Extracts the highest-energy ridge in the modified tfm
4 Iterates until it has extracted nr ridges

Data Types: single | double

nbins — Number of bins to remove
4 (default) | positive integer scalar

Number of bins to remove when extracting multiple ridges, specified as the comma-separated pair
consisting of 'NumFrequencyBins' and a positive integer scalar. nbins must be smaller than 1/4 of
the sampling frequencies. Indices close to the frequency edges that have fewer than nbins bins on
one side are reconstructed using a smaller number of bins.
Data Types: single | double

Output Arguments
fridge — Time-frequency ridges
matrix

Time-frequency ridges, returned as a matrix with nr columns. The number of rows in fridge equals
the number of columns in tfm. The first column contains the frequencies that correspond to the
highest-energy ridge. Subsequent columns contain the frequencies of the other ridges in decreasing
order of energy.

iridge — Ridge row indices
matrix

Ridge row indices, returned as a matrix with nr columns. The number of rows in iridge equals the
number of columns in tfm. The first column contains the indices that correspond to the highest-
energy ridge. Subsequent columns contain the indices of the other ridges in decreasing order of
energy.

lridge — Ridge linear indices
matrix

Ridge linear indices, returned as a matrix with nr columns. lridge is defined so that tfm(lridge)
is the amplitude of tfm along the ridges. The number of rows in lridge equals the number of

1 Functions

1-2634

columns in tfm. The first column contains the indices that correspond to the highest-energy ridge.
Subsequent columns contain the indices of the other ridges in decreasing order of energy.
Example: lridge is equivalent to
sub2ind(size(tfm),iridge,repmat((1:size(tfm,2))',1,nr)).

Algorithms
The function uses a penalized forward-backward greedy algorithm to extract the maximum-energy
ridges from a time-frequency matrix. The algorithm finds the maximum time-frequency ridge by
minimizing –ln A at each time point, where A is the absolute value of the matrix. Minimizing –ln A is
equivalent to maximizing the value of A. The algorithm optionally constrains jumps in frequency with
a penalty that is proportional to the distance between frequency bins.

The following example illustrates the time-frequency ridge algorithm using a penalty that is two times
the distance between frequency bins. Specifically, the distance between the elements (j,k) and
(m,n) is defined as (j-m)2. The time-frequency matrix has three frequency bins and three time
steps. The matrix columns correspond to time steps, and the matrix rows correspond to frequency
bins. The values in the second row represent a sine wave.

1 Suppose you have the matrix:

1 4 4
2 2 2
5 5 4

2 Update the value for the (1,2) element as follows.

a Leave the values at the first time point unaltered. Begin the algorithm with the (1,2) element
of the matrix, which presents the first frequency bin at the second time point. The bin value
is 4. Penalize the values in the first column based on their distance from the (1,2) element.
Applying the penalty to the first column produces

original value + penalty × distance

1 + 2 × 0 = 1
2 + 2 × 1 = 4
5 + 2 × 4 = 13

 1 4
 4 2
13 5

The minimum value of the first column is 1, which is in bin 1.
b Add the minimum value in column 1 to the current bin value, 4. The updated value for (1,2)

becomes 5, which came from bin 1.
3 Update the values for the remaining elements in column 2 as follows.

Recompute the original column 1 values with the penalty factor using the same process as in
Step 2a. Obtain the remaining second column values using the same process as in Step 2b. For
example, when updating the (2,2) element, which has bin value 2, applying the penalty to the
column yields

original value + penalty × distance

1 + 2 × 1 = 3

 tfridge

1-2635

2 + 2 × 0 = 2
5 + 2 × 1 = 7

Add the minimum value, 2, to the current bin value. The updated value for (2,2) becomes 4. After
updating the (3,2) element, the matrix is

1 5(1) 4
2 4(2) 2
5 9(2) 4

Only the second column has been updated. The subscripts indicate the index of the bin in the
previous column from which a value came.

4 Repeat Step 2 for the third column. But now the penalty is applied to the updated second column.
For example, when updating the (1,3) element, the penalty is

5 + 2 × 0 = 5
4 + 2 × 1 = 6
9 + 2 × 4 = 17

The minimum value, 5, which is in the first bin, is added to the (1,3) bin value. After updating all
the values in the third column, the final matrix is

1 5(1) 9(1)
2 4(2) 6(2)
5 9(2) 10(2)

5 Starting at the last column of the matrix, find the minimum value. Walk back in time through the
matrix by going from the current bin to the origin of that bin at the previous time point. Keep
track of the bin indices, which form the path composing the ridge. The algorithm smooths the
transition by using the origin bin instead of the bin with the minimum value. For this example,
the ridge indices are 2, 2, 2, which matches the energy path of the sine wave in row 2 of the
matrix shown in Step 1.

If you are extracting multiple ridges, the algorithm removes the first ridge from the time-frequency
matrix and repeats the process.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Arguments specified using name value pairs must be compile time constants.

See Also
Apps
Signal Analyzer

Functions
fsst | ifsst | pspectrum | spectrogram | sub2ind

Topics
“Practical Introduction to Time-Frequency Analysis”

1 Functions

1-2636

Introduced in R2016b

 tfridge

1-2637

thd
Total harmonic distortion

Syntax
r = thd(x)
r = thd(x,fs,n)

r = thd(pxx,f,'psd')
r = thd(pxx,f,n,'psd')

r = thd(sxx,f,rbw,'power')
r = thd(sxx,f,rbw,n,'power')

r = thd(___ ,'aliased')

[r,harmpow,harmfreq] = thd(___)

thd(___)

Description
r = thd(x) returns the total harmonic distortion (THD) in dBc of the real-valued sinusoidal signal x.
The total harmonic distortion is determined from the fundamental frequency and the first five
harmonics using a modified periodogram of the same length as the input signal. The modified
periodogram uses a Kaiser window with β = 38.

r = thd(x,fs,n) specifies the sample rate, fs, and the number of harmonics (including the
fundamental) to use in the THD calculation.

r = thd(pxx,f,'psd') specifies the input pxx as a one-sided power spectral density (PSD)
estimate. f is a vector of frequencies corresponding to the PSD estimates in pxx.

r = thd(pxx,f,n,'psd') specifies the number of harmonics (including the fundamental) to use in
the THD calculation.

r = thd(sxx,f,rbw,'power') specifies the input as a one-sided power spectrum. rbw is the
resolution bandwidth over which each power estimate is integrated.

r = thd(sxx,f,rbw,n,'power') specifies the number of harmonics (including the fundamental)
to use in the THD calculation.

r = thd(___ ,'aliased') reports harmonics of the fundamental that are aliased into the Nyquist
range. Use this option when the input signal is undersampled. If you do not specify this option, or if
you set it to 'omitaliases', then the function ignores any harmonics of the fundamental frequency
that lie beyond the Nyquist range.

[r,harmpow,harmfreq] = thd(___) returns the powers (in dB) and frequencies of the
harmonics, including the fundamental.

thd(___) with no output arguments plots the spectrum of the signal and annotates the harmonics
in the current figure window. It uses different colors to draw the fundamental component, the

1 Functions

1-2638

harmonics, and the DC level and noise. The THD appears above the plot. The fundamental and
harmonics are labeled. The DC term is excluded from the measurement and is not labeled.

Examples

Determine THD for a Signal with Two Harmonics

This example shows explicitly how to calculate the total harmonic distortion in dBc for a signal
consisting of the fundamental and two harmonics. The explicit calculation is checked against the
result returned by thd.

Create a signal sampled at 1 kHz. The signal consists of a 100 Hz fundamental with amplitude 2 and
two harmonics at 200 and 300 Hz with amplitudes 0.01 and 0.005. Obtain the total harmonic
distortion explicitly and using thd.

t = 0:0.001:1-0.001;
x = 2*cos(2*pi*100*t)+0.01*cos(2*pi*200*t)+0.005*cos(2*pi*300*t);
tharmdist = 10*log10((0.01^2+0.005^2)/2^2)

tharmdist = -45.0515

r = thd(x)

r = -45.0515

Specify Number of Harmonics

Create a signal sampled at 1 kHz. The signal consists of a 100 Hz fundamental with amplitude 2 and
three harmonics at 200, 300, and 400 Hz with amplitudes 0.01, 0.005, and 0.0025.

Set the number of harmonics to 3. This includes the fundamental. Accordingly, the power at 100, 200,
and 300 Hz is used in the THD calculation.

t = 0:0.001:1-0.001;
x = 2*cos(2*pi*100*t)+0.01*cos(2*pi*200*t)+ ...
 0.005*cos(2*pi*300*t)+0.0025*sin(2*pi*400*t);
r = thd(x,1000,3)

r = -45.0515

Specifying the number of harmonics equal to 3 ignores the power at 400 Hz in the THD calculation.

Specify Number of Harmonics (PSD Input)

Create a signal sampled at 1 kHz. The signal consists of a 100 Hz fundamental with amplitude 2 and
three harmonics at 200, 300, and 400 Hz with amplitudes 0.01, 0.005, and 0.0025.

Obtain the periodogram PSD estimate of the signal and use the PSD estimate as the input to thd. Set
the number of harmonics to 3. This includes the fundamental. Accordingly, the power at 100, 200, and
300 Hz is used in the THD calculation.

 thd

1-2639

t = 0:0.001:1-0.001;
fs = 1000;
x = 2*cos(2*pi*100*t)+0.01*cos(2*pi*200*t)+ ...
 0.005*cos(2*pi*300*t)+0.0025*sin(2*pi*400*t);
[pxx,f] = periodogram(x,rectwin(length(x)),length(x),fs);
r = thd(pxx,f,3,'psd')

r = -45.0515

THD from Power Spectrum

Determine the THD by inputting the power spectrum obtained with a Hamming window and the
resolution bandwidth of the window.

Create a signal sampled at 10 kHz. The signal consists of a 100 Hz fundamental with amplitude 2 and
three odd-numbered harmonics at 300, 500, and 700 Hz with amplitudes 0.01, 0.005, and 0.0025.
Specify the number of harmonics to 7. Determine the THD.

fs = 10000;
t = 0:1/fs:1-1/fs;
x = 2*cos(2*pi*100*t)+0.01*cos(2*pi*300*t)+ ...
 0.005*cos(2*pi*500*t)+0.0025*sin(2*pi*700*t);
[sxx,f] = periodogram(x,hamming(length(x)),length(x),fs,'power');
rbw = enbw(hamming(length(x)),fs);
r = thd(sxx,f,rbw,7,'power')

r = -44.8396

THD with and Without Aliased Harmonics

Generate a signal that resembles the output of a weakly nonlinear amplifier with a 2.1 kHz tone as
input. The signal is sampled for 1 second at 10 kHz. Compute and plot the power spectrum of the
signal. Use a Kaiser window with β = 38 for the computation.

Fs = 10000;
f = 2100;

t = 0:1/Fs:1;
x = tanh(sin(2*pi*f*t)+0.1) + 0.001*randn(1,length(t));

periodogram(x,kaiser(length(x),38),[],Fs,'power')

1 Functions

1-2640

Harmonics stick out from the noise at frequencies of 4.2 kHz, 6.3 kHz, 8.4 kHz, 10.5 kHz, 12.6 kHz,
and 14.7 kHz. All frequencies except for the first one are greater than the Nyquist frequency. The
harmonics are aliased respectively into 3.7 kHz, 1.6 kHz, 0.5 kHz, 2.6 kHz, and 4.7 kHz.

Compute the total harmonic distortion of the signal. By default, thd treats the aliased harmonics as
part of the noise.

thd(x,Fs,7);

 thd

1-2641

Repeat the computation, but now treat the aliased harmonics as part of the signal.

thd(x,Fs,7,'aliased');

1 Functions

1-2642

Harmonic Powers and Corresponding Frequencies

Create a signal sampled at 10 kHz. The signal consists of a 100 Hz fundamental with amplitude 2 and
three odd-numbered harmonics at 300, 500, and 700 Hz with amplitudes 0.01, 0.005, and 0.0025.
Specify the number of harmonics to 7. Determine the THD, the power at the harmonics, and the
corresponding frequencies.

fs = 10000;
t = 0:1/fs:1-1/fs;
x = 2*cos(2*pi*100*t)+0.01*cos(2*pi*300*t)+ ...
 0.005*cos(2*pi*500*t)+0.0025*sin(2*pi*700*t);
[r,harmpow,harmfreq] = thd(x,10000,7);
[harmfreq harmpow]

ans = 7×2

 100.0000 3.0103
 201.0000 -320.4988
 300.0000 -43.0103
 399.0000 -281.9553
 500.0000 -49.0309
 599.0000 -282.0726
 700.0000 -55.0515

 thd

1-2643

The powers at the even-numbered harmonics are on the order of −300 dB, which corresponds to an
amplitude of 10−15.

THD of an Amplified Signal

Generate a sinusoid of frequency 2.5 kHz sampled at 50 kHz. Add Gaussian white noise with standard
deviation 0.00005 to the signal. Pass the result through a weakly nonlinear amplifier. Plot the THD.

fs = 5e4;
f0 = 2.5e3;
N = 1024;
t = (0:N-1)/fs;

ct = cos(2*pi*f0*t);
cd = ct + 0.00005*randn(size(ct));

amp = [1e-5 5e-6 -1e-3 6e-5 1 25e-3];
sgn = polyval(amp,cd);
thd(sgn,fs);

The plot shows the spectrum used to compute the ratio and the region treated as noise. The DC level
is excluded from the computation. The fundamental and harmonics are labeled.

1 Functions

1-2644

Input Arguments
x — Real-valued sinusoidal input signal
vector

Real-valued sinusoidal input signal, specified as a row or column vector.
Example: cos(pi/4*(0:159))+cos(pi/2*(0:159))
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

n — Number of harmonics
positive integer

Number of harmonics, specified as a positive integer.

pxx — One-sided PSD estimate
vector

One-sided PSD estimate, specified as a real-valued, nonnegative column vector.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: single | double

f — Cyclical frequencies
vector

Cyclical frequencies corresponding to the one-sided PSD estimate, pxx, specified as a row or column
vector. The first element of f must be 0.
Data Types: double | single

sxx — Power spectrum
nonnegative real-valued row or column vector

Power spectrum, specified as a real-valued nonnegative row or column vector.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.

rbw — Resolution bandwidth
positive scalar

 thd

1-2645

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of the
frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth of the
window.

Output Arguments
r — Total harmonic distortion in dBc
real-valued scalar

Total harmonic distortion in dBc, returned as a real-valued scalar.

harmpow — Power of the harmonics
real-valued scalar or vector

Power of the harmonics, returned as a real-valued scalar or vector expressed in dB. Whether
harmpow is a scalar or a vector depends on the number of harmonics you specify as the input
argument n.

harmfreq — Frequencies of the harmonics
nonnegative scalar or vector

Frequencies of the harmonics, returned as a nonnegative scalar or vector. Whether harmfreq is a
scalar or a vector depends on the number of harmonics you specify as the input argument n.

More About
Distortion Measurement Functions

The functions thd, sfdr, sinad, and snr measure the response of a weakly nonlinear system
stimulated by a sinusoid.

When given time-domain input, thd performs a periodogram using a Kaiser window with large
sidelobe attenuation. To find the fundamental frequency, the algorithm searches the periodogram for
the largest nonzero spectral component. It then computes the central moment of all adjacent bins
that decrease monotonically away from the maximum. To be detectable, the fundamental should be at
least in the second frequency bin. Higher harmonics are at integer multiples of the fundamental
frequency. If a harmonic lies within the monotonically decreasing region in the neighborhood of
another, its power is considered to belong to the larger harmonic. This larger harmonic may or may
not be the fundamental.

thd fails if the fundamental is not the highest spectral component in the signal.

Ensure that the frequency components are far enough apart to accommodate for the sidelobe width
of the Kaiser window. If this is not feasible, you can use the 'power' flag and compute a
periodogram with a different window.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions

1-2646

If supplied, input arguments 'power', 'psd', 'aliased', and 'omitaliases' must be compile-
time constants.

See Also
sfdr | sinad | snr | toi

Topics
“Analyzing Harmonic Distortion”

Introduced in R2013b

 thd

1-2647

toi
Third-order intercept point

Syntax
oip3 = toi(x)
oip3 = toi(x,fs)

oip3 = toi(pxx,f,'psd')
oip3 = toi(sxx,f,rbw,'power')

[oip3,fundpow,fundfreq,imodpow,imodfreq] = toi(___)

toi(___)

Description
oip3 = toi(x) returns the output third-order intercept (TOI) point, in decibels (dB), of a real
sinusoidal two-tone input signal, x. The computation is performed over a periodogram of the same
length as the input using a Kaiser window with β = 38.

oip3 = toi(x,fs) specifies the sample rate, fs. The default value of fs is 1.

oip3 = toi(pxx,f,'psd') specifies the input as a one-sided power spectral density (PSD), pxx, of
a real signal. f is a vector of frequencies that corresponds to the vector of pxx estimates.

oip3 = toi(sxx,f,rbw,'power') specifies the input as a one-sided power spectrum, sxx, of a
real signal. rbw is the resolution bandwidth over which each power estimate is integrated.

[oip3,fundpow,fundfreq,imodpow,imodfreq] = toi(___) also returns the power, fundpow,
and frequencies, fundfreq, of the two fundamental sinusoids. It also returns the power, imodpow,
and frequencies, imodfreq, of the lower and upper intermodulation products. This syntax can use
any of the input arguments in the preceding syntaxes.

toi(___) with no output arguments plots the spectrum of the signal and annotates the lower and
upper fundamentals (f1, f2) and intermodulation products (2f1 – f2, 2f2 – f1). Higher harmonics and
intermodulation products are not labeled. The TOI appears above the plot.

Examples

Third-Order Intercept Point of a Two-Tone Nonlinear Signal with Noise

Create a two-tone sinusoid with frequencies f1 = 5 kHz and f2 = 6 kHz, sampled at 48 kHz. Make the
signal nonlinear by feeding it to a polynomial. Add noise. Set the random number generator to the
default settings for reproducible results. Compute the third-order intercept point. Verify that the
intermodulation products occur at 2f2− f1 = 4 kHz and 2f1− f2 = 7 kHz.

rng default
fi1 = 5e3;

1 Functions

1-2648

fi2 = 6e3;
Fs = 48e3;
N = 1000;
x = sin(2*pi*fi1/Fs*(1:N))+sin(2*pi*fi2/Fs*(1:N));
y = polyval([0.5e-3 1e-7 0.1 3e-3],x)+1e-5*randn(1,N);

[myTOI,Pfund,Ffund,Pim3,Fim3] = toi(y,Fs);
myTOI,Fim3

myTOI = 1.3844

Fim3 = 1×2
103 ×

 4.0002 6.9998

Third-Order Intercept Point from Power Spectral Density

Create a two-tone sinusoid with frequencies 5 kHz and 6 kHz, sampled at 48 kHz. Make the signal
nonlinear by evaluating a polynomial. Add noise. Set the random number generator to the default
settings for reproducible results.

rng default
fi1 = 5e3;
fi2 = 6e3;
Fs = 48e3;
N = 1000;
x = sin(2*pi*fi1/Fs*(1:N))+sin(2*pi*fi2/Fs*(1:N));
y = polyval([0.5e-3 1e-7 0.1 3e-3],x)+1e-5*randn(1,N);

Evaluate the periodogram of the signal using a Kaiser window. Compute the TOI using the power
spectral density. Plot the result.

w = kaiser(numel(y),38);

[Sxx, F] = periodogram(y,w,N,Fs,'psd');
[myTOI,Pfund,Ffund,Pim3,Fim3] = toi(Sxx,F,'psd')

myTOI = 1.3843

Pfund = 1×2

 -22.9133 -22.9132

Ffund = 1×2
103 ×

 5.0000 6.0000

Pim3 = 1×2

 -71.4868 -71.5299

 toi

1-2649

Fim3 = 1×2
103 ×

 4.0002 6.9998

toi(Sxx,F,'psd');

Third-Order Intercept Point from Power Spectrum

Create a two-tone sinusoid with frequencies 5 kHz and 6 kHz, sampled at 48 kHz. Make the signal
nonlinear by evaluating a polynomial. Add noise. Set the random number generator to the default
settings for reproducible results.

rng default

fi1 = 5e3;
fi2 = 6e3;
Fs = 48e3;
N = 1000;

x = sin(2*pi*fi1/Fs*(1:N))+sin(2*pi*fi2/Fs*(1:N));
y = polyval([0.5e-3 1e-7 0.1 3e-3],x)+1e-5*randn(1,N);

1 Functions

1-2650

Evaluate the periodogram of the signal using a Kaiser window. Compute the TOI using the power
spectrum. Plot the result.

w = kaiser(numel(y),38);

[Sxx,F] = periodogram(y,w,N,Fs,'power');

toi(Sxx,F,enbw(w,Fs),'power')

ans = 1.3844

Intermodulation Distortion Products

Generate 640 samples of a two-tone sinusoid with frequencies 5 Hz and 7 Hz, sampled at 32 Hz.
Make the signal nonlinear by evaluating a polynomial. Add noise with standard deviation 0.01. Set
the random number generator to the default settings for reproducible results. Compute the third-
order intercept point. Verify that the intermodulation products occur at 2f2− f1 = 9 Hz and
2f1− f2 = 3 Hz.

rng default
x = sin(2*pi*5/32*(1:640))+cos(2*pi*7/32*(1:640));
q = x + 0.01*x.^3 + 1e-2*randn(size(x));
[myTOI,Pfund,Ffund,Pim3,Fim3] = toi(q,32)

myTOI = 17.4230

 toi

1-2651

Pfund = 1×2

 -2.8350 -2.8201

Ffund = 1×2

 5.0000 7.0001

Pim3 = 1×2

 -43.1362 -43.5211

Fim3 = 1×2

 3.0015 8.9744

TOI Plot

Generate 640 samples of a two-tone sinusoid with frequencies 5 Hz and 7 Hz, sampled at 32 Hz.
Make the signal nonlinear by evaluating a polynomial. Add noise with standard deviation 0.01. Set
the random number generator to the default settings. Plot the spectrum of the signal. Display the
fundamentals and the intermodulation products. Verify that the latter occur at 9 Hz and 3 Hz.

rng default
x = sin(2*pi*5/32*(1:640))+cos(2*pi*7/32*(1:640));
q = x + 0.01*x.^3 + 1e-2*randn(size(x));
toi(q,32)

1 Functions

1-2652

ans = 17.4230

Input Arguments
x — Real-valued sinusoidal two-tone signal
vector

Real-valued sinusoidal two-tone signal, specified as a row or column vector.
Example: polyval([0.01 0 1 0],sum(sin(2*pi*[5 7]'*(1:640)/32))) + 0.01*randn([1
640])

Data Types: double | single

fs — Sample rate
1 (default) | positive real scalar

Sample rate, specified as a positive real scalar. The sample rate is the number of samples per unit
time. If the unit of time is seconds, then the sample rate has units of hertz.
Data Types: double | single

pxx — One-sided PSD estimate
vector

One-sided power spectral density estimate, specified as a real-valued, nonnegative row or column
vector.

 toi

1-2653

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.
Example: [pxx,f] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2π Hz and the frequencies at
which it is computed.
Data Types: double | single

f — Cyclical frequencies
vector

Cyclical frequencies corresponding to the one-sided PSD estimate, pxx, specified as a row or column
vector. The first element of f must be 0.
Data Types: double | single

sxx — Power spectrum
nonnegative real-valued row or column vector

Power spectrum, specified as a real-valued nonnegative row or column vector.

The power spectrum must be expressed in linear units, not decibels. Use db2pow to convert decibel
values to power values.
Example: [sxx,w] = periodogram(cos(pi./[4;2]*(0:159))'+randn(160,2),'power')
specifies the periodogram power spectrum estimate of a two-channel sinusoid embedded in white
Gaussian noise and the normalized frequencies at which it is computed.
Data Types: double | single

rbw — Resolution bandwidth
positive scalar

Resolution bandwidth, specified as a positive scalar. The resolution bandwidth is the product of the
frequency resolution of the discrete Fourier transform and the equivalent noise bandwidth of the
window.
Data Types: double | single

Output Arguments
oip3 — Third-order intercept point
scalar

Output third-order intercept point of a sinusoidal two-tone signal, returned as a real-valued scalar
expressed in decibels. If the second primary tone is the second harmonic of the first primary tone,
then the lower intermodulation product is at zero frequency. The function returns NaN in those cases.
Data Types: double | single

fundpow — Power of fundamental sinusoids
two-element real row vector

Power contained in the two fundamental sinusoids of the input signal, returned as a real-valued two-
element row vector.
Data Types: double | single

1 Functions

1-2654

fundfreq — Frequencies of fundamental sinusoids
two-element real row vector

Frequencies of the two fundamental sinusoids of the input signal, returned as a real-valued two-
element row vector.
Data Types: double | single

imodpow — Power of intermodulation products
two-element real row vector

Power contained in the lower and upper intermodulation products of the input signal, returned as a
real-valued two-element row vector.
Data Types: double | single

imodfreq — Frequencies of intermodulation products
two-element real row vector

Frequencies of the lower and upper intermodulation products of the input signal, returned as a real-
valued two-element row vector.
Data Types: double | single

References
[1] Kundert, Kenneth S. "Accurate and Rapid Measurement of IP2 and IP3." Designer's Guide

Community. May, 2002. https://designers-guide.org/analysis/intercept-point.pdf.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

If supplied, input arguments 'power' and 'psd' must be compile-time constants.

See Also
sfdr | sinad | snr | thd

Introduced in R2013b

 toi

1-2655

https://designers-guide.org/analysis/intercept-point.pdf

triang
Triangular window

Syntax
w = triang(L)

Description
w = triang(L) returns an L-point triangular window.

Examples

Triangular Window

Create a 200-point triangular window. Display the result using wvtool.

L = 200;
w = triang(L);
wvtool(w)

1 Functions

1-2656

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

Output Arguments
w — Triangular window
column vector

Triangular window, returned as a column vector.

Algorithms
The coefficients of a triangular window are:

For L odd:

w(n) =

2n
L + 1 1 ≤ n ≤ L + 1

2

2 − 2n
L + 1

L + 1
2 + 1 ≤ n ≤ L

For L even:

w(n) =

(2n− 1)
L 1 ≤ n ≤ L

2

2 − (2n− 1)
L

L
2 + 1 ≤ n ≤ L

References
[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper

Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
flattopwin | WVTool | hamming | hann

 triang

1-2657

Introduced before R2006a

1 Functions

1-2658

tripuls
Sampled aperiodic triangle

Syntax
y = tripuls(t)
y = tripuls(t,w,s)

Description
y = tripuls(t) returns a continuous, aperiodic, symmetric, unit-height triangular pulse at the
sample times indicated in array t, centered about t = 0.

y = tripuls(t,w,s) generates a triangle of width w and skew s.

Examples

Generate and Displace Triangular Pulse

Generate 200 ms of a symmetric triangular pulse with a sample rate of 10 kHz and a width of 40 ms.

fs = 10e3;
t = -0.1:1/fs:0.1;

w = 40e-3;

x = tripuls(t,w);

Generate two variations of the same pulse:

• One displaced 45 ms into the past and skewed 45% to the left.

tpast = -45e-3;
spast = -0.45;
xpast = tripuls(t-tpast,w,spast);

• One displaced 60 ms into the future, half as wide, and skewed completely to the right.

tfutr = 60e-3;
sfutr = 1;
xfutr = tripuls(t-tfutr,w/2,sfutr);

Plot the original pulse and the two copies on the same axes.

plot(t,x,t,xpast,t,xfutr)
ylim([-0.2 1.2])

 tripuls

1-2659

Input Arguments
t — Sample times
vector

Sample times of unit triangular pulse, specified as a vector.
Data Types: single | double

w — Triangle width
1 (default) | positive number

Triangle width, specified as a positive number.
Data Types: single | double

s — Triangle skew
0 (default) | real number

Triangle skew, specified as a real number such that –1 ≤ s ≤ 1. When s is 0, the function generates a
symmetric triangular pulse.
Data Types: single | double

1 Functions

1-2660

Output Arguments
y — Triangular pulse
vector

Triangular pulse of unit amplitude, returned as a vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
chirp | cos | diric | gauspuls | pulstran | rectpuls | sawtooth | sin | square

Introduced before R2006a

 tripuls

1-2661

tsa
Time-synchronous signal average

Syntax
ta = tsa(x,fs,tp)
ta = tsa(x,t,tp)
ta = tsa(xt,tp)

ta = tsa(___ ,Name,Value)

[ta,t,p,rpm] = tsa(___)

tsa(___)

Description
ta = tsa(x,fs,tp) returns a time-synchronous average of a signal x, sampled at a rate fs, on the
pulse times specified in tp.

ta = tsa(x,t,tp) returns a time-synchronous average of x sampled at the time values stored in t.

ta = tsa(xt,tp) returns a time-synchronous average of a signal stored in the MATLAB timetable
xt.

ta = tsa(___ ,Name,Value) specifies additional options for any of the previous syntaxes using
name-value pair arguments. For example, you can specify the number of tachometer pulses per shaft
rotation or choose to average the signal in the time domain or the frequency domain.

[ta,t,p,rpm] = tsa(___) also returns t, a vector of sample times corresponding to ta; a vector
p of phase values; and rpm, the constant rotational speed (in revolutions per minute) corresponding
to ta.

tsa(___) with no output arguments plots the time-synchronous average signal and the time-domain
signals corresponding to each signal segment in the current figure.

Examples

Time-Synchronous Average of Sinusoid

Compute the time-synchronous average of a noisy sinusoid.

Generate a signal consisting of a sinusoid embedded in white Gaussian noise. The signal is sampled at
500 Hz for 20 seconds. Specify a sinusoid frequency of 10 Hz and a noise variance of 0.01. Plot one
period of the signal.

fs = 500;
t = 0:1/fs:20-1/fs;

f0 = 10;

1 Functions

1-2662

y = sin(2*pi*f0*t) + randn(size(t))/10;

plot(t,y)
xlim([0 1/f0])

Compute the time-synchronous average of the signal. For the synchronizing signal, use a set of pulses
with the same period as the sinusoid. Use tsa without output arguments to display the result.

tPulse = 0:1/f0:max(t);

tsa(y,fs,tPulse)

 tsa

1-2663

Time-Synchronous Average of Timetable

Generate a signal that consists of an exponentially damped quadratic chirp. The signal is sampled at
1 kHz for 2 seconds. The chirp has an initial frequency of 2 Hz that increases to 28 Hz after the first
second. The damping has a characteristic time of 1/2 second. Plot the signal.

fs = 1e3;
t = 0:1/fs:2;

x = exp(-2*t').*chirp(t',2,1,28,'quadratic');

plot(t,x)

1 Functions

1-2664

Create a duration array using the time vector. Construct a timetable with the duration array and the
signal. Determine the pulse times using the locations of the signal peaks. Display the time-
synchronous average.

ts = seconds(t)';
tx = timetable(ts,x);

[~,lc] = findpeaks(x,t);
tsa(tx,lc)

 tsa

1-2665

Compute the time-synchronous average. View the types of the output arguments. The sample times
are stored in a duration array.

[xta,xt,xp,xrpm] = tsa(tx,lc);
whos x*

 Name Size Bytes Class Attributes

 x 2001x1 16008 double
 xp 9x1 1135 timetable
 xrpm 1x1 8 double
 xt 9x1 74 duration
 xta 9x1 1133 timetable

Convert the duration array to a datetime vector. Construct a timetable using the datetime vector
and the signal. Compute the time-synchronous average, but now average over sets of 15 rotations.

View the types of the output arguments. The sample times are again stored in a duration array, even
though the input timetable used a datetime vector.

dtb = datetime(datevec(ts));
dtt = timetable(dtb,x);

nr = 15;
tsa(dtt,lc,'NumRotations',nr)

1 Functions

1-2666

[dta,dt,dp,drpm] = tsa(dtt,lc,'NumRotations',nr);
whos d*

 Name Size Bytes Class Attributes

 dp 135x1 3151 timetable
 drpm 1x1 8 double
 dt 135x1 1082 duration
 dta 135x1 3149 timetable
 dtb 2001x1 32016 datetime
 dtt 2001x1 49001 timetable

Fan Switchoff

Compute the time-synchronous average of the position of a fan blade as it slows down after switchoff.

A desk fan spinning at 2400 rpm is turned off. Air resistance (with a negligible contribution from
bearing friction) causes the fan rotor to stop in approximately 5 seconds. A high-speed camera
measures the x-coordinate of one of the fan blades at a rate of 1 kHz.

fs = 1000;
t = 0:1/fs:5-1/fs;

rpm0 = 2400;

 tsa

1-2667

Idealize the fan blade as a point mass circling the rotor center at a radius of 10 cm. The blade
experiences a drag force proportional to speed, resulting in the following expression for the phase
angle:

ϕ = 2πf0T 1 − e−t/T ,

where f0 is the initial frequency and T = 0 . 75 second is the decay time.

a = 0.1;
f0 = rpm0/60;
T = 0.75;

phi = 2*pi*f0*T*(1-exp(-t/T));

Compute and plot the x- and y-coordinates. Add white Gaussian noise.

x = a*cos(phi) + randn(size(phi))/200;
y = a*sin(phi) + randn(size(phi))/200;

plot(t,x,t,y)

Determine the synchronizing signal. Use the tachorpm function to find the pulse times. Limit the
search to times before 2.5 seconds. Plot the rotational speed to see its exponential decay.

[rpm,~,tp] = tachorpm(x(t<2.5),fs);
tachorpm(x(t<2.5),fs)

1 Functions

1-2668

Compute and plot the time-synchronous average signal, which corresponds to a period of a sinusoid.
Perform the averaging in the frequency domain.

clf
tsa(x,fs,tp,'Method','fft')

 tsa

1-2669

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Example: cos(pi/4*(0:159))+randn(1,160) is a single-channel, row-vector signal.
Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar.
Data Types: single | double

tp — Pulse times
scalar | vector

Pulse times, specified as a scalar or a vector.

• Scalar — a constant time interval over which rotations occur.
• Vector — nonnegative, strictly increasing instants that define constant rotational phase.

1 Functions

1-2670

Use tachorpm to extract tachometer pulse times from a tachometer signal.
Data Types: single | double

t — Sample times
vector | duration scalar | duration array

Sample times, specified as a vector, a duration scalar, or a duration array.

• Scalar — the time interval between consecutive samples of x.
• Vector or duration array — the time instant corresponding to each element of x.

Data Types: single | double | duration

xt — Input timetable
timetable

Input timetable. xt must contain increasing finite row times and only one variable consisting of a
vector.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.
Example: timetable(seconds(0:4)',randn(5,2)) specifies a two-channel, random variable
sampled at 1 Hz for 4 seconds.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Method','pchip','ResampleFactor',10 specifies that the signal is to be upsampled
by a factor of 10 and averaged in the time domain using piecewise-cubic Hermite interpolation.

Method — Averaging algorithm
'linear' (default) | 'spline' | 'pchip' | 'fft'

Interpolation scheme, specified as the comma-separated pair consisting of 'InterpMethod' and one
of these values:

• 'linear' — Perform linear interpolation and average in the time domain.
• 'spline' — Perform cubic spline interpolation and average in the time domain.
• 'pchip' — Perform piecewise-cubic Hermite interpolation and average in the time domain.
• 'fft' — Perform frequency-domain averaging.

NumRotations — Number of shaft rotations
1 (default) | positive integer scalar

Number of shaft rotations in ta, specified as the comma-separated pair consisting of
'NumRotations' and a positive integer scalar.
Data Types: single | double

 tsa

1-2671

PulsesPerRotation — Number of time instants per shaft rotation
1 (default) | positive scalar

Number of time instants per shaft rotation, specified as the comma-separated pair consisting of
'PulsesPerRotation' and a positive scalar.
Data Types: single | double

ResampleFactor — Factor by which to increase the sample rate
1 (default) | positive integer scalar

Factor by which to increase the sample rate, specified as the comma-separated pair consisting of
'ResampleFactor' and a positive integer scalar.
Data Types: single | double

Output Arguments
ta — Time-synchronous signal average
vector | timetable

Time-synchronous signal average, returned as a vector or timetable. If the input to tsa is a timetable,
then ta is also a timetable.

• If the input timetable stores the time values as a duration array, then the time values of ta are
also a duration array.

• If the input timetable stores the time values as a datetime array, then the time values of ta are a
duration array expressed in seconds.

t — Sample times
vector | duration array

Sample times, returned as a vector or duration array.

• If the input to tsa is a timetable that stores time values as a duration array, then t has the same
format as the input time values.

• If the input to tsa is a timetable that stores time values as a datetime array, then t is a
duration vector expressed in seconds.

• If the input to tsa is a numeric vector and the input sample times t are stored in a duration
scalar or a duration array, then t is a duration array with the same units as the input t.

p — Phase values
vector | timetable

Phase values, returned as a vector or timetable expressed in revolutions.

If the input to tsa is a timetable, then p is also a timetable. p has the same values as the time values
of ta.

rpm — Constant rotational speed
scalar

Constant rotational speed, returned as a scalar expressed in revolutions per minute.

1 Functions

1-2672

Algorithms
Given an input signal, a sample rate, and a set of tachometer pulses, tsa performs these steps:

1 Determines cycle start and end times based on the tachometer pulses and the value specified for
'PulsesPerRotation'.

2 Resamples the input signal based on the value specified for 'ResampleFactor'.
3 Averages the resampled signal based on the option specified for 'Method'.

• If 'Method' is set to 'fft', the function:

a Breaks the signal into segments corresponding to the different cycles.
b Computes the discrete Fourier transform of each segment.
c Truncates the longer transforms so all transforms have the same length.
d Averages the spectra.
e Computes the inverse discrete Fourier transform of the average to convert it to the time

domain.
• If 'Method' is set to one of the time-domain methods, the function:

a Using the specified method, interpolates the signal onto grids of equally spaced samples
corresponding to the different cycles.

b Concatenates the resampled signal segments based on the value specified for
'NumRotations'.

c Computes the average of all the segments.

References
[1] Bechhoefer, Eric, and Michael Kingsley. "A Review of Time-Synchronous Average Algorithms."

Proceedings of the Annual Conference of the Prognostics and Health Management Society,
San Diego, CA, September-October, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
tachorpm

Topics
“Vibration Analysis of Rotating Machinery”

Introduced in R2017b

 tsa

1-2673

tukeywin
Tukey (tapered cosine) window

Syntax
w = tukeywin(L,r)

Description
w = tukeywin(L,r) returns an L-point Tukey window with cosine fraction r.

Examples

Tukey Windows

Compute 128-point Tukey windows with five different values of r, or "tapers." Display the results
using wvtool.

L = 128;
t0 = tukeywin(L,0); % Equivalent to a rectangular window
t25 = tukeywin(L,0.25);
t5 = tukeywin(L); % r = 0.5
t75 = tukeywin(L,0.75);
t1 = tukeywin(L,1); % Equivalent to a Hann window
wvtool(t0,t25,t5,t75,t1)

1 Functions

1-2674

Input Arguments
L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

r — Cosine fraction
0.5 (default) | real scalar

Cosine fraction, specified as a real scalar. The Tukey window is a rectangular window with the first
and last r/2 percent of the samples equal to parts of a cosine. For example, setting r = 0.5
produces a Tukey window where 1/2 of the entire window length consists of segments of a phase-
shifted cosine with period 2r = 1. If you specify r ≤ 0, an L-point rectangular window is returned. If
you specify r ≥ 1, an L-point von Hann window is returned.
Data Types: single | double

Output Arguments
w — Tukey window
column vector

 tukeywin

1-2675

Tukey window, returned as a column vector.

Algorithms
The following equation defines the L-point Tukey window:

w(x) =

1
2 1 + cos(2π

r [x− r /2]) , 0 ≤ x < r
2

1, r
2 ≤ x < 1 − r

2
1
2 1 + cos(2π

r [x− 1 + r /2]) , 1 − r
2 ≤ x ≤ 1

where x is an L-point linearly spaced vector generated using linspace. The parameter r is the ratio
of cosine-tapered section length to the entire window length with 0 ≤ r ≤ 1. For example, setting
r = 0.5 produces a Tukey window where 1/2 of the entire window length consists of segments of a
phase-shifted cosine with period 2r = 1. If you specify r ≤ 0, an L-point rectangular window is
returned. If you specify r ≥ 1, an L-point von Hann window is returned.

References
[1] Bloomfield, P. Fourier Analysis of Time Series: An Introduction. New York: Wiley-Interscience,

2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Apps
Window Designer

Functions
chebwin | gausswin | kaiser | WVTool

Introduced before R2006a

1 Functions

1-2676

udecode
Decode 2n-level quantized integer inputs to floating-point outputs

Syntax
y = udecode(u,n)
y = udecode(u,n,v)
y = udecode(u,n,v,'SaturateMode')

Description
y = udecode(u,n) inverts the operation of uencode and reconstructs quantized floating-point
values from an encoded multidimensional array of integers u. The input argument n must be an
integer between 2 and 32. The integer n specifies that there are 2n quantization levels for the inputs,
so that entries in u must be either:

• Signed integers in the range [-2n/2, (2n/2) – 1]
• Unsigned integers in the range [0, 2n – 1]

Inputs can be real or complex values of any integer data type (uint8, uint16, uint32, int8,
int16, int32). Overflows (entries in u outside of the ranges specified above) are saturated to the
endpoints of the range interval. The output y has the same dimensions as u. Its entries have values in
the range [-1,1].

y = udecode(u,n,v) decodes u such that the output y has values in the range [-v,v], where the
default value for v is 1.

y = udecode(u,n,v,'SaturateMode') decodes u and treats input overflows (entries in u outside
of [-v,v]) according to 'saturatemode', which can be set to one of the following:

• 'saturate' — Saturate overflows. This is the default method for treating overflows.

• Entries in signed inputs u whose values are outside of the range [-2n/2, (2n/2) – 1] are assigned
the value determined by the closest endpoint of this interval.

• Entries in unsigned inputs u whose values are outside of the range [0, 2n-1] are assigned the
value determined by the closest endpoint of this interval.

• 'wrap' — Wrap all overflows according to the following:

• Entries in signed inputs u whose values are outside of the range [-2n/2, (2n/2) – 1] are wrapped
back into that range using modulo 2n arithmetic (calculated using u = mod(u+2^n/
2,2^n)-(2^n/2)).

• Entries in unsigned inputs u whose values are outside of the range [0, 2n – 1] are wrapped back
into the required range before decoding using modulo 2n arithmetic (calculated using
u = mod(u,2^n)).

Examples

 udecode

1-2677

Use udecode to Decode Integers

Create a vector of 8-bit signed integers. Decode with three bits.

u = int8([-1 1 2 -5]);
ysat = udecode(u,3)

ysat = 1×4

 -0.2500 0.2500 0.5000 -1.0000

Notice the last entry in u saturates to 1, the default peak input magnitude. Change the peak input
magnitude to 6.

ysatv = udecode(u,3,6)

ysatv = 1×4

 -1.5000 1.5000 3.0000 -6.0000

The last input entry still saturates. Wrap the overflows.

ywrap = udecode(u,3,6,'wrap')

ywrap = 1×4

 -1.5000 1.5000 3.0000 4.5000

Add more quantization levels.

yprec = udecode(u,5)

yprec = 1×4

 -0.0625 0.0625 0.1250 -0.3125

Algorithms
The algorithm adheres to the definition for uniform decoding specified in ITU-T Recommendation
G.701. Integer input values are uniquely mapped (decoded) from one of 2n uniformly spaced integer
values to quantized floating-point values in the range [-v,v]. The smallest integer input value
allowed is mapped to -v and the largest integer input value allowed is mapped to v. Values outside of
the allowable input range are either saturated or wrapped, according to specification.

The real and imaginary components of complex inputs are decoded independently.

References

[1] International Telecommunication Union. General Aspects of Digital Transmission Systems:
Vocabulary of Digital Transmission and Multiplexing, and Pulse Code Modulation (PCM)
Terms. ITU-T Recommendation G.701. March, 1993.

1 Functions

1-2678

See Also
uencode

Introduced before R2006a

 udecode

1-2679

uencode
Quantize and encode floating-point inputs to integer outputs

Syntax
y = uencode(u,n)
y = uencode(u,n,v)
y = uencode(u,n,v,'SignFlag')

Description
y = uencode(u,n) quantizes the entries in a multidimensional array of floating-point numbers u
and encodes them as integers using 2n-level quantization. The output y and the input u are arrays of
the same size. The elements of the output y are unsigned integers with magnitudes in the range
[0, 2n-1].

y = uencode(u,n,v) allows the input u to have entries with floating-point values in the range [-
v,v] before saturating them (the default value for v is 1).

y = uencode(u,n,v,'SignFlag') maps entries in a multidimensional array of floating-point
numbers u whose entries have values in the range [-v,v] to an integer output y. Input entries
outside this range are saturated.

Examples

Map Floating-Point Scalars to Integers

Map floating-point scalars in [-1, 1] to uint8 (unsigned) integers. Produce a staircase plot. The
horizontal axis ranges from -1 to 1 and the vertical axis from 0 to 7 (i.e., 23− 1).

u = -1:0.01:1;
y = uencode(u,3);
plot(u,y,'.')

1 Functions

1-2680

Look at saturation effects when you underspecify the peak value for the input.

u = -2:0.5:2;
y = uencode(u,5,1)

y = 1x9 uint8 row vector

 0 0 0 8 16 24 31 31 31

Specify you want signed output.

u = -2:0.5:2;
y = uencode(u,5,2,'signed')

y = 1x9 int8 row vector

 -16 -12 -8 -4 0 4 8 12 15

Input Arguments
u — Floating point input
matrix | vector

Floating point input, specified as a matrix or a vector. The input may be real or complex. Elements of
the input u outside of the range [-1,1] are treated as overflows and are saturated as:

 uencode

1-2681

• For entries in the input u that are less than -1, the value of the output of uencode is 0.
• For entries in the input u that are greater than 1, the value of the output of uencode is 2n-1.

Data Types: single | double

n — Measure of number of quantization levels
positive integer scalar

Measure of number of quantization levels, specified as a positive integer scalar. n must be an integer
between 2 and 32 (inclusive).

v — Peak value
1 (default) | positive real scalar

Peak value, specified as a positive real scalar. Elements of u outside of the range [-v,v] are treated
as overflows and are saturated:

• For input entries less than -v, the value of the output of uencode is 0.
• For input entries greater than v, the value of the output of uencode is 2n – 1.

'SignFlag' — Sign of output
'signed' | 'unsigned'

Sign of output, specified as 'signed' or 'unsigned'. The integer type of the output depends on the
number of quantization levels 2n and the value of 'SignFlag', which can be one of the following:

• 'signed': Outputs are signed integers with magnitudes in the range [-2n/2, (2n/2) – 1].
• 'unsigned' (default): Outputs are unsigned integers with magnitudes in the range [0, 2n – 1].

Output Arguments
y — Encoded integer outputs
vector | matrix

Encoded integer outputs, returned as a vector or a matrix.

Algorithms
uencode maps the floating-point input value to an integer value determined by the requirement for
2n levels of quantization. This encoding adheres to the definition for uniform encoding specified in
ITU-T Recommendation G.701. The input range [-v,v] is divided into 2n evenly spaced intervals.
Input entries in the range [-v,v] are first quantized according to this subdivision of the input range,
and then mapped to one of 2n integers. The range of the output depends on whether or not you
specify that you want signed integers.

The output data types are optimized for the number of bits as shown in the table below.

n Unsigned Integer Signed Integer
2 to 8 uint8 int8
9 to 16 uint16 int16
17 to 32 uint32 int32

1 Functions

1-2682

References
[1] International Telecommunication Union. General Aspects of Digital Transmission Systems:

Vocabulary of Digital Transmission and Multiplexing, and Pulse Code Modulation (PCM)
Terms. ITU-T Recommendation G.701. March, 1993.

See Also
udecode

Introduced before R2006a

 uencode

1-2683

unshiftdata
Inverse of shiftdata

Syntax
y = unshiftdata(x,perm,nshifts)

Description
y = unshiftdata(x,perm,nshifts) restores the orientation of data x that was shifted using the
shiftdata function with permutation perm.

Note Use the unshiftdata function in tandem with the shiftdata function. These functions are
useful for creating functions that work along a certain dimension, like filter, goertzel,
sgolayfilt, and sosfilt.

Examples

Permute Dimensions of a Magic Square

This example shifts x, a 3-by-3 magic square, permuting dimension 2 to the first column.
unshiftdata shifts x back to its original shape.

Create a 3-by-3 magic square.

x = magic(3)

x = 3×3

 8 1 6
 3 5 7
 4 9 2

Shift the matrix x to work along the second dimension. The permutation vector, perm, and the
number of shifts, nshifts, are returned along with the shifted matrix.

[x,perm,nshifts] = shiftdata(x,2)

x = 3×3

 8 3 4
 1 5 9
 6 7 2

perm = 1×2

 2 1

1 Functions

1-2684

nshifts =

 []

Shift the matrix back to its original shape.

y = unshiftdata(x,perm,nshifts)

y = 3×3

 8 1 6
 3 5 7
 4 9 2

Rearrange Array to Operate on First Nonsingleton Dimension

This example shows how shiftdata and unshiftdata work when you define dim as empty.

Define x as a row vector.

x = 1:5

x = 1×5

 1 2 3 4 5

Define dim as empty to shift the first nonsingleton dimension of x to the first column. shiftdata
returns x as a column vector, along with perm, the permutation vector, and nshifts, the number of
shifts.

[x,perm,nshifts] = shiftdata(x,[])

x = 5×1

 1
 2
 3
 4
 5

perm =

 []

nshifts = 1

Using unshiftdata, restore x to its original shape.

y = unshiftdata(x,perm,nshifts)

y = 1×5

 1 2 3 4 5

 unshiftdata

1-2685

Input Arguments
x — Data
vector | matrix

Data, specified as a vector or matrix.
Data Types: single | double

perm — Permutation
vector

Permutation, specified as a vector.
Data Types: single | double

nshifts — Number of shifts
scalar

Number of shifts, specified as a scalar. nshift is returned by the shiftdata function.
Data Types: single | double

Output Arguments
y — Restored data
vector | matrix

Restored data, returned as a vector or matrix.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
ipermute | shiftdata | shiftdim

Introduced in R2012b

1 Functions

1-2686

upfirdn
Upsample, apply FIR filter, and downsample

Syntax
yout = upfirdn(xin,h)
yout = upfirdn(xin,h,p)
yout = upfirdn(xin,h,p,q)

Description
yout = upfirdn(xin,h) filters the input signal xin using an FIR filter with impulse response h.
No upsampling or downsampling is implemented with this syntax.

yout = upfirdn(xin,h,p) specifies the integer upsampling factor p.

yout = upfirdn(xin,h,p,q) specifies the integer downsampling factor q.

Examples

Convert from DAT Rate to CD Sample Rate

Change the sample rate of a signal by a rational conversion factor from the DAT rate of 48 kHz to the
CD sample rate of 44.1 kHz. Use the rat function to find the numerator L and the denominator M of
the rational factor.

Fdat = 48e3;
Fcd = 44.1e3;
[L,M] = rat(Fcd/Fdat)

L = 147

M = 160

Generate a 1.5 kHz sinusoid sampled at fDAT for 0.25 seconds. Plot the first millisecond of the signal.

t = 0:1/Fdat:0.25-1/Fdat;
x = sin(2*pi*1.5e3*t);
stem(t,x)
xlim([0 0.001])
hold on

 upfirdn

1-2687

Design an antialiasing lowpass filter using a Kaiser window. Set the filter band edges as 90% and
110% of the cutoff frequency, fDAT/2 × min 1/L, 1/M . Specify a passband ripple of 5 dB and a
stopband attenuation of 40 dB. Set the passband gain to L.

f = (Fdat/2)*min(1/L,1/M);
d = designfilt('lowpassfir', ...
 'PassbandFrequency',0.9*f,'StopbandFrequency',1.1*f, ...
 'PassbandRipple',5,'StopbandAttenuation',40, ...
 'DesignMethod','kaiserwin','SampleRate',48e3);
h = L*tf(d);

Use upfirdn with the filter h to resample the sinusoid. Compute and compensate for the delay
introduced by the filter. Generate the corresponding resampled time vector.

y = upfirdn(x,h,L,M);

delay = floor(((filtord(d)-1)/2-(L-1))/L);
y = y(delay+1:end);
t_res = (0:(length(y)-1))/Fcd;

Overlay the resampled signal on the plot.

stem(t_res,y,'*')
legend('Original','Resampled','Location','southeast')
hold off

1 Functions

1-2688

Input Arguments
xin — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If xin is a vector, then it represents a single signal. If
xin is a matrix,then each column is filtered independently. See “Tips” on page 1-2690 for more
details.

h — Filter impulse response
vector | matrix

Filter impulse response, specified as a vector or matrix. If his a vector, then it represents one FIR
filter. If h is a matrix, then each column is a separate FIR impulse response sequence. See “Tips” on
page 1-2690 for more details.

p — Upsampling factor
1 (default) | positive integer

Upsampling factor, specified as a positive integer.

q — Downsampling factor
1 (default) | positive integer

Downsampling factor, specified as a positive integer.

 upfirdn

1-2689

Output Arguments
yout — Output signal
vector | matrix

Output signal, returned as a vector or matrix. Each column of yout has length
ceil(((length(xin)-1)*p+length(h))/q).

Note Since upfirdn performs convolution and rate changing, the yout signals have a different
length than xin. The number of rows of yout is approximately p/q times the number of rows of xin.

Tips
The valid combinations of the sizes of xin and h are:

1 xin is a vector and h is a vector.

The inputs are one filter and one signal, so the function convolves xin with h. The output signal
yout is a row vector if xin is a row vector; otherwise, yout is a column vector.

2 xin is a matrix and h is a vector.

The inputs are one filter and many signals, so the function convolves h with each column of xin.
The resulting yout is a matrix with the same number of columns as xin.

3 xin is a vector and h is a matrix.

The inputs are multiple filters and one signal, so the function convolves each column of h with
xin. The resulting yout is a matrix with the same number of columns as h.

4 xin is a matrix and h is a matrix, both with the same number of columns.

The inputs are multiple filters and multiple signals, so the function convolves corresponding
columns of xin and h. The resulting yout is a matrix with the same number of columns as xin
and h.

Algorithms
upfirdn uses a polyphase interpolation structure. The number of multiply-add operations in the
polyphase structure is approximately (LhLx – pLx)/q where Lh and Lx are the lengths of h(n) and x(n),
respectively. For long signals, this formula is often exact.

upfirdn performs a cascade of three operations:

1 Upsample the input data in the matrix xin by a factor of the integer p (inserting zeros)
2 FIR filter the upsampled signal data with the impulse response sequence given in the vector or

matrix h
3 Downsample the result by a factor of the integer q (throwing away samples)

The FIR filter is usually a lowpass filter, which you must design using another function such as firpm
or fir1.

1 Functions

1-2690

Note The function resample performs an FIR design using firls, followed by rate changing
implemented with upfirdn.

References
[1] Crochiere, R. E. "A General Program to Perform Sampling Rate Conversion of Data by Rational

Ratios." Programs for Digital Signal Processing (Digital Signal Processing Committee of the
IEEE Acoustics, Speech, and Signal Processing Society, eds.). New York: IEEE Press, 1979,
Programs 8.2-1–8.2-7.

[2] Crochiere, R. E., and Lawrence R. Rabiner. Multirate Digital Signal Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
conv | decimate | downsample | filter | interp | intfilt | resample | upsample

Introduced before R2006a

 upfirdn

1-2691

upsample
Increase sample rate by integer factor

Syntax
y = upsample(x,n)
y = upsample(x,n,phase)

Description
y = upsample(x,n) increases the sample rate of x by inserting n – 1 zeros between samples. If x is
a matrix, the function treats each column as a separate sequence.

y = upsample(x,n,phase) specifies the number of samples by which to offset the upsampled
sequence.

Examples

Increase Sample Rates

Increase the sample rate of a sequence by a factor of 3.

x = [1 2 3 4];
y = upsample(x,3)

y = 1×12

 1 0 0 2 0 0 3 0 0 4 0 0

Increase the sample rate of the sequence by a factor of 3 and add a phase offset of 2.

x = [1 2 3 4];
y = upsample(x,3,2)

y = 1×12

 0 0 1 0 0 2 0 0 3 0 0 4

Increase the sample rate of a matrix by a factor of 3.

x = [1 2;
 3 4;
 5 6];
y = upsample(x,3)

y = 9×2

 1 2
 0 0

1 Functions

1-2692

 0 0
 3 4
 0 0
 0 0
 5 6
 0 0
 0 0

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or matrix. If x is a matrix, the function treats the columns as
independent channels.
Example: cos(pi/4*(0:159)) + randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Example: cos(pi./[4;2]*(0:159))' + randn(160,2) specifies a two-channel noisy sinusoid.

n — Upsampling factor
positive integer

Upsampling factor, specified as a positive integer.
Data Types: single | double

phase — Offset
0 (default) | positive integer

Offset, specified as a positive integer from 0 to n – 1.
Data Types: single | double

Output Arguments
y — Upsampled array
vector | matrix

Upsampled array, returned as a vector or matrix. y has x × n samples.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

 upsample

1-2693

See Also
decimate | downsample | interp | interp1 | resample | spline | upfirdn

Introduced before R2006a

1 Functions

1-2694

undershoot
Undershoot metrics of bilevel waveform transitions

Syntax
us = undershoot(x)
us = undershoot(x,fs)
us = undershoot(x,t)
[us,uslev,usinst] = undershoot(___)
[___] = undershoot(___ ,Name,Value)
undershoot(___)

Description
us = undershoot(x) returns undershoot expressed as a percentage of the difference between the
state levels in the input bilevel waveform. The values in us correspond to the greatest deviations
below the final state levels of each transition.

us = undershoot(x,fs) specifies the sample rate fs in hertz.

us = undershoot(x,t) specifies the sample instants t.

[us,uslev,usinst] = undershoot(___) returns the levels uslev and sample instants usinst
of the undershoots for each transition. Specify an input combination from any of the previous
syntaxes.

[___] = undershoot(___ ,Name,Value) specifies additional options using one or more name-
value arguments.

undershoot(___) plots the bilevel waveform and marks the location of the undershoot of each
transition. The function also plots the lower and upper reference-level instants and associated
reference levels and the state levels and associated lower- and upper-state boundaries.

Examples

Undershoot Percentage in Posttransition Aberration Region

Determine the maximum percent undershoot relative to the high-state level in a 2.3 V clock
waveform.

Load the 2.3 V clock data. Determine the maximum percent undershoot of the transition. Determine
also the level and sample instant of the undershoot. In this example, the maximum undershoot in the
posttransition region occurs near index 23.

load('transitionex.mat','x')

[uu,lv,nst] = undershoot(x)

uu = 4.5012

 undershoot

1-2695

lv = 2.1826

nst = 23

Plot the waveform. Annotate the overshoot and the corresponding sample instant.

undershoot(x);

ax = gca;
ax.XTick = sort([ax.XTick nst]);

Undershoot Percentage, Levels, and Time Instant in Posttransition Aberration Region

Determine the maximum percent undershoot relative to the high-state level, the level of the
undershoot, and the sample instant in a 2.3 V clock waveform.

Load the 2.3 V clock data with sampling instants. The clock data are sampled at 4 MHz.

load('transitionex.mat','x','t')

Determine the maximum percent undershoot, the level of the undershoot in volts, and the time
instant where the maximum undershoot occurs. Plot the result.

[us,uslev,usinst] = undershoot(x,t)

us = 4.5012

1 Functions

1-2696

uslev = 2.1826

usinst = 5.5000e-06

undershoot(x,t);

Undershoot Percentage, Levels, and Time Instant in Pretransition Aberration Region

Determine the maximum percent undershoot relative to the low-state level, the level of the
undershoot, and the sample instant in a 2.3 V clock waveform. Specify the 'Region' as 'Preshoot'
to output pretransition metrics.

Load the 2.3 V clock data with sampling instants. The clock data are sampled at 4 MHz.

load('transitionex.mat','x','t')

Determine the maximum percent undershoot, the level of the undershoot in volts, and the sampling
instant where the maximum undershoot occurs. Plot the result.

[us,uslev,usinst] = undershoot(x,t,'Region','Preshoot')

us = 6.1798

uslev = -0.1500

 undershoot

1-2697

usinst = 5.0000e-06

undershoot(x,t,'Region','Preshoot');

Input Arguments
x — Bilevel waveform
real-valued vector

Bilevel waveform, specified as a real-valued row or column vector. The sample instants in X
correspond to the vector indices. The first sample instant in x corresponds to t = 0.

fs — Sample rate
real positive scalar

Sample rate in hertz, specified as a real positive scalar. The sample rate determines the sample
instants corresponding to the elements in x.

t — Sample instants
vector

Sample instants, specified as a vector. The length of t must equal the length of the input bilevel
waveform x.

1 Functions

1-2698

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Tolerance',5 computes the undershoot with a 5% tolerance region.

PercentReferenceLevels — Reference levels
[10 90] (default) | 1-by-2 real-valued vector

Reference levels as a percentage of the waveform amplitude, specified as a 1-by-2 real-valued vector.
The function defines the lower-state level to be 0 percent and the upper-state level to be 100 percent.
The first element corresponds to the lower percent reference level and the second element
corresponds to the upper percent reference level.

Region — Aberration region
'Postshoot' (default) | 'Preshoot'

Aberration region over which to compute the undershoot, specified as 'Preshoot' or 'Postshoot'.
If you specify 'Preshoot', the function defines the end of the pretransition aberration region as the
last instant when the signal exits the first state. If you specify 'Postshoot', the function defines the
start of the posttransition aberration region as the instant when the signal enters the second state. By
default, the function computes undershoots for posttransition aberration regions.

SeekFactor — Aberration region duration
3 (default) | real-valued scalar

Aberration region duration, specified as a real-valued scalar. The function computes the undershoot
over the specified duration for each transition as a multiple of the corresponding transition duration.
If the edge of the waveform is reached or a complete intervening transition is detected before the
aberration region duration elapses, the duration is truncated to the edge of the waveform or the start
of the intervening transition.

StateLevels — Low- and high-state levels
1-by-2 real-valued vector

Low- and high-state levels, specified as a 1-by-2 real-valued vector. The first element corresponds to
the low-state level and the second element corresponds to the high-state level of the input waveform.

Tolerance — Tolerance level
2 (default) | real-valued scalar

Tolerance level, specified as a real-valued scalar. The function expresses tolerance as a percentage of
the difference between the upper- and lower-state levels. The initial and final levels of each transition
must be within the respective state levels.

Output Arguments
us — Undershoots
vector

Undershoots expressed as a percentage of the state levels, returned as a vector. The length of us
corresponds to the number of transitions detected in the input signal. For more information, see
“Undershoot” on page 1-2700.

 undershoot

1-2699

uslev — Undershoot level
column vector

Undershoot level, returned as a column vector.

usinst — Sample instants
column vector

Sample instants of pretransition or posttransition undershoots, returned as a column vector. If you
specify fs or t, the undershoot instants are in seconds. If you do not specifyfs or t, the undershoot
instants are the indices of the input vector.

More About
State-Level Estimation

To determine the transitions, the undershoot function estimates the state levels of the input bilevel
waveform x by a histogram method with these steps.

1 Determine the minimum and maximum amplitudes of the data.
2 For the specified number of histogram bins, determine the bin width, which is the ratio of the

amplitude range to the number of bins.
3 Sort the data values into the histogram bins.
4 Identify the lowest and highest indexed histogram bins with nonzero counts.
5 Divide the histogram into two subhistograms.
6 Compute the state levels by determining the mode or mean of the upper and lower histograms.

The function identifies all regions that cross the upper-state boundary of the low state and the lower-
state boundary of the high state. The low-state and high-state boundaries are expressed as the state
level plus or minus a multiple of the difference between the state levels.

Undershoot

The function computes the undershoot percentages based on the greatest deviation from the final
state level in each transition.

For a positive-going (positive-polarity) pulse, the undershoot is given by

100
(S2−U)
(S2− S1)

where U is the greatest deviation below the high-state level, S2 is the high state, and S1 is the low
state.

For a negative-going (negative-polarity) pulse, the undershoot is given by

100
(S1−U)
(S2− S1)

This figure shows the calculation of undershoot for a positive-going transition.

1 Functions

1-2700

The red dashed lines indicate the estimated state levels. The double-sided black arrow depicts the
difference between the high- and low-state levels. The solid black line indicates the difference
between the high-state level and the undershoot value.

State-Level Tolerances

Each state level can have associated lower- and upper-state boundaries. These state boundaries are
defined as the state level plus or minus a scalar multiple of the difference between the high state and
the low state. To provide a useful tolerance region, the scalar is typically a small number such as
2/100 or 3/100. In general, the region for the low state is defined as

where is the low-state level and is the high-state level. Replace the first term in the equation
with to obtain the tolerance region for the high state.

This figure illustrates lower and upper 5% state boundaries (tolerance regions) for a positive-polarity
bilevel waveform. The thick dashed lines indicate the estimated state levels.

 undershoot

1-2701

References
[1] IEEE Standard 181. IEEE Standard on Transitions, Pulses, and Related Waveforms (2003): 15–17.

See Also
overshoot | settlingtime | statelevels

Introduced in R2012a

1 Functions

1-2702

vco
Voltage-controlled oscillator

Syntax
y = vco(x,fc,fs)
y = vco(x,[Fmin Fmax],fs)

Description
y = vco(x,fc,fs) creates a signal that oscillates at a frequency determined by the real input
vector or matrix x with sampling frequency fs. If x is a matrix, vco produces a matrix whose
columns oscillate according to the columns of x.

y = vco(x,[Fmin Fmax],fs) scales the frequency modulation range so that ±1 values of x yield
oscillations of Fmin Hz and Fmax Hz, respectively.

Examples

Spectrogram of Chirp Signal

Generate two seconds of a signal composed of a voltage-controlled oscillator (vco) and four Gaussian
atoms. The instantaneous frequency is modulated by a chirp function. The sample rate is 14 kHz.

fs = 14000;
t = (0:1/fs:2)';

gaussFun = @(A,x,mu,f) exp(-(x-mu).^2/(2*0.01^2)).*sin(2*pi*f.*x)*A';
s = gaussFun([1 1 1 1],t,[0.2 0.5 1 1.75],[10 60 25 5]*100)/10;
x = vco(chirp(t+.1,0,t(end),3).*exp(-2*(t-1).^2),0.2*fs,fs);

s = s/10+x;

Plot the spectrogram of the generated signal. Specify 90% overlap and moderate spectral leakage.

pspectrum(s,fs,'spectrogram','OverlapPercent',90,'Leakage',0.5)

 vco

1-2703

Spectrogram of Sawtooth Signal

Generate two seconds of a signal sampled at 10 kHz whose instantaneous frequency is a triangle
function of time.

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,0.75),[0.1 0.4]*fs,fs);

Plot the spectrogram of the generated signal. Specify the leakage as 0.80 and the overlap between
adjoining segments as 95%.

pspectrum(x,fs,'spectrogram','Leakage',0.80,'OverlapPercent',95)

1 Functions

1-2704

Input Arguments
x — Input data
real vector | real matrix

Input data, specified as a real vector or real matrix. x ranges from –1 to 1, where x = –1 corresponds
to 0 frequency output, x = 0 corresponds to fc, and x = 1 corresponds to 2*fc.

fc — Carrier frequency
fs/4 (default) | real positive scalar

Carrier or reference frequency used to modulate the input signal, specified as a real positive scalar.

Fmin, Fmax — Frequency modulation range limits
real vector

Frequency modulation range limits, specified as a real vector. For best results, Fmin and Fmax should
be in the range 0 to fs/2.

Note vco performs FM modulation using the modulate function.

fs — Sample rate
positive scalar

 vco

1-2705

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

Output Arguments
y — Output signal
real vector | real matrix

Oscillating output signal, returned as a real vector or real matrix. y is the same size as x and has
amplitude equal to 1.

See Also
demod | modulate

Introduced before R2006a

1 Functions

1-2706

vmd
Variational mode decomposition

Syntax
imf = vmd(x)
[imf,residual] = vmd(x)
[imf,residual,info] = vmd(x)

[___] = vmd(x,Name,Value)

vmd(___)

Description
imf = vmd(x) returns the variational mode decomposition of x. Use vmd to decompose and simplify
complicated signals into a finite number of intrinsic mode functions (IMFs) required to perform
Hilbert spectral analysis.

[imf,residual] = vmd(x) also returns the residual signal residual corresponding to the
variational mode decomposition of x.

[imf,residual,info] = vmd(x) returns additional information info on IMFs and the residual
signal for diagnostic purposes.

[___] = vmd(x,Name,Value) performs the variational mode decomposition with additional
options specified by one or more Name,Value pair arguments.

vmd(___) plots the original signal, IMFs, and the residual signal as subplots in the same figure.

Examples

Variational Mode Decomposition of Dial Tone Signal

Create a signal, sampled at 4 kHz, that resembles dialing all the keys of a digital telephone. Save the
signal as a MATLAB® timetable.

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

ver = [697 770 852 941];
hor = [1209 1336 1477];

tones = [];

for k = 1:length(ver)
 for l = 1:length(hor)
 tone = sum(sin(2*pi*[ver(k);hor(l)].*t))';
 tones = [tones;tone;zeros(size(tone))];
 end

 vmd

1-2707

end

% To hear, type soundsc(tones,fs)

S = timetable(tones,'SampleRate',fs);

Plot the variational mode decomposition of the timetable.

vmd(S)

VMD of Multicomponent Signal

Generate a multicomponent signal consisting of three sinusoids of frequencies 2 Hz, 10 Hz, and 30
Hz. The sinusoids are sampled at 1 kHz for 2 seconds. Embed the signal in white Gaussian noise of
variance 0.01².

fs = 1e3;
t = 1:1/fs:2-1/fs;
x = cos(2*pi*2*t) + 2*cos(2*pi*10*t) + 4*cos(2*pi*30*t) + 0.01*randn(1,length(t));

Compute the IMFs of the noisy signal and visualize them in a 3-D plot.

imf = vmd(x);
[p,q] = ndgrid(t,1:size(imf,2));
plot3(p,q,imf)

1 Functions

1-2708

grid on
xlabel('Time Values')
ylabel('Mode Number')
zlabel('Mode Amplitude')

Use the computed IMFs to plot the Hilbert spectrum of the multicomponent signal. Restrict the
frequency range to [0, 40] Hz.

hht(imf,fs,'FrequencyLimits',[0,40])

 vmd

1-2709

VMD of Piecewise Signal

Generate a piecewise composite signal consisting of a quadratic trend, a chirp, and a cosine with a
sharp transition between two constant frequencies at t = 0.5.

x t = 6t2 + cos 4πt + 10πt2 +
cos 60πt , t ≤ 0 . 5,
cos 100πt − 10π , t > 0 . 5 .

The signal is sampled at 1 kHz for 1 second. Plot each individual component and the composite
signal.

fs = 1e3;
t = 0:1/fs:1-1/fs;

x = 6*t.^2 + cos(4*pi*t+10*pi*t.^2) + ...
 [cos(60*pi*(t(t<=0.5))) cos(100*pi*(t(t>0.5)-10*pi))];

tiledlayout('flow')
nexttile
plot(t,[zeros(1,length(t)/2) cos(100*pi*(t(length(t)/2+1:end))-10*pi)])
xlabel('Time (s)')
ylabel('Cosine')

nexttile

1 Functions

1-2710

plot(t,[cos(60*pi*(t(1:length(t)/2))) zeros(1,length(t)/2)])
xlabel('Time (s)')
ylabel('Cosine')

nexttile
plot(t,cos(4*pi*t+10*pi*t.^2))
xlabel('Time (s)')
ylabel('Chirp')

nexttile
plot(t,6*t.^2)
xlabel('Time (s)')
ylabel('Quadratic trend')

nexttile(5,[1 2])
plot(t,x)
xlabel('Time (s)')
ylabel('Signal')

Perform variational mode decomposition to compute four intrinsic mode functions. The four distinct
components of the signal are recovered.

[imf,res] = vmd(x,'NumIMFs',4);

tiledlayout('flow')

for i = 1:4

 vmd

1-2711

 nexttile
 plot(t,imf(:,i))
 txt = ['IMF',num2str(i)];
 ylabel(txt)
 xlabel('Time (s)')
 grid on
end

Reconstruct the signal by adding the mode functions and the residual. Plot and compare the original
and reconstructed signals.

sig = sum(imf,2) + res;

nexttile(5,[1 2])
plot(t,sig,'LineWidth',1.5)

hold on

plot(t,x,':','LineWidth',2)
xlabel('Time (s)')
ylabel('Signal')
hold off
legend('Reconstructed signal','Original signal', ...
 'Location','northwest')

Calculate the norm of the difference between the original and the reconstructed signals.

norm(x-sig',Inf)

1 Functions

1-2712

ans = 0

Noise Removal from ECG Signal Using VMD

The signals labeled in this example are from the MIT-BIH Arrhythmia Database [3]. The signal in the
database was sampled at 360 Hz.

Load the MIT database signals corresponding to record 200 and plot the signal.

load mit200
Fs = 360;
plot(tm,ecgsig)
ylabel('Time (s)')
xlabel('Signal')

The ECG signal contains spikes driven by the rhythm of the heartbeat and an oscillating low
frequency pattern. The distinct spokes of the ECG create important higher order harmonics.

Calculate nine intrinsic mode functions of the windowed signal. Visualize the IMFs.

[imf,residual] = vmd(ecgsig,'NumIMF',9);
t = tiledlayout(3,3,'TileSpacing','compact','Padding','compact');
for n = 1:9
 ax(n) = nexttile(t);
 plot(tm,imf(:,n)')

 vmd

1-2713

 xlim([tm(1) tm(end)])
 txt = ['IMF',num2str(n)];
 title(txt)
 xlabel('Time (s)')
end
title(t,'Variational Mode Decomposition')

The first mode contains the most noise, and the second mode oscillates at the frequency of the
heartbeat. Construct a clean ECG signal by summing all but the first and last VMD modes, thus
discarding the low frequency baseline oscillation and most of the high frequency noise.

cleanECG = sum(imf(:,2:8),2);
figure
plot(tm,ecgsig,tm,cleanECG)
legend('Original ECG','Clean ECG')
ylabel('Time (s)')
xlabel('Signal')

1 Functions

1-2714

Input Arguments
x — Uniformly sampled time-domain signal
vector | timetable

Uniformly sampled time-domain signal, specified as either a vector or a timetable. If x is a timetable,
then it must contain increasing finite row times.. The timetable must contain only one numeric data
vector with finite load values.

Note If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean
Timetable with Missing, Duplicate, or Nonuniform Times”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumIMF',10

AbsoluteTolerance — Mode convergence absolute tolerance
5e-6 (default) | positive real scalar

 vmd

1-2715

Mode convergence absolute tolerance, specified as the comma-separated pair consisting of
'AbsoluteTolerance' and a positive real scalar. AbsoluteTolerance is one of the stopping
criteria for optimization, that is, optimization stops when the average squared absolute improvement
toward convergence of IMFs, in two consecutive iterations, is less than AbsoluteTolerance.

RelativeTolerance — Mode convergence relative tolerance
AbsoluteTolerance*1e3 (default) | positive real scalar

Mode convergence relative tolerance, specified as the comma-separated pair consisting of
'RelativeTolerance' and a positive real scalar. RelativeTolerance is one of the stopping
criteria for optimization, that is, optimization stops when the average relative improvement toward
convergence of IMFs, in two consecutive iterations, is less than RelativeTolerance.

Note The optimization process stops when 'AbsoluteTolerance' and 'RelativeTolerance'
are jointly satisfied.

MaxIterations — Maximum number of optimization iterations
500 (default) | positive scalar integer

Maximum number of optimization iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive scalar integer. MaxIterations is one of the stopping criteria for
optimization, that is, optimization stops when the number of iterations is greater than
MaxIterations.

MaxIterations can be specified using only positive whole numbers.

NumIMF — Number of IMFs extracted
5 (default) | positive scalar integer

Number of IMFs extracted, specified as the comma-separated pair consisting of 'NumIMF' and a
positive scalar integer.

CentralFrequencies — Initial central IMF frequencies
vector

Initial central IMF frequencies, specified as the comma-separated pair consisting of
'CentralFrequencies' and a vector of length NumIMFs. Vector values must be within [0, 0.5]
cycles/sample, which indicates that the true frequencies are within [0, fs/2], where fs is the sample
rate.

InitialIMFs — Initial IMFs
zero matrix (default) | real matrix

Initial IMFs, specified as the comma-separated pair consisting of 'InitialIMFs' and a real matrix.
The rows correspond to time samples and columns correspond to modes.

PenaltyFactor — Penalty factor
1000 (default) | positive real scalar

Penalty factor, specified as the comma-separated pair consisting of 'PenaltyFactor' and a positive
real scalar. This argument determines the reconstruction fidelity. Use smaller values of penalty factor
to obtain stricter data fidelity.

1 Functions

1-2716

InitialLM — Initial Lagrange multiplier
complex vector of zeros (default) | complex vector

Initial Lagrange multiplier, specified as the comma-separated pair consisting of 'InitialLM' and a
complex vector. The range of the initial Lagrange multiplier in the frequency domain is [0, 0.5] cycles/
sample. The multiplier enforces the reconstruction constraint. The length of the multiplier depends
on the input size.

LMUpdateRate — Update rate for Lagrange multiplier
0.01 (default) | real scalar

Update rate for the Lagrange multiplier in each iteration, specified as the comma-separated pair
consisting of 'LMUpdateRate' and a positive real scalar. A higher rate results in faster convergence,
but increases the chance of the optimization process getting stuck in a local optimum.

InitializeMethod — Method to initialize central frequencies
'peaks' (default) | 'random' | 'grid'

Method to initialize the central frequencies, specified as the comma-separated pair consisting of
'InitializeMethod' and either 'peaks', 'random', or 'grid'.

Specify InitializeMethod as:

• 'peaks' to initialize the central frequencies as the peak locations of the signal in the frequency
domain (default).

• 'random' to initialize the central frequencies as random numbers distributed uniformly in the
interval [0,0.5] cycles/sample.

• 'grid' to initialize the central frequencies as a uniformly sampled grid in the interval [0,0.5]
cycles/sample.

Display — Toggle information display in command window
false or 0 (default) | true or 1

Toggle progress display in the command window, specified as the comma-separated pair consisting of
'Display' and either 'true' (or 1) or 'false' (or 0). If you specify 'true', the function displays
the average absolute and relative improvement of modes and central frequencies every 20 iterations,
and show the final stopping information.

Specify Display as 1 to show the table or 0 to hide the table.

Output Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode functions, returned as a matrix or timetable. Each imf is an amplitude and frequency
modulated signal with positive and slowly varying envelopes. Each mode has an instantaneous
frequency that is nondecreasing, varies slowly, and is concentrated around a central value. Use imf
to apply Hilbert-Huang transform to perform spectral analysis on the signal.

imf is returned as:

• A matrix where each column is an imf, when x is a vector

 vmd

1-2717

• A timetable, when x is a single data column timetable

residual — Residual signal
column vector | single data column timetable

Residual signal, returned as a column vector or a single data column timetable. residual represents
the portion of the original signal x not decomposed by vmd.

residual is returned as:

• A column vector, when x is a vector.
• A single data column timetable, when x is a single data column timetable.

info — Additional information for diagnostics
structure

Additional information for diagnostics, returned as a structure with these fields:

• ExitFlag – Termination flag. A value of 0 indicates the algorithm stopped when it reached the
maximum number of iterations. A value of 1 indicates the algorithm stopped when it met the
absolute and relative tolerances.

• CentralFrequencies – Central frequencies of the IMFs.
• NumIterations – Total number of iterations.
• AbsoluteImprovement – Average squared absolute improvement toward convergence of the

IMFs between the final two iterations.
• RelativeImprovement – Average relative improvement toward convergence of the IMFs

between the final two iterations.
• LagrangeMultiplier – Frequency-domain Lagrange multiplier at the last iteration.

More About
Intrinsic Mode Functions

The vmd function decomposes a signal x(t) into a small number K of narrowband intrinsic mode
functions (IMFs):

x(t) = ∑
k = 1

K
uk(t) .

The IMFs have these characteristics:

1 Each mode uk is an amplitude and frequency modulated signal of the form

uk(t) = Ak(t)cos(ϕk(t)),

where ϕk(t) is the phase of the mode and Ak(t) is its envelope.
2 The modes have positive and slowly varying envelopes.
3 Each mode has an instantaneous frequency ϕ'k(t) that is nondecreasing, varies slowly, and is

concentrated around a central value fk.

1 Functions

1-2718

The variational mode decomposition method simultaneously calculates all the mode waveforms and
their central frequencies. The process consists of finding a set of uk(t) and fk(t) that minimize the
constrained variational problem.

Optimization

To calculate uk and fk, the procedure finds an optimum of the augmented Lagrangian

L(uk(t), fk, λ(t)) = α ∑
k = 1

K d
dt δ(t) + j

πt ∗ uk(t) e− j2πfkt
2

2
+ x(t) − ∑

k = 1

K
uk(t)

2

2
+ λ(t), x(t) − ∑

k = 1

K
uk(t)

(i) (ii) (iii)
,

where the inner product p(t), q(t) =∫−∞
∞

p∗(t) q(t) dt and the 2-norm p(t) 2
2 = p(t), p(t) . The

regularization term (i) includes these steps:

1 Use the Hilbert transform to calculate the analytic signal associated with each mode, where *
denotes convolution. This results in each mode having a purely positive spectrum.

2 Demodulate the analytic signal to baseband by multiplying it with a complex exponential.
3 Estimate the bandwidth by calculating the squared 2-norm of the gradient of the demodulated

analytic signal.

Terms (ii) and (iii) enforce the constraint x(t) = ∑k = 1
K uk(t) by imposing a quadratic penalty and

incorporating a Lagrange multiplier. The PenaltyFactor α measures the relative importance of (i)
compared to (ii) and (iii).

The algorithm solves the optimization problem using the alternating direction method of multipliers
described in [1].

Algorithms
The vmd function calculates the IMFs in the frequency domain, reconstructing X(f) = DFT{x(t)} in
terms of Uk(f) = DFT{uk(t)}. To remove edge effects, the algorithm extends the signal by mirroring
half its length on either side.

The Lagrange multiplier introduced in “Optimization” on page 1-2719 has the Fourier transform Ʌ(f).
The length of the Lagrange multiplier vector is the length of the extended signal.

Unless otherwise specified in 'InitialIMFs', the IMFs are initialized at zero. Initialize
'CentralFrequencies' using one of the methods specified in 'InitializeMethod'. vmd
iteratively updates the modes until one of these conditions is met:

• ∑
k

uk
n + 1(t) − uk

n(t) 2
2/ uk

n(t) 2
2 < εr and ∑

k
uk

n + 1(t) − uk
n(t) 2

2 < εa are jointly satisfied, where εr and

εa are specified using 'RelativeTolerance' and 'AbsoluteTolerance', respectively.
• The algorithm exceeds the maximum number of iterations specified in 'MaxIterations'.

For the (n + 1) -th iteration, the algorithm performs these steps:

1 Iterate over the K modes of the signal (specified using 'NumIMF') to compute:

 vmd

1-2719

a The frequency-domain waveforms for each mode using

Uk
n + 1(f) =

X(f) − ∑
i < k

Uk
n + 1(f) − ∑

i > k
Uk

n(f) + Λn
2 (f)

1 + 2α 2π(f − fk
n) 2 ,

where Uk
n + 1(f) is the Fourier transform of the kth mode calculated in the (n + 1)-th

iteration.
b The kth central frequency fk

n + 1 using

fk
n + 1 =

∫0 ∞ Uk
n + 1(f) 2 f df

∫0 ∞ Uk
n + 1(f) 2 df

≈
∑ f Uk

n + 1(f) 2

∑ Uk
n + 1(f) 2 .

2 Update the Lagrange multiplier using Λn + 1(f) = Λn(f) + τ(X(f) − ∑
k

Uk
n + 1(f)), where τ is the

update rate of the Lagrange multiplier, specified using 'LMUpdateRate'.

References
[1] Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. "Distributed

Optimization and Statistical Learning via the Alternating Direction Method of Multipliers."
Foundations and Trends® in Machine Learning. Vol 3, Number 1, 2011, pp. 1–122.

[2] Dragomiretskiy, Konstantin, and Dominique Zosso. "Variational Mode Decomposition." IEEE
Transactions on Signal Processing. Vol. 62, Number 3, 2014, pp. 531–534.

[3] Moody, George B., and Roger G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE
Engineering in Medicine and Biology Magazine. Vol. 20, No. 3, May–June 2001, pp. 45–50.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Timetables are not supported for code generation.

See Also
hht | emd

Introduced in R2020a

1 Functions

1-2720

window
Window function gateway

Syntax
window
w = window(fhandle,n)
w = window(fhandle,n,winopt)

Description
window opens the Window Designer app.

w = window(fhandle,n) returns the n-point window, specified by its function handle, fhandle, in
column vector w. Function handles are window function names preceded by an @.

@barthannwin
@bartlett
@blackman
@blackmanharris
@bohmanwin
@chebwin
@flattopwin
@gausswin
@hamming
@hann
@kaiser
@nuttallwin
@parzenwin
@rectwin
@taylorwin
@triang
@tukeywin

Note For chebwin, kaiser, and tukeywin, you must include a window parameter using the next
syntax.

For more information on each window function and its option(s), refer to its reference page.

w = window(fhandle,n,winopt) returns the window specified by its function handle, fhandle,
and its winopt value or sampling descriptor. For chebwin, kaiser, and tukeywin, you must enter a
winopt value. For the other windows listed in the following table, winopt values are optional.

Window winopt Description winopt Value
blackman window sampling 'periodic' or 'symmetric'

 window

1-2721

Window winopt Description winopt Value
chebwin sidelobe attenuation relative to

mainlobe
numeric

flattopwin window sampling 'periodic' or 'symmetric'
gausswin alpha value (reciprocal of standard

deviation)
numeric

hamming window sampling 'periodic' or 'symmetric'
hann window sampling 'periodic' or 'symmetric'
kaiser beta value numeric
taylorwin 1. number of sidelobes

2. maximum sidelobe level in dB
relative to mainlobe peak

1. integer greater than or equal to 1

2. negative value

tukeywin ratio of taper to constant sections numeric

Examples

Blackman-Harris, Hamming, and Gaussian Windows

Create Blackman Harris, Hamming, and Gaussian windows and plot them in the same WVTool.

N = 65;
w = window(@blackmanharris,N);
w1 = window(@hamming,N);
w2 = window(@gausswin,N,2.5);
wvtool(w,w1,w2)

1 Functions

1-2722

See Also
barthannwin | bartlett | blackman | blackmanharris | bohmanwin | chebwin | flattopwin |
gausswin | hamming | hann | kaiser | nuttallwin | parzenwin | rectwin | triang | taylorwin
| tukeywin

Introduced before R2006a

 window

1-2723

window (filter design method)
FIR filter using windowed impulse response

Syntax
h = window(d,'window',fcnhndl)
h = window(d,win)

Description

Note This is a description of the overloaded method used in conjunction with fdesign to design a
filter from a filter specification object. To access the window function gateway see window.

h = window(d,'window',fcnhndl) designs an FIR filter using the specifications in filter
specification object d.

fcnhndl is a handle to a filter design function that returns a window vector, such as the hamming or
blackman functions. fcnarg is an optional argument that returns a window. You pass the function to
window. Refer to example 1 in the following section to see the function argument used to design the
filter.

h = window(d,win) designs a filter using the vector you supply in win. The length of vector win
must be the same as the impulse response of the filter, which is equal to the filter order plus one.

Examples

Lowpass Filter Window Design

Construct a lowpass filter specification object of order 10 with a cutoff frequency of 12 kHz. Use a
sample rate of 48 kHz. Use a function handle to the kaiser function to provide the window.

d = fdesign.lowpass('n,fc',10,12000,48000);
Hd = window(d,'window',@kaiser);
fvtool(Hd)

1 Functions

1-2724

See Also
Apps
Filter Designer

Functions
designfilt | fdesign | filt2block

Introduced in R2009a

 window (filter design method)

1-2725

Window Designer
Design and analyze spectral windows

Description
The Window Designer app enables you to design and analyze spectral windows. Using this app, you
can:

• Display the time-domain and frequency-domain representations of one or more windows.
• Study how the behavior of a window changes as a function of its length and other parameters.
• Design windows graphically and export them to the MATLAB workspace.

1 Functions

1-2726

Open the Window Designer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter windowDesigner.

Examples

 Window Designer

1-2727

Bohman Window

Use Window Designer to specify a Bohman window of length 128 and export it to the workspace.

1 Create a Bohman window.

• From the Type list, select Bohman.
• Under Length, enter 128.
• Under Name, enter bohwin.

2 Click Apply. The Window Viewer box shows the window in the time and frequency domains.

3 Click Save to workspace. In the command line, you see this message:

1 Functions

1-2728

bohwin has been exported to the workspace.
4 Verify that the new window is present in the workspace.

whos bohwin

 Name Size Bytes Class Attributes

 bohwin 128x1 1024 double

Kaiser Windows

Use Window Designer to see how the behavior of a Kaiser window depends on the window length
and the shape parameter, β.

1 Create a Kaiser window.

• From the Type list, select Kaiser.
• Under Length, enter 20.
• Under Beta, enter 0.
• Under Name, enter kaiser0.

2 Click Apply. The Window Viewer box shows the window in the time and frequency domains.
3 Click Add a new window. Create a Kaiser window of length 20 with Beta equal to 3. Name the

window kaiser3 and click Apply.
4 Click Copy window to create a third Kaiser window, kaiser6, with Beta equal to 6. Click

Apply.
5 Under Window List select the three windows.

 Window Designer

1-2729

6 Select kaiser0 from the Name list to emphasize it in the Window Viewer plots. Set Length to
10 and Beta to 6. Click Apply.

7 Select kaiser3 from the Name list. Leave Length set to 20 and set Beta to 6. Click Apply.
8 Select kaiser6 from the Name list. Leave Beta set to 6 and set Length to 40. Click Apply.
9 Select kaiser3 from the Name list. Click the Turn Legend On button .

1 Functions

1-2730

Hamming Window Sidelobes

Use Window Designer to visualize the sidelobes of the default 64-sample Hamming window.

1 In the View menu, clear Time domain and click Analysis Parameters.
2 In the dialog box, specify these parameters:

• Under Number of points, enter 8192.
• Set Frequency Units to Hz.

 Window Designer

1-2731

• Set Sampling Frequency to 500 Hz
• Select Normalize Magnitude.

3 Click OK to close the dialog box. Click the Zoom X-Axis button . Zoom into the region
between 10 Hz and 35 Hz to view the window’s first two sidelobes in detail.

1 Functions

1-2732

• “Get Started with Window Designer”
• “Generalized Cosine Windows”
• “Kaiser Window”
• “Chebyshev Window”

See Also
Apps
Filter Designer | Signal Analyzer

 Window Designer

1-2733

Tools
WVTool

Topics
“Get Started with Window Designer”
“Generalized Cosine Windows”
“Kaiser Window”
“Chebyshev Window”

Introduced before R2006a

1 Functions

1-2734

wvd
Wigner-Ville distribution and smoothed pseudo Wigner-Ville distribution

Syntax
d = wvd(x)
d = wvd(x,fs)
d = wvd(x,ts)

d = wvd(___ ,'smoothedPseudo')
d = wvd(___ ,'smoothedPseudo',twin,fwin)
d = wvd(___ ,'smoothedPseudo',Name,Value)

d = wvd(___ ,'MinThreshold',thresh)

[d,f,t] = wvd(___)

wvd(___)

Description
d = wvd(x) returns the Wigner-Ville distribution of x.

d = wvd(x,fs) returns the Wigner-Ville distribution when x is sampled at a rate fs.

d = wvd(x,ts) returns the Wigner-Ville distribution when x is sampled with a time interval ts
between samples.

d = wvd(___ ,'smoothedPseudo') returns the smoothed pseudo Wigner-Ville distribution of x.
The function uses the length of the input signal to choose the lengths of the windows used for time
and frequency smoothing. This syntax can include any combination of input arguments from previous
syntaxes.

d = wvd(___ ,'smoothedPseudo',twin,fwin) specifies the time window, twin, and the
frequency window, fwin, used for smoothing. To use the default window for either time or frequency
smoothing, specify the corresponding argument as empty, [].

d = wvd(___ ,'smoothedPseudo',Name,Value) specifies additional options for the smoothed
pseudo Wigner-Ville distribution using name-value pair arguments. You can specify twin and fwin in
this syntax, or you can omit them.

d = wvd(___ ,'MinThreshold',thresh) sets to zero those elements of d whose amplitude is less
than thresh. This syntax applies to both the Wigner-Ville distribution and the smoothed pseudo
Wigner-Ville distribution.

[d,f,t] = wvd(___) also returns a vector of frequencies, f, and a vector of times, t, at which d is
computed.

wvd(___) with no output arguments plots the Wigner-Ville or smoothed pseudo Wigner-Ville
distribution in the current figure.

 wvd

1-2735

Examples

Wigner-Ville Distribution of Impulse and Tone

Generate a 1000-sample impulse and a 1000-sample tone with normalized frequency π/2. Compute
the Wigner-Ville distribution of the sum of the two signals.

x = zeros(1001,1);
x(500) = 10;

y = sin(pi*(0:1000)/2)';

[d,f,t] = wvd(x+y);

Plot the Wigner-Ville distribution.

imagesc(t,f,d)
axis xy
colorbar

Reproduce the result by calling wvd with no output arguments.

wvd(x+y)

1 Functions

1-2736

Wigner-Ville Distribution of Sinusoids

Generate a signal consisting of a 200 Hz sinusoid sampled at 1 kHz for 1.5 seconds.

fs = 1000;
t = (0:1/fs:1.5)';
x = cos(2*pi*t*200);

Compute the Wigner-Ville distribution of the signal.

wvd(x,fs)

 wvd

1-2737

Add to the signal a chirp whose frequency varies sinusoidally between 250 Hz and 450 Hz. Convert
the signal to a MATLAB® timetable. Compute the Wigner-Ville distribution.

x = x + vco(cos(2*pi*t),[250 450],fs);
xt = timetable(seconds(t),x);

wvd(xt)

1 Functions

1-2738

Set to zero the distribution elements with amplitude less than 0.

wvd(xt,'MinThreshold',0)

 wvd

1-2739

Wigner-Ville Distribution of Chirps

Generate a signal sampled at 1 kHz for 1 second. One component of the signal is a chirp that
increases in frequency quadratically from 100 Hz to 400 Hz during the measurement. The other
component of the signal is a chirp that decreases in frequency linearly from 350 Hz to 50 Hz in the
same lapse.

Store the signal in a timetable.

fs = 1000;
t = 0:1/fs:1;

x = chirp(t,100,1,400,'quadratic') + chirp(t,350,1,50);

Compute the Wigner-Ville distribution of the signal.

wvd(x,fs)

1 Functions

1-2740

Compute the smoothed pseudo Wigner-Ville distribution of the signal. Specify 501 frequency points
and 502 time points.

wvd(x,fs,'smoothedPseudo','NumFrequencyPoints',501,'NumTimePoints',502)

 wvd

1-2741

Increase the number of time points so the quadratic chirp becomes visible.

wvd(x,fs,'smoothedPseudo','NumFrequencyPoints',501,'NumTimePoints',522)

1 Functions

1-2742

Increase the frequency points and time points to get a sharper image.

wvd(x,fs,'smoothedPseudo','NumFrequencyPoints',1000,'NumTimePoints',1502)

 wvd

1-2743

Smoothed Pseudo Wigner-Ville Distribution of Complex Signal

Generate a two-component signal sampled at 3 kHz for 1 second. The first component is a quadratic
chirp whose frequency increases from 300 Hz to 1300 Hz during the measurement. The second
component is a chirp with sinusoidally varying frequency content. The signal is embedded in white
Gaussian noise. Express the time between consecutive samples as a duration scalar.

fs = 3000;
t = 0:1/fs:1-1/fs;
dt = seconds(t(2)-t(1));

x1 = chirp(t,300,t(end),1300,'quadratic');
x2 = exp(2j*pi*100*cos(2*pi*2*t));

x = x1 + x2 + randn(size(t))/10;

Compute and plot the smoothed pseudo Wigner Ville of the signal. Window the distribution in time
using a 601-sample Hamming window and in frequency using a 305-sample rectangular window. Use
600 frequency points for the display. Set to zero those components of the distribution with amplitude
less than −50.

wvd(x,dt,'smoothedPseudo',hamming(601),rectwin(305), ...
 'NumFrequencyPoints',600,'MinThreshold',-50)

1 Functions

1-2744

Interference Terms

Generate a signal composed of four Gaussian atoms. Each atom consists of a sinusoid modulated by a
Gaussian. The sinusoids have frequencies of 100 Hz and 400 Hz. The Gaussians are centered at 150
milliseconds and 350 milliseconds and have a variance of 0 . 012. All atoms have unit amplitude. The
signal is sampled at 1 kHz for half a second.

fs = 1000;
t = (0:1/fs:0.5)';

f1 = 100;
f2 = 400;

mu1 = 0.15;
mu2 = 0.35;

gaussFun = @(A,x,mu,f) exp(-(x-mu).^2/(2*0.01^2)).*sin(2*pi*f.*x)*A';

s = gaussFun([1 1 1 1],t,[mu1 mu1 mu2 mu2],[f1 f2 f1 f2]);

Compute and display the Wigner-Ville distribution of the signal. Interference terms, which can have
negative values, appear halfway between each pair of auto-terms.

wvd(s,fs)

 wvd

1-2745

Compute and display the smoothed pseudo Wigner-Ville distribution of the signal. Smoothing in time
and frequency attenuates the interference terms.

wvd(s,fs,'SmoothedPseudo')

1 Functions

1-2746

Input Arguments
x — Input signal
vector | timetable

Input signal, specified as a vector or a MATLAB timetable containing a single vector variable.

• If x is a timetable, then it must contain increasing finite row times.
• If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable

with Missing, Duplicate, or Nonuniform Times”.

If the input signal has odd length, the function appends a zero to make the length even.
Example: cos(pi/8*(0:159))'+randn(160,1)/10 specifies a sinusoid embedded in white noise.
Example: timetable(seconds(0:5)',rand(6,1)) specifies a random variable sampled at 1 Hz
for 5 seconds.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
2*pi (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.

 wvd

1-2747

ts — Sample time
duration scalar

Sample time, specified as a duration scalar.

twin, fwin — Time and frequency windows
vectors of odd length

Time and frequency windows used for smoothing, specified as vectors of odd length. By default, wvd
uses Kaiser windows with shape factor β = 20.

• The default length of twin is the smallest odd integer greater than or equal to
round(length(x)/10).

• The default length of fwin is the smallest odd integer greater than or equal to nf/4, where nf is
specified using NumFrequencyPoints.

Each window must have a length smaller than or equal to 2*ceil(length(x)/2).
Example: kaiser(65,0.5) specifies a 65-sample Kaiser window with a shape factor of 0.5.

thresh — Minimum nonzero value
-Inf (default) | real scalar

Minimum nonzero value, specified as a real scalar. The function sets to zero those elements of d
whose amplitudes are less than thresh.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumFrequencyPoints',201,'NumTimePoints',300 computes the Wigner-Ville
distribution at 201 frequency points and 300 time points.

NumFrequencyPoints — Number of frequency points
2*ceil(length(x)/2) (default) | integer

Number of frequency points, specified as the comma-separated pair consisting of
'NumFrequencyPoints' and an integer. This argument controls the degree of oversampling in
frequency. The number of frequency points must be at least (length(fwin)+1)/2 and cannot be
greater than the default.

NumTimePoints — Number of time points
4*ceil(length(x)/2) (default) | even integer

Number of time points, specified as the comma-separated pair consisting of 'NumTimePoints' and
an even integer. This argument controls the degree of oversampling in time [3]. The number of time
points must be at least 2*length(twin) and cannot be greater than the default.

Tip If the input signal is large, reduce the number of time points to lower the memory requirements
and speed up the computation.

1 Functions

1-2748

Output Arguments
d — Wigner-Ville distribution
matrix

Wigner-Ville distribution, returned as a matrix. Time increases across the columns of d, and
frequency increases down the rows. The matrix is of size Nf × Nt, where Nf is the length of f and Nt is
the length of t.

f — Frequencies
vector

Frequencies, returned as a vector.

• If the input has time information, then f contains frequencies expressed in Hz.
• If the input does not have time information, then f contains normalized frequencies expressed in

rad/sample.

t — Time instants
vector

Time instants, returned as a vector.

• If the input has time information, then t contains time values expressed in seconds.
• If the input does not have time information, then t contains sample numbers.

More About
Wigner-Ville Distribution

The Wigner-Ville distribution provides a high-resolution time-frequency representation of a signal.
The distribution has applications in signal visualization, detection, and estimation.

For a continuous signal x(t), the Wigner-Ville distribution is defined as

WVDx(t, f) =∫−∞
∞

x t + τ
2 x* t − τ

2 e− j2πfτ dτ .

For a discrete signal with N samples, the distribution becomes

WVDx(n, k) = ∑
m = − N

N
x(n + m/2) x*(n−m/2) e− j2πkm/N .

For odd values of m, the definition requires evaluation of the signal at half-integer sample values. It
therefore requires interpolation, which makes it necessary to zero-pad the discrete Fourier transform
to avoid aliasing.

The Wigner-Ville distribution contains interference terms that often complicate its interpretation. To
sharpen the distribution, one can filter the definition with lowpass windows. The smoothed pseudo
Wigner-Ville distribution uses independent windows to smooth in time and frequency:

SPWVDx
g, H(t, f) =∫−∞

∞
g(t) H(f) x t + τ

2 x* t − τ
2 e− j2πfτ dτ .

 wvd

1-2749

References
[1] Cohen, Leon. Time-Frequency Analysis: Theory and Applications. Englewood Cliffs, NJ: Prentice-

Hall, 1995.

[2] Mallat, Stéphane. A Wavelet Tour of Signal Processing. Second Edition. San Diego, CA: Academic
Press, 1999.

[3] O'Toole, John M., and Boualem Boashash. "Fast and Memory-Efficient algorithms for Computing
Quadratic Time-Frequency Distributions." Applied and Computational Harmonic Analysis. Vol.
35, Number 2, 2013, pp. 350–358.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name-value pairs must be compile-time constants.
• Timetables are not supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
fsst | pspectrum | spectrogram | xwvd

Topics
“Time-Frequency Gallery”

Introduced in R2018b

1 Functions

1-2750

WVTool
Open Window Visualization Tool

Description
Window Visualization Tool is an interactive tool that enables you to visualize time and frequency
domain plots of the window vector. You can generate window vectors for a number of common
window functions using the Signal Processing Toolbox software. See window for a list of supported
window functions.

Note A related tool, Window Designer, is available for designing and analyzing windows.

Open the WVTool
WVTool can be opened programmatically using one of the methods described in “Programmatic Use”
on page 1-2753.

 WVTool

1-2751

Examples

Display and Compare Windows

Use wvtool to display and compare 64-point Hamming, Hann, and Gaussian windows.

wvtool(hamming(64),hann(64),gausswin(64))

Compare 128-point Kaiser windows with different values of β.

wvtool(kaiser(128,1.5),kaiser(128,4.5))

1 Functions

1-2752

Programmatic Use
wvtool(WindowVector) opens the Window Visualization Tool (WVTool) with time and frequency
domain plots of the window vector specified in WindowVector. WindowVector must be a real-valued
row or column vector. By default, the frequency domain plot is the magnitude squared of the Fourier
transform of the window vector in decibels (dB). You can generate window vectors for a number of
common window functions using the Signal Processing Toolbox software. See window for a list of
supported window functions.

wvtool(WindowVector1,...,WindowVectorN) opens WVTool with time and frequency domain
plots of the window vectors specified in WindowVector1, …, WindowVectorN.

H = wvtool(...) returns the figure handle, H.

More About

Note If you launch WVTool from Filter Designer, an Add/Replace icon, which controls how new
windows are added from Filter Designer, appears on the toolbar.

 WVTool

1-2753

WVTool Menus

In addition to the usual menu items, wvtool contains these wvtool-specific menu commands:

File menu:

• Export — Exports the displayed plot(s) to a graphic file.

Edit menu:

• Copy figure — Copies the displayed plot(s) to the clipboard (available only on Windows
platforms).

• Copy options — Displays the Preferences dialog box (available only on Windows platforms).
• Figure, Axes, and Current Object Properties — Displays the Property Editor.

View menu:

• Time domain — Check to show the time domain plot.
• Frequency domain — Check to show the frequency domain plot.
• Legend — Toggles the window name legend on and off. This option is also available with the

Legend toolbar button.
• Analysis Parameters — Controls the response plot parameters, including number of points, range,

x- and y-axis units, sampling frequency, and normalized magnitude.

You can also access the Analysis Parameters by right-clicking the x-axis label of a plot in the
Window Viewer panel.

• Insert menu:

You use the Insert menu to add labels, titles, arrows, lines, text, and axes to your plots.

Tools menu:

• Edit Plot — Turns on plot editing mode
• Zoom In — Zooms in along both x- and y-axes.
• Zoom X — Zooms in along the x-axis only. Drag the mouse in the x direction to select the zoom

area.
• Zoom Y — Zooms in along the y-axis only. Drag the mouse in the y direction to select the zoom

area.
• Full View — Returns to full view.

See Also
Apps
Filter Designer | Window Designer

Introduced before R2006a

1 Functions

1-2754

xcorr2
2-D cross-correlation

Syntax
c = xcorr2(a,b)
c = xcorr2(a)

Description
c = xcorr2(a,b) returns the cross-correlation of matrices a and b with no scaling. xcorr2 is the
two-dimensional version of xcorr.

c = xcorr2(a) is the autocorrelation matrix of input matrix a. This syntax is equivalent to
xcorr2(a,a).

Examples

Output Matrix Size and Element Computation

Create two matrices, M1 and M2.

M1 = [17 24 1 8 15;
 23 5 7 14 16;
 4 6 13 20 22;
 10 12 19 21 3;
 11 18 25 2 9];

M2 = [8 1 6;
 3 5 7;
 4 9 2];

M1 is 5-by-5 and M2 is 3-by-3, so their cross-correlation has size (5+3-1)-by-(5+3-1), or 7-by-7. In
terms of lags, the resulting matrix is

C =

c−2, − 2 c−2, − 1 c−2, 0 c−2, 1 c−2, 2 c−2, 3 c−2, 4
c−1, − 2 c−1, − 1 c−1, 0 c−1, 1 c−1, 2 c−1, 3 c−1, 4
c0, − 2 c0, − 1 c0, 0 c0, 1 c0, 2 c0, 3 c0, 4
c1, − 2 c1, − 1 c1, 0 c1, 1 c1, 2 c1, 3 c1, 4
c2, − 2 c2, − 1 c2, 0 c2, 1 c2, 2 c2, 3 c2, 4
c3, − 2 c3, − 1 c3, 0 c3, 1 c3, 2 c3, 3 c3, 4
c4, − 2 c4, − 1 c4, 0 c4, 1 c4, 2 c4, 3 c4, 4

.

As an example, compute the element c0, 2 (or C(3,5) in MATLAB®, since M2 is 3-by-3). Line up the
two matrices so their (1,1) elements coincide. This placement corresponds to c0, 0. To find c0, 2, slide
M2 two rows to the right.

 xcorr2

1-2755

Now M2 is on top of the matrix M1(1:3,3:5). Compute the element-by-element products and sum
them. The answer should be

1 × 8 + 7 × 3 + 13 × 4 + 8 × 1 + 14 × 5 + 20 × 9 + 15 × 6 + 16 × 7 + 22 × 2 = 585 .

[r2,c2] = size(M2);

CC = sum(sum(M1(0+(1:r2),2+(1:c2)).*M2))

CC = 585

Verify the result using xcorr2.

D = xcorr2(M1,M2);

DD = D(0+r2,2+c2)

DD = 585

Two-Dimensional Cross-Correlation of Arbitrary Complex Matrices

Given a matrix X of size M × N and a matrix ℋ of size P × Q, their two-dimensional cross-correlation,
C = X⋆ℋ , is a matrix of size (M + P − 1) × (N + Q− 1) with elements

1 Functions

1-2756

C(k, l) = Tr X∼ℋ∼ kl
† 1 ≤ k ≤ M + P − 1,

1 ≤ l ≤ N + Q− 1 .

Tr is the trace and the dagger denotes Hermitian conjugation. The matrices X∼ and ℋ∼ kl have size
(M + 2(P − 1)) × (N + 2(Q− 1)) and nonzero elements given by

X～(m, n) = X(m− P + 1, n− Q + 1),
P ≤ m ≤ M + P − 1,
Q ≤ n ≤ N + Q− 1

and

ℋ～kl(p, q) = ℋ (p− k + 1, q− l + 1),
k ≤ p ≤ P + k− 1,
l ≤ q ≤ Q + l− 1 .

Calling xcorr2 is equivalent to this procedure for general complex matrices of arbitrary size.

Create two complex matrices, X of size 7 × 22 and ℋ of size 6 × 17.

X = randn([7 22])+1j*randn([7 22]);
H = randn([6 17])+1j*randn([6 17]);

[M,N] = size(X);
m = 1:M;
n = 1:N;

[P,Q] = size(H);
p = 1:P;
q = 1:Q;

Initialize X∼ and C.

Xt = zeros([M+2*(P-1) N+2*(Q-1)]);
Xt(m+P-1,n+Q-1) = X;
C = zeros([M+P-1 N+Q-1]);

Compute the elements of C by looping over k and l. Reset ℋ∼ kl to zero at each step. Save time and
memory by summing element products instead of multiplying and taking the trace.

for k = 1:M+P-1
 for l = 1:N+Q-1
 Hkl = zeros([M+2*(P-1) N+2*(Q-1)]);
 Hkl(p+k-1,q+l-1) = H;
 C(k,l) = sum(sum(Xt.*conj(Hkl)));
 end
end

max(max(abs(C-xcorr2(X,H))))

ans = 1.5139e-14

The answer coincides to machine precision with the output of xcorr2.

 xcorr2

1-2757

Align Two Images Using Cross-Correlation

Use cross-correlation to find where a section of an image fits in the whole. Cross-correlation enables
you to find the regions in which two signals most resemble each other. For two-dimensional signals,
like images, use xcorr2.

Load a black-and-white test image into the workspace. Display it with imagesc.

load durer
img = X;
White = max(max(img));

imagesc(img)
axis image off
colormap gray
title('Original')

Select a rectangular section of the image. Display the larger image with the section missing.

x = 435;
X = 535;
szx = x:X;

y = 62;
Y = 182;
szy = y:Y;

1 Functions

1-2758

Sect = img(szx,szy);

kimg = img;
kimg(szx,szy) = White;

kumg = White*ones(size(img));
kumg(szx,szy) = Sect;

subplot(1,2,1)
imagesc(kimg)
axis image off
colormap gray
title('Image')

subplot(1,2,2)
imagesc(kumg)
axis image off
colormap gray
title('Section')

Use xcorr2 to find where the small image fits in the larger image. Subtract the mean value so that
there are roughly equal numbers of negative and positive values.

nimg = img-mean(mean(img));
nSec = nimg(szx,szy);

crr = xcorr2(nimg,nSec);

 xcorr2

1-2759

The maximum of the cross-correlation corresponds to the estimated location of the lower-right corner
of the section. Use ind2sub to convert the one-dimensional location of the maximum to two-
dimensional coordinates.

[ssr,snd] = max(crr(:));
[ij,ji] = ind2sub(size(crr),snd);

figure
plot(crr(:))
title('Cross-Correlation')
hold on
plot(snd,ssr,'or')
hold off
text(snd*1.05,ssr,'Maximum')

Place the smaller image inside the larger image. Rotate the smaller image to comply with the
convention that MATLAB® uses to display images. Draw a rectangle around it.

img(ij:-1:ij-size(Sect,1)+1,ji:-1:ji-size(Sect,2)+1) = rot90(Sect,2);

imagesc(img)
axis image off
colormap gray
title('Reconstructed')
hold on
plot([y y Y Y y],[x X X x x],'r')
hold off

1 Functions

1-2760

Recovery of Template Shift with Cross-Correlation

Shift a template by a known amount and recover the shift using cross-correlation.

Create a template in an 11-by-11 matrix. Create a 22-by-22 matrix and shift the original template by 8
along the row dimension and 6 along the column dimension.

template = 0.2*ones(11);
template(6,3:9) = 0.6;
template(3:9,6) = 0.6;
offsetTemplate = 0.2*ones(22);
offset = [8 6];
offsetTemplate((1:size(template,1))+offset(1), ...
 (1:size(template,2))+offset(2)) = template;

Plot the original and shifted templates.

imagesc(offsetTemplate)
colormap gray
hold on
imagesc(template)
axis equal

 xcorr2

1-2761

Cross-correlate the two matrices and find the maximum absolute value of the cross-correlation. Use
the position of the maximum absolute value to determine the shift in the template. Check the result
against the known shift.

cc = xcorr2(offsetTemplate,template);
[max_cc, imax] = max(abs(cc(:)));
[ypeak, xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [(ypeak-size(template,1)) (xpeak-size(template,2))];

isequal(corr_offset,offset)

ans = logical
 1

The shift obtained from the cross-correlation equals the known template shift in the row and column
dimensions.

GPU Acceleration for Cross-Correlation Matrix Computation

This example requires Parallel Computing Toolbox™ software. Refer to “GPU Support by Release”
(Parallel Computing Toolbox) to see what GPUs are supported.

Shift a template by a known amount and recover the shift using cross-correlation.

1 Functions

1-2762

Create a template in an 11-by-11 matrix. Create a 22-by-22 matrix and shift the original template by 8
along the row dimension and 6 along the column dimension.

template = 0.2*ones(11);
template(6,3:9) = 0.6;
template(3:9,6) = 0.6;
offsetTemplate = 0.2*ones(22);
offset = [8 6];
offsetTemplate((1:size(template,1))+offset(1), ...
 (1:size(template,2))+offset(2)) = template;

Put the original and shifted template matrices on your GPU using gpuArray objects.

template = gpuArray(template);
offsetTemplate = gpuArray(offsetTemplate);

Compute the cross-correlation on the GPU.

cc = xcorr2(offsetTemplate,template);

Return the result to the MATLAB® workspace using gather. Use the maximum absolute value of the
cross-correlation to determine the shift, and compare the result with the known shift.

cc = gather(cc);
[max_cc,imax] = max(abs(cc(:)));
[ypeak,xpeak] = ind2sub(size(cc),imax(1));
corr_offset = [(ypeak-size(template,1)) (xpeak-size(template,2))];
isequal(corr_offset,offset)

ans = logical
 1

Input Arguments
a, b — Input arrays
matrices | gpuArray objects

Input arrays, specified as matrices or gpuArray objects.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on using xcorr2 with gpuArray objects.
Example: sin(2*pi*(0:9)'/10)*sin(2*pi*(0:13)/20) specifies a two-dimensional sinusoidal
surface.
Example: gpuArray(sin(2*pi*(0:9)'/10)*sin(2*pi*(0:13)/20)) specifies a two-
dimensional sinusoidal surface as a gpuArray object.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
c — 2-D cross-correlation or autocorrelation matrix
matrix | gpuArray object

 xcorr2

1-2763

2-D cross-correlation or autocorrelation matrix, returned as a matrix or a gpuArray object.

More About
2-D Cross-Correlation

The 2-D cross-correlation of an M-by-N matrix, X, and a P-by-Q matrix, H, is a matrix, C, of size M+P–
1 by N+Q–1. Its elements are given by

C(k, l) = ∑
m = 0

M − 1
∑

n = 0

N − 1
X(m, n) H(m− k, n− l),

−(P − 1) ≤ k ≤ M − 1,
−(Q− 1) ≤ l ≤ N − 1,

where the bar over H denotes complex conjugation.

The output matrix, C(k,l), has negative and positive row and column indices.

• A negative row index corresponds to an upward shift of the rows of H.
• A negative column index corresponds to a leftward shift of the columns of H.
• A positive row index corresponds to a downward shift of the rows of H.
• A positive column index corresponds to a rightward shift of the columns of H.

To cast the indices in MATLAB form, add the size of H: the element C(k,l) corresponds to C(k+P,l
+Q) in the workspace.

For example, consider this 2-D cross-correlation:

X = ones(2,3);
H = [1 2; 3 4; 5 6]; % H is 3 by 2
C = xcorr2(X,H)

C =
 6 11 11 5
 10 18 18 8
 6 10 10 4
 2 3 3 1

The C(1,1) element in the output corresponds to C(1–3,1–2) = C(–2,–1) in the defining equation,
which uses zero-based indexing. To compute the C(1,1) element, shift H two rows up and one
column to the left. Accordingly, the only product in the cross-correlation sum is X(1,1)*H(3,2) =
6. Using the defining equation, you obtain

C(− 2, − 1) = ∑
m = 0

1
∑

n = 0

2
X(m, n) H(m + 2, n + 1) = X(0, 0) H(2, 1) = 1 × 6 = 6,

with all other terms in the double sum equal to zero.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

1 Functions

1-2764

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
conv2 | filter2 | xcorr

Introduced before R2006a

 xcorr2

1-2765

xspectrogram
Cross-spectrogram using short-time Fourier transforms

Syntax
s = xspectrogram(x,y)
s = xspectrogram(x,y,window)
s = xspectrogram(x,y,window,noverlap)
s = xspectrogram(x,y,window,noverlap,nfft)

[s,w,t] = xspectrogram(___)
[s,f,t] = xspectrogram(___ ,fs)

[s,w,t] = xspectrogram(x,y,window,noverlap,w)
[s,f,t] = xspectrogram(x,y,window,noverlap,f,fs)

[___ ,c] = xspectrogram(___)

[___] = xspectrogram(___ ,freqrange)
[___] = xspectrogram(___ ,Name,Value)

[___] = xspectrogram(___ ,spectrumtype)

xspectrogram(___)
xspectrogram(___ ,freqloc)

Description
s = xspectrogram(x,y) returns the cross-spectrogram of the signals specified by x and y. The
input signals must be vectors with the same number of elements. Each column of s contains an
estimate of the short-term, time localized frequency content common to x and y.

s = xspectrogram(x,y,window) uses window to divide x and y into segments and perform
windowing.

s = xspectrogram(x,y,window,noverlap) uses noverlap samples of overlap between
adjoining segments.

s = xspectrogram(x,y,window,noverlap,nfft) uses nfft sampling points to calculate the
discrete Fourier transform.

[s,w,t] = xspectrogram(___) returns a vector of normalized frequencies, w, and a vector of
time instants, t, at which the cross-spectrogram is computed. This syntax can include any
combination of input arguments from previous syntaxes.

[s,f,t] = xspectrogram(___ ,fs) returns a vector of frequencies, f, expressed in terms of fs,
the sample rate. fs must be the sixth input to xspectrogram. To input a sample rate and still use
the default values of the preceding optional arguments, specify these arguments as empty, [].

[s,w,t] = xspectrogram(x,y,window,noverlap,w) returns the cross-spectrogram at the
normalized frequencies specified in w.

1 Functions

1-2766

[s,f,t] = xspectrogram(x,y,window,noverlap,f,fs) returns the cross-spectrogram at the
frequencies specified in f.

[___ ,c] = xspectrogram(___) also returns a matrix, c, containing an estimate of the time-
varying complex cross-spectrum of the input signals. The cross-spectrogram, s, is the magnitude of c.

[___] = xspectrogram(___ ,freqrange) returns the cross-spectrogram over the frequency
range specified by freqrange. Valid options for freqrange are 'onesided', 'twosided', and
'centered'.

[___] = xspectrogram(___ ,Name,Value) specifies additional options using name-value
arguments. Options include the minimum threshold and output time dimension.

[___] = xspectrogram(___ ,spectrumtype) returns short-term cross power spectral density
estimates if spectrumtype is specified as 'psd' and returns short-term cross power spectrum
estimates if spectrumtype is specified as 'power'.

xspectrogram(___) with no output arguments plots the cross-spectrogram in the current figure
window.

xspectrogram(___ ,freqloc) specifies the axis on which to plot the frequency. Specify freqloc
as either 'xaxis' or 'yaxis'.

Examples

Cross-Spectrogram of Linear Chirps

Generate two linear chirps sampled at 1 MHz for 10 milliseconds.

• The first chirp has an initial frequency of 150 kHz that increases to 350 kHz by the end of the
measurement.

• The second chirp has an initial frequency of 200 kHz that increases to 300 kHz by the end of the
measurement.

Add white Gaussian noise such that the signal-to-noise ratio is 40 dB.

nSamp = 10000;
Fs = 1000e3;
SNR = 40;
t = (0:nSamp-1)'/Fs;

x1 = chirp(t,150e3,t(end),350e3);
x1 = x1+randn(size(x1))*std(x1)/db2mag(SNR);

x2 = chirp(t,200e3,t(end),300e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

Compute and plot the cross-spectrogram of the two chirps. Divide the signals into 200-sample
segments and window each segment with a Hamming window. Specify 80 samples of overlap between
adjoining segments and a DFT length of 1024 samples.

xspectrogram(x1,x2,hamming(200),80,1024,Fs,'yaxis')

 xspectrogram

1-2767

Modify the second chirp so that the frequency rises from 50 kHz to 350 kHz during the measurement.
Use a 500-sample Kaiser window with shape factor β = 5 to window the segments. Specify 450
samples of overlap and a DFT length of 256. Compute and plot the cross-spectrogram.

x2 = chirp(t,50e3,t(end),350e3);
x2 = x2+randn(size(x2))*std(x2)/db2mag(SNR);

xspectrogram(x1,x2,kaiser(500,5),450,256,Fs,'yaxis')

1 Functions

1-2768

In both cases, the function highlights the frequency content that the two signals have in common.

Cross-Spectrogram of Speech Signals

Load a file containing two speech signals sampled at 44,100 Hz.

• The first signal is a recording of a female voice saying "transform function."
• The second signal is a recording of the same female voice saying "reform justice."

Plot the two signals. Offset the second signal vertically so both are visible.

load('voice.mat')

% To hear, type soundsc(transform,fs),pause(2),soundsc(reform,fs)

t = (0:length(reform)-1)/fs;

plot(t,transform,t,reform+0.3)
legend('"Transform function"','"Reform justice"')

 xspectrogram

1-2769

Compute the cross-spectrogram of the two signals. Divide the signals into 1000-sample segments and
window them with a Hamming window. Specify 800 samples of overlap between adjoining segments.
Include only frequencies up to 4 kHz.

nwin = 1000;
nvlp = 800;
fint = 0:4000;

[s,f,t] = xspectrogram(transform,reform,hamming(nwin),nvlp,fint,fs);

mesh(t,f,20*log10(s))
view(2)
axis tight

1 Functions

1-2770

The cross-spectrogram highlights the time intervals where the signals have more frequency content
in common. The syllable "form" is particularly noticeable.

Phase Shift Between Two Quadratic Chirps

Generate two quadratic chirps, each sampled at 1 kHz for 2 seconds. Both chirps have an initial
frequency of 100 Hz that increases to 200 Hz midway through the measurement. The second chirp
has a phase difference of 23° compared to the first.

fs = 1e3;
t = 0:1/fs:2;

y1 = chirp(t,100,1,200,'quadratic',0);
y2 = chirp(t,100,1,200,'quadratic',23);

Compute the complex cross-spectrogram of the chirps to extract the phase shift between them.
Divide the signals into 128-sample segments. Specify 120 samples of overlap between adjoining
segments. Window each segment using a Kaiser window with shape factor β = 18 and specify a DFT
length of 128 samples. Use the plotting functionality of xspectrogram to display the cross-
spectrogram.

[~,f,xt,c] = xspectrogram(y1,y2,kaiser(128,18),120,128,fs);

xspectrogram(y1,y2,kaiser(128,18),120,128,fs,'yaxis')

 xspectrogram

1-2771

Extract and display the maximum-energy time-frequency ridge of the cross-spectrogram.

[tfr,~,lridge] = tfridge(c,f);

hold on
plot(xt,tfr,'k','linewidth',2)
hold off

1 Functions

1-2772

The phase shift is the ratio of imaginary part to real part of the time-varying cross-spectrum along the
ridge. Compute the phase shift and express it in degrees. Display its mean value.

pshft = angle(c(lridge))*180/pi;

mean(pshft)

ans = -23.0000

Cross-Spectrogram of Complex Signals

Generate two signals, each sampled at 3 kHz for 1 second. The first signal is a quadratic chirp whose
frequency increases from 300 Hz to 1300 Hz during the measurement. The chirp is embedded in
white Gaussian noise. The second signal, also embedded in white noise, is a chirp with sinusoidally
varying frequency content.

fs = 3000;
t = 0:1/fs:1-1/fs;

x1 = chirp(t,300,t(end),1300,'quadratic')+randn(size(t))/100;

x2 = exp(2j*pi*100*cos(2*pi*2*t))+randn(size(t))/100;

Compute and plot the cross-spectrogram of the two signals. Divide the signals into 256-sample
segments with 255 samples of overlap between adjoining segments. Use a Kaiser window with shape

 xspectrogram

1-2773

factor β = 30 to window the segments. Use the default number of DFT points. Center the cross-
spectrogram at zero frequency.

nwin = 256;

xspectrogram(x1,x2,kaiser(nwin,30),nwin-1,[],fs,'centered','yaxis')

Compute the power spectrum instead of the power spectral density. Set to zero the values smaller
than –40 dB. Center the plot at the Nyquist frequency.

xspectrogram(x1,x2,kaiser(nwin,30),nwin-1,[],fs, ...
 'power','MinThreshold',-40,'yaxis')
title('Cross-Spectrogram of Quadratic Chirp and Complex Chirp')

1 Functions

1-2774

The thresholding further highlights the regions of common frequency.

Cross-Spectrogram of Two Sequences

Compute and plot the cross-spectrogram of two sequences.

Specify each sequence to be 4096 samples long.

N = 4096;

To create the first sequence, generate a convex quadratic chirp embedded in white Gaussian noise
and bandpass filter it.

• The chirp has an initial normalized frequency of 0.1π that increases to 0.8π by the end of the
measurement.

• The 16th-order filter passes normalized frequencies between 0.2π and 0.4π rad/sample and has a
stopband attenuation of 60 dB.

rx = chirp(0:N-1,0.1/2,N,0.8/2,'quadratic',[],'convex')'+randn(N,1)/100;
dx = designfilt('bandpassiir','FilterOrder',16, ...
 'StopbandFrequency1',0.2,'StopbandFrequency2',0.4, ...
 'StopbandAttenuation',60);
x = filter(dx,rx);

 xspectrogram

1-2775

To create the second sequence, generate a linear chirp embedded in white Gaussian noise and
bandstop filter it.

• The chirp has an initial normalized frequency of 0.9π that decreases to 0.1π by the end of the
measurement.

• The 16th-order filter stops normalized frequencies between 0.6π and 0.8π rad/sample and has a
passband ripple of 1 dB.

ry = chirp(0:N-1,0.9/2,N,0.1/2)'+randn(N,1)/100;
dy = designfilt('bandstopiir','FilterOrder',16, ...
 'PassbandFrequency1',0.6,'PassbandFrequency2',0.8, ...
 'PassbandRipple',1);
y = filter(dy,ry);

Plot the two sequences. Offset the second sequence vertically so both are visible.

plot([x y+2])

Compute and plot the cross-spectrogram of x and y. Use a 512-sample Hamming window. Specify 500
samples of overlap between adjoining segments and 2048 DFT points.

xspectrogram(x,y,hamming(512),500,2048,'yaxis')

1 Functions

1-2776

Set to zero the cross-spectrogram values smaller than –50 dB.

xspectrogram(x,y,hamming(512),500,2048,'MinThreshold',-50,'yaxis')

 xspectrogram

1-2777

The spectrogram shows the frequency regions that are enhanced or suppressed by the filters.

Input Arguments
x, y — Input signals
vectors

Input signals, specified as vectors.
Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.
Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | []

Window, specified as an integer or as a row or column vector. Use window to divide the signals into
segments.

• If window is an integer, then xspectrogram divides x and y into segments of length window and
windows each segment with a Hamming window of that length.

• If window is a vector, then xspectrogram divides x and y into segments of the same length as
the vector and windows each segment using window.

1 Functions

1-2778

If the input signals cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then they are truncated accordingly.

If you specify window as empty, then xspectrogram uses a Hamming window such that x and y are
divided into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.
Example: hann(N+1) and (1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window of length N +
1.
Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

• If window is scalar, then noverlap must be smaller than window.
• If window is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then xspectrogram uses a number that produces 50% overlap
between segments. If the segment length is unspecified, the function sets noverlap to ⌊N/4.5⌋,
where N is the length of the input signals.
Data Types: double | single

nfft — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer scalar. If you specify nfft as empty, then
xspectrogram sets the DFT length to max(256,2p), where p = ⌈log2 Nw⌉ and

• Nw = window if window is a scalar.
• Nw = length(window) if window is a vector.

Data Types: single | double

w — Normalized frequencies
vector

Normalized frequencies, specified as a vector. w must have at least two elements. Normalized
frequencies are in rad/sample.
Example: pi./[2 4]
Data Types: double | single

f — Frequencies
vector

Frequencies, specified as a vector. f must have at least two elements. The units of f are specified by
the sample rate, fs.
Data Types: double | single

fs — Sample rate
1 Hz (default) | positive scalar

 xspectrogram

1-2779

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate is in Hz.
Data Types: double | single

freqrange — Frequency range for cross-spectrum estimate
'onesided' | 'twosided' | 'centered'

Frequency range for the cross-spectrum estimate, specified as 'onesided', 'twosided', or
'centered'. For real-valued signals, the default is 'onesided'. For complex-valued signals, the
default is 'twosided', and specifying 'onesided' results in an error.

• 'onesided' — Returns the one-sided cross-spectrogram of a real input signal. If nfft is even,
then s has nfft/2 + 1 rows and is computed over the interval [0, π] rad/sample. If nfft is odd,
then s has (nfft + 1)/2 rows and the interval is [0, π) rad/sample. If you specify fs, then the
intervals are respectively [0, fs/2] cycles/unit time and [0, fs/2) cycles/unit time.

• 'twosided' — Returns the two-sided cross-spectrogram of a real or complex signal. s has nfft
rows and is computed over the interval [0, 2π) rad/sample. If you specify fs, then the interval is
[0, fs) cycles/unit time.

• 'centered' — Returns the centered two-sided cross-spectrogram for a real or complex signal. s
has nfft rows. If nfft is even, then s is computed over the interval (–π, π] rad/sample. If nfft is
odd, then s is computed over (–π, π) rad/sample. If you specify fs, then the intervals are
respectively (–fs/2, fs/2] cycles/unit time and (–fs/2, fs/2) cycles/unit time.

spectrumtype — Cross power spectrum scaling
'psd' (default) | 'power'

Cross power spectrum scaling, specified as 'psd' or 'power'.

• Omitting spectrumtype, or specifying 'psd', returns the cross power spectral density.
• Specifying 'power' scales each estimate of the cross power spectral density by the resolution

bandwidth, which depends on the equivalent noise bandwidth of the window and the segment
duration. The result is an estimate of the power at each frequency.

freqloc — Frequency display axis
'xaxis' (default) | 'yaxis'

Frequency display axis, specified as 'xaxis' or 'yaxis'.

• 'xaxis' — Displays frequency on the x-axis and time on the y-axis.
• 'yaxis' — Displays frequency on the y-axis and time on the x-axis.

This argument is ignored if you call xspectrogram with output arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: xspectrogram(x,100,'OutputTimeDimension','downrows') divides x and y into
segments of length 100 and windows each segment with a Hamming window of that length. The
output of the spectrogram has time dimension down the rows.

1 Functions

1-2780

MinThreshold — Threshold
-Inf (default) | real scalar

Threshold, specified as a real scalar expressed in decibels. xspectrogram sets to zero those
elements of s such that 10 log10(s) ≤ thresh.

OutputTimeDimension — Output time dimension
acrosscolumns (default) | downrows

Output time dimension, specified as acrosscolumns or downrows. Set this value to downrows, if
you want the time dimension of s, ps, fc, and tc down the rows and the frequency dimension along
the columns. Set this value to acrosscolumns, if you want the time dimension of s, ps, fc, and tc
across the columns and frequency dimension along the rows. This input is ignored if the function is
called without output arguments.

Output Arguments
s — Cross-spectrogram
matrix

Cross-spectrogram, returned as a matrix. Time increases across the columns of s and frequency
increases down the rows, starting from zero.

• If the input signals x and y are of length N, then s has k columns, where:

• k = ⌊(N – noverlap)/(window – noverlap)⌋ if window is a scalar.
• k = ⌊(N – noverlap)/(length(window) – noverlap)⌋ if window is a vector.

• If the input signals are real and nfft is even, then s has (nfft/2 + 1) rows.
• If the input signals are real and nfft is odd, then s has (nfft + 1)/2 rows.
• If the input signals are complex, then s has nfft rows.

Data Types: double | single

w — Normalized frequencies
vector

Normalized frequencies, returned as a vector. w has a length equal to the number of rows of s.
Data Types: double | single

t — Time instants
vector

Time instants, returned as a vector. The time values in t correspond to the midpoint of each segment
specified using window.
Data Types: double | single

f — Cyclical frequencies
vector

Cyclical frequencies, returned as a vector. f has a length equal to the number of rows of s.
Data Types: double | single

 xspectrogram

1-2781

c — Time-varying complex cross-spectrum
matrix

Time-varying complex cross-spectrum, returned as a matrix. The cross-spectrogram, s, is the
magnitude of c.
Data Types: double | single

References
[1] Mitra, Sanjit K. Digital Signal Processing: A Computer-Based Approach. 2nd Ed. New York:

McGraw-Hill, 2001.

[2] Oppenheim, Alan V., and Ronald W. Schafer, with John R. Buck. Discrete-Time Signal Processing.
2nd Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name value pairs must be compile time constants.
• Window must be double precision.

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel
Computing Toolbox™ ThreadPool.

Usage notes and limitations:

• The syntax with no output arguments is not supported.
• The frequency vector must be uniformly spaced.

For more information, see “Run MATLAB Functions in Thread-Based Environment”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The window length must not be greater than nfft or the length of f.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
cpsd | mscohere | spectrogram

Topics
“Time-Frequency Gallery”

1 Functions

1-2782

Introduced in R2017a

 xspectrogram

1-2783

xwvd
Cross Wigner-Ville distribution and cross smoothed pseudo Wigner-Ville distribution

Syntax
d = xwvd(x,y)
d = xwvd(x,y,fs)
d = xwvd(x,y,ts)

d = xwvd(___ ,'smoothedPseudo')
d = xwvd(___ ,'smoothedPseudo',twin,fwin)
d = xwvd(___ ,'smoothedPseudo','NumFrequencyPoints',nf)

d = xwvd(___ ,'MinThreshold',thresh)

[d,f,t] = xwvd(___)

xwvd(___)

Description
d = xwvd(x,y) returns the cross Wigner-Ville distribution of x and y.

d = xwvd(x,y,fs) returns the cross Wigner-Ville distribution when x and y are sampled at a rate
fs.

d = xwvd(x,y,ts) returns the cross Wigner-Ville distribution when x and y are sampled with a
time interval ts between samples.

d = xwvd(___ ,'smoothedPseudo') returns the cross smoothed pseudo Wigner-Ville distribution
of x and y. The function uses the length of the input signals to choose the lengths of the windows
used for time and frequency smoothing. This syntax can include any combination of input arguments
from previous syntaxes.

d = xwvd(___ ,'smoothedPseudo',twin,fwin) specifies the time window, twin, and the
frequency window, fwin, used for smoothing. To use the default window for either time or frequency
smoothing, specify the corresponding argument as empty, [].

d = xwvd(___ ,'smoothedPseudo','NumFrequencyPoints',nf) computes the cross smoothed
pseudo Wigner-Ville distribution using nf frequency points. You can specify twin and fwin in this
syntax, or you can omit them.

d = xwvd(___ ,'MinThreshold',thresh) sets to zero those elements of d whose amplitude is
less than thresh. This syntax applies to both the cross Wigner-Ville distribution and the cross
smoothed pseudo Wigner-Ville distribution.

[d,f,t] = xwvd(___) also returns a vector of frequencies, f, and a vector of times, t, at which d
is computed.

xwvd(___) with no output arguments plots the real part of the cross Wigner-Ville or cross smoothed
pseudo Wigner-Ville distribution in the current figure.

1 Functions

1-2784

Examples

Cross Wigner-Ville Distribution of Signals

Generate two signals sampled at 1 kHz for 1 second and embedded in white noise. One signal is a
sinusoid of frequency 150 Hz. The other signal is a chirp whose frequency varies sinusoidally
between 200 Hz and 400 Hz. The noise has a variance of 0 . 12.

fs = 1000;
t = (0:1/fs:1)';

x = cos(2*pi*t*150) + 0.1*randn(size(t));
y = vco(cos(3*pi*t),[200 400],fs) + 0.1*randn(size(t));

Compute the Wigner-Ville distribution of the sum of the signals.

wvd(x+y,fs)

Compute and plot the cross Wigner-Ville distribution of the signals. The cross-distribution
corresponds to the cross-terms of the Wigner-Ville distribution.

xwvd(x,y,fs)

 xwvd

1-2785

Cross Wigner-Ville Distribution of Chirps

Generate a two-channel signal that consists of two chirps. The signal is sampled at 3 kHz for one
second. The first chirp has an initial frequency of 400 Hz and reaches 800 Hz at the end of the
sampling. The second chirp starts at 500 Hz and reaches 1000 Hz at the end. The second chirp has
twice the amplitude of the first chirp.

fs = 3000;
t = (0:1/fs:1-1/fs)';

x1 = chirp(t,1400,t(end),800);
x2 = 2*chirp(t,200,t(end),1000);

Store the signal as a timetable. Compute and plot the cross Wigner-Ville distribution of the two
channels.

xt = timetable(seconds(t),x1,x2);

xwvd(xt(:,1),xt(:,2))

1 Functions

1-2786

Use Cross Wigner-Ville Distribution to Estimate Instantaneous Frequency

Compute the instantaneous frequency of a signal by using a known reference signal and the cross
Wigner-Ville distribution.

Create a reference signal consisting of a Gaussian atom sampled at 1 kHz for 1 second. A Gaussian
atom is a sinusoid modulated by a Gaussian. Specify a sinusoid frequency of 50 Hz. The Gaussian is
centered at 64 milliseconds and has a variance of 0 . 012.

fs = 1e3;
t = (0:1/fs:1-1/fs)';

mu = 0.064;
sigma = 0.01;
fsin = 50;

xr = exp(-(t-mu).^2/(2*sigma^2)).*sin(2*pi*fsin*t);

Create the "unknown" signal to analyze, consisting of a chirp. The signal starts suddenly at 0.4
second and ends suddenly half a second later. In that lapse, the frequency of the chirp decreases
linearly from 400 Hz to 100 Hz.

f0 = 400;
f1 = 100;

 xwvd

1-2787

xa = zeros(size(t));
xa(t>0.4 & t<=0.9) = chirp((0:1/fs:0.5-1/fs)',f0,0.5,f1);

Create a two-component signal consisting of the sum of the unknown and reference signals. The
smoothed pseudo Wigner-Ville distribution of the result provides an "ideal" time-frequency
representation.

Compute and display the smoothed pseudo Wigner-Ville distribution.

w = wvd(xa+xr,fs,'smoothedPseudo');

wvd(xa+xr,fs,'smoothedPseudo')

Compute the cross Wigner-Ville distribution of the unknown and reference signals. Take the absolute
value of the distribution and set to zero the elements with amplitude less than 10. The cross Wigner-
Ville distribution is equal to the cross-terms of the two-component signal.

Plot the real part of the cross Wigner-Ville distribution.

[c,fc,tc] = xwvd(xa,xr,fs);
c = abs(c);
c(c<10) = 0;

xwvd(xa,xr,fs)

1 Functions

1-2788

Enhance the Wigner-Ville cross-terms by adding the ideal time-frequency representation to the cross
Wigner-Ville distribution. The cross-terms of the Wigner-Ville distribution occur halfway between the
reference signal and the unknown signal.

d = w + c;

d = abs(real(d));

imagesc(tc,fc,d)
axis xy
colorbar

 xwvd

1-2789

Identify and plot the high-energy ridge corresponding to the cross-terms. To isolate the ridge, find the
time values where the cross-distribution has nonzero energy.

ff = tfridge(c,fc);

tv = sum(c)>0;

ff = ff(tv);
tc = tc(tv);

hold on
plot(tc,ff,'r--','linewidth',2)
hold off

1 Functions

1-2790

Reconstruct the instantaneous frequency of the unknown signal by using the ridge and the reference
function. Plot the instantaneous frequency as a function of time.

tEst = 2*tc - mu;
fEst = 2*ff - fsin;

plot(tEst,fEst)

 xwvd

1-2791

Input Arguments
x, y — Input signals
vectors | timetables

Input signals, specified as vectors or MATLAB timetables each containing a single vector variable. x
and y must both be vectors or both be timetables and must have the same length.

• If x and y are timetables, then they must contain increasing finite row times.
• If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable

with Missing, Duplicate, or Nonuniform Times”.

If the input signals have odd length, the function appends a zero to make the length even.
Example: cos(pi/8*(0:159))'+randn(160,1)/10 specifies a sinusoid embedded in white noise.
Example: timetable(seconds(0:5)',rand(6,1)) specifies a random variable sampled at 1 Hz
for 4 seconds.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
2*pi (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.

1 Functions

1-2792

ts — Sample time
duration scalar

Sample time, specified as a duration scalar.

twin, fwin — Time and frequency windows
vectors of odd length

Time and frequency windows used for smoothing, specified as vectors of odd length. By default, xwvd
uses Kaiser windows with shape factor β = 20.

• The default length of twin is the smallest odd integer greater than or equal to
round(length(x)/10).

• The default length of fwin is the smallest odd integer greater than or equal to nf/4.

Each window must have a length smaller than or equal to 2*ceil(length(x)/2).
Example: kaiser(65,0.5) specifies a 65-sample Kaiser window with a shape factor of 0.5.

nf — Number of frequency points
2*ceil(length(x)/2) (default) | integer

Number of frequency points, specified as an integer. This argument controls the degree of
oversampling in frequency. The number of frequency points must be at least (length(fwin)+1)/2
and cannot be greater than the default.

thresh — Minimum nonzero value
-Inf (default) | real scalar

Minimum nonzero value, specified as a real scalar. The function sets to zero those elements of d
whose amplitudes are less than thresh.

Output Arguments
d — Cross Wigner-Ville distribution
matrix

Cross Wigner-Ville distribution, returned as a matrix. Time increases across the columns of d, and
frequency increases down the rows. The matrix is of size Nf × Nt, where Nf is the length of f and Nt is
the length of t.

f — Frequencies
vector

Frequencies, returned as a vector.

• If the input has time information, then f contains frequencies expressed in Hz.
• If the input does not have time information, then f contains normalized frequencies expressed in

rad/sample.

t — Time instants
vector

Time instants, returned as a vector.

 xwvd

1-2793

• If the input has time information, then t contains time values expressed in seconds.
• If the input does not have time information, then t contains sample numbers.

The number of time points is fixed as 4*ceil(length(x)/2).

More About
Cross Wigner-Ville Distribution

For continuous signals x(t) and y(t), the cross Wigner-Ville distribution is defined as

XWVDx, y(t, f) =∫−∞
∞

x t + τ
2 y* t − τ

2 e− j2πfτ dτ .

For a discrete signal with N samples, the distribution becomes

XWVDx, y(n, k) = ∑
m = − N

N
x(n + m/2) y*(n−m/2) e− j2πkm/N .

For odd values of m, the definition requires evaluation of the signal at half-integer sample values. It
therefore requires interpolation, which makes it necessary to zero-pad the discrete Fourier transform
to avoid aliasing.

The cross Wigner-Ville distribution contains interference terms that often complicate its
interpretation. To sharpen the distribution, one can filter the definition with lowpass windows. The
cross smoothed pseudo Wigner-Ville distribution uses independent windows to smooth in time and
frequency:

XSPWVDx, y
g, H(t, f) =∫−∞

∞
g(t) H(f) x t + τ

2 y* t − τ
2 e− j2πfτ dτ .

References
[1] Cohen, Leon. Time-Frequency Analysis: Theory and Applications. Englewood Cliffs, NJ: Prentice-

Hall, 1995.

[2] Mallat, Stéphane. A Wavelet Tour of Signal Processing. Second Edition. San Diego, CA: Academic
Press, 1999.

[3] Malnar, Damir, Victor Sucic, and Boualem Boashash. "A cross-terms geometry based method for
components instantaneous frequency estimation using the cross Wigner-Ville distribution." In
11th International Conference on Information Sciences, Signal Processing and their
Applications (ISSPA), pp. 1217–1222. Montréal: IEEE, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Arguments specified using name-value pairs must be compile-time constants.

1 Functions

1-2794

• Timetables are not supported for code generation.

See Also
Functions
cpsd | fsst | pspectrum | xspectrogram | wvd

Topics
“Time-Frequency Gallery”

Introduced in R2018b

 xwvd

1-2795

yulewalk
Recursive digital filter design

Syntax
[b,a] = yulewalk(n,f,m)

Description
[b,a] = yulewalk(n,f,m) returns the transfer function coefficients of an nth-order IIR filter
whose frequency magnitude response approximately matches the values given in f and m.

Examples

Yule-Walker Design of Lowpass Filter

Design an 8th-order lowpass filter with normalized cutoff frequency 0.6. Plot its frequency response
and overlay the response of the corresponding ideal filter.

f = [0 0.6 0.6 1];
m = [1 1 0 0];

[b,a] = yulewalk(8,f,m);
[h,w] = freqz(b,a,128);

plot(w/pi,mag2db(abs(h)))
yl = ylim;
hold on
plot(f(2:3),yl,'--')
xlabel('\omega/\pi')
ylabel('Magnitude')
grid

1 Functions

1-2796

Increase the stopband attenuation by specifying a wider transition band.

f = [0 0.55 0.6 0.65 1];
m = [1 1 0.5 0 0];

[b,a] = yulewalk(8,f,m);
h = freqz(b,a,128);

hold on
plot(w/pi,mag2db(abs(h)))
hold off
ylim(yl)

 yulewalk

1-2797

Input Arguments
n — Filter order
positive integer scalar

Filter order, specified as a positive integer scalar.
Data Types: single | double

f — Frequency points
vector

Frequency points, specified as a vector of points in the range between 0 and 1, where 1 corresponds
to the Nyquist frequency, or half the sample rate. The first point of f must be 0 and the last point 1.
All intermediate points must be in increasing order. f can have duplicate frequency points
corresponding to steps in the frequency response.
Example: [0 0.25 0.4 0.5 0.5 0.7 1] specifies an irregularly sampled Nyquist range.
Data Types: single | double

m — Magnitude response
vector

Magnitude response, specified as a vector containing the desired responses at the points specified in
f. m must be the same length as f.

1 Functions

1-2798

Example: [0 1 1 1 0 0 0] specifies a bandpass magnitude response.
Data Types: single | double

Output Arguments
b, a — Filter coefficients
row vectors

Filter coefficients, returned as row vectors. The output filter coefficients are ordered in descending
powers of z:

B(z)
A(z) = b(1) + b(2)z−1 +⋯+ b(n + 1)z−n

a(1) + a(2)z−1 +⋯+ a(n + 1)z−n .

Tips
When specifying the frequency response, avoid excessively sharp transitions from passband to
stopband. You may need to experiment with the slope of the transition region to get the best filter
design.

Algorithms
yulewalk designs recursive IIR digital filters using a least-squares fit to a specified frequency
response. The function performs the fit in the time domain.

• To compute the denominator coefficients, yulewalk uses modified Yule-Walker equations, with
correlation coefficients computed by inverse Fourier transformation of the specified frequency
response.

• To compute the numerator, yulewalk follows these steps:

1 Compute a numerator polynomial corresponding to an additive decomposition of the power
frequency response.

2 Evaluate the complete frequency response corresponding to the numerator and denominator
polynomials.

3 Use a spectral factorization technique to obtain the impulse response of the filter.
4 Obtain the numerator polynomial by a least-squares fit to this impulse response.

References
[1] Friedlander, B., and Boaz Porat. "The Modified Yule-Walker Method of ARMA Spectral Estimation."

IEEE Transactions on Aerospace Electronic Systems. Vol. AES-20, Number 2, 1984, pp. 158–
173.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 yulewalk

1-2799

If specified, the order of recursion must be a constant. Expressions or variables are allowed if their
values do not change.

See Also
butter | cheby1 | cheby2 | ellip | fir2 | firls | maxflat | firpm

Introduced before R2006a

1 Functions

1-2800

zerocrossrate
Zero-crossing rate

Syntax
rate = zerocrossrate(x)
rate = zerocrossrate(TT)
rate = zerocrossrate(___ ,Name,Value)
[rate,count] = zerocrossrate(___)
[rate,count,indices] = zerocrossrate(___)
zerocrossrate(___)

Description
rate = zerocrossrate(x) returns the zero-crossing rate of x. If x is a matrix, then the function
analyzes each column as a separate channel and returns the zero-crossing rate as a row vector where
each value corresponds to a channel.

rate = zerocrossrate(TT) returns the zero-crossing rate of the data stored in the MATLAB
timetable TT. If TT contains multiple channels, then the function analyzes each channel
independently.

rate = zerocrossrate(___ ,Name,Value) specifies additional name-value arguments. Use this
syntax with any of the input arguments in previous syntaxes.

[rate,count] = zerocrossrate(___) also returns the total number of crossings in count.

[rate,count,indices] = zerocrossrate(___) also returns logical indices at the signal
locations where a crossing occurs.

zerocrossrate(___) with no output arguments plots rate along the y-axis and the corresponding
window number along the x-axis. If the window length is equal to the full signal length, then the
function plots the length of the window along the x-axis and the crossing rate in the middle of the
window.

Examples

Count Zero Crossings in Signal

Consider a vector of ones with alternating signs. Plot the data.

x = [1 -1 1 -1 1 -1 1 -1 1 -1];
plot(x)

 zerocrossrate

1-2801

Compute the zero-crossing rate of x.

r = zerocrossrate(x)

r = 0.9500

Use the third output argument to find the locations where the crossings occur. Plot x and the zero-
crossing locations. The function returns an index at the next sample after a crossing, not necessarily
the exact crossing location. The first sample is marked as a crossing point because the function
considers the initial state of x to be zero by default.

[~,~,indices] = zerocrossrate(x);
plot(x)
hold on
plot(x(indices),'*')
hold off

1 Functions

1-2802

Compute the zero-crossing rate of x using the comparison method. The rate differs from the value
computed using the difference method.

rC = zerocrossrate(x,Method="comparison")

rC = 0.9000

Compute the zero-crossing rate of x again using the difference method and specify zero as positive.
The rate is equal to the value computed using the comparison method.

rZ = zerocrossrate(x,ZeroPositive=1)

rZ = 0.9000

Now specify the initial state of x as 1. The rate is equal to the previous result.

rI = zerocrossrate(x,InitialState=1)

rI = 0.9000

Count Level Crossings in Temperature Data

Load a set of temperature readings in Celsius taken every hour at Logan Airport in Boston for the
entire month of January, 2011. Create a timetable and use retime to aggregate the data into daily
means.

 zerocrossrate

1-2803

load bostemp

t = hours(1:24*31)';
TT = timetable(t,tempC);
rTT = retime(TT,'daily','mean');

Count the number of days the temperature crosses the monthly average. Plot the data and include a
horizontal line at the monthly average temperature to visualize where the crossings occur.

avg = mean(TT.tempC)

avg = -1.3007

[~,count] = zerocrossrate(rTT,Level=avg)

count = 9

plot(hours(rTT.t/24),rTT.tempC)
yline(avg)
xlabel('Time elapsed since January 1, 2011 (days)')
ylabel('Average daily temperature (\circC)')
axis tight

1 Functions

1-2804

Identify Voiced and Unvoiced Speech Using Zero Crossings

Speech can be characterized as being voiced or unvoiced. Voiced speech, such as vowel sounds,
occurs when the vocal cords vibrate. In unvoiced speech, such as most consonant sounds, the vocal
chords do not vibrate. You can use zero crossings to classify the voiced and unvoiced regions in an
audio signal.

Load an audio signal into the MATLAB® workspace. The voice says, "Oak is strong, and also gives
shade".

[y,fs] = audioread("oak.m4a");

% To hear, type soundsc(y,fs)

The signal is sampled at 44.1 kHz. Calculate the zero-crossing rate for 10 ms windows using the
comparison method.

win = fs*0.01;
rate = zerocrossrate(y,WindowLength=win,Method="comparison");

Plot rate to visualize the crossing rate for each segment. Voiced speech is expected to have a low
crossing rate, while unvoiced speech is expected to have a high crossing rate.

plot(rate)

Use a threshold of 0.1 to differentiate between voiced and unvoiced segments. Create a signalMask
object that has two categories ("Unvoiced" and "Voiced") and plot the regions of interest (ROIs).
Compare the regions of voiced and unvoiced speech to the location of each spoken word.

 zerocrossrate

1-2805

IBM® Watson Speech to Text API and Audio Toolbox™ software can be used to extract words from an
audio file. Load Transcription.mat into the workspace. The labeled signal set contains the audio
signal, ROI limits, and labels for each spoken word. For details, see “Label Spoken Words in Audio
Signals Using External API”. Display the spoken words on the plot.

h = 0.1;
idu = find(rate > h);
idu(1:2) = [];
vi = [(idu-1) idu]*win;

m = sigroi2binmask(vi,length(y));
mask = signalMask([m ~m],Categories=["Unvoiced" "Voiced"],SampleRate=fs);
plotsigroi(mask,y)

load Transcription

ln = getLabelNames(transcribedAudio);
v = getLabelValues(transcribedAudio,1,ln);
v.Value = categorical(v.Value,v.Value);

RL = v.ROILimits;
VL = v.Value;

hold on
text(mean(RL,2),-0.7*ones(size(VL)),VL,HorizontalAlignment="center", ...
 FontSize=11,FontWeight="bold")
hold off

1 Functions

1-2806

Input Arguments
x — Data
real-valued vector | real-valued matrix

Data, specified as a real-valued vector or matrix. If x is a matrix, the function returns the zero-
crossing rate as a row vector where each value corresponds to a column of data.
Data Types: single | double

TT — Input timetable
timetable

Input timetable, specified as a timetable. TT must contain uniformly sampled single- or double-
precision data. The “RowTimes” property must contain a duration or datetime vector with
increasing and finite values. If TT is a timetable with a single variable containing a matrix, or a
timetable with multiple variables each containing a vector, then the function analyzes each channel
independently.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: zerocrossrate(x,Method="comparison",Level=7,transitionEdge="rising")
uses the comparison method to compute the rate at which x positively transitions across 7.

InitialState — Previous states
0 (default) | vector

Previous states of x, specified as a vector whose number of elements is equal to the number of input
channels.
Example: zerocrossrate(x,InitialState=[1 0 –1 3]) returns the crossing rates of a four-
channel input signal x.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Method — Method for computing zero-crossing rate
"difference" (default) | "comparison"

Method for computing the zero-crossing rate, specified as "difference" or "comparison". If you
do not specify 'Method', the function uses the difference method to compute the crossing rate.

• comparison — The function marks the indices as true where a crossing is fully completed.
• difference — The function marks the indices as true where abs(sign(xi)–sign(xi–1)) > 0.

Example: zerocrossrate(x,Method="comparison") computes the crossing rate of x using the
comparison method.
Data Types: char | string

WindowLength — Window length
positive integer

 zerocrossrate

1-2807

Window length over which to compute the crossing rate, specified as a positive integer. The default
window length is the signal length.
Example: zerocrossrate(x,WindowLength=20) returns the crossing rates for 20-sample windows
in x.
Example: zerocrossrate(x,WindowLength=fs*0.05) returns the crossing rates for 50 ms
windows in x given a sample rate fs.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OverlapLength — Number of overlapping samples
0 (default) | positive integer

Number of overlapping samples between adjoining segments, specified as a positive integer. The
overlap must be smaller than the window length.
Example: zerocrossrate(x,OverlapLength=0) returns the crossing rates of segments with no
overlap.
Example: zerocrossrate(x,WindowLength=20,OverlapLength=5) returns the crossing rates of
overlapping segments with five samples of overlap.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Level — Signal level
0 (default) | real scalar

Signal level for which the crossing rate is computed, specified as a real scalar. The function subtracts
the 'Level' value from the signal and then finds the zero crossings. If you do not specify 'Level',
the function uses the default value of 0 and returns the zero-crossing rate.
Example: zerocrossrate(x,Level=1) returns the rate at which the input signal x crosses 1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Threshold — Threshold
0 (default) | real scalar

Threshold value above and below the 'Level' value over which the crossing rate is computed,
specified as a real scalar. The function sets all the values of the input in the range [–threshold,
threshold] to 0 and then finds the zero crossings.
Example: zerocrossrate(x,Threshold=0.1) returns the crossing rate with a tolerance of –0.1 to
0.1.

Note When you specify both 'Level' and 'Threshold', the function first subtracts the level value
from the input and then sets to 0 the resulting input values that are in the range [–threshold,
threshold].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TransitionEdge — Transitions
"both" (default) | "falling" | "rising"

1 Functions

1-2808

Transitions to include when counting the zero crossings, specified as "falling", "rising", or
"both". If you specify "falling", the function counts only negative-going transitions. If you specify
"rising", the function counts only positive-going transitions.
Example: zerocrossrate(x,TransitionEdge="rising") returns the crossing rate of x for only
positive-going transitions.
Data Types: char | string

ZeroPositive — Sign convention
0 or false (default) | 1 or true

Sign convention, specified as a logical scalar. If you specify 'ZeroPositive' as true, the function
considers 0 to be positive. If you specify 'ZeroPositive' as false, the function considers 0, –1, and
+1 to have distinct signs following the convention of the sign function.
Example: zerocrossrate(x,ZeroPositive=1) returns the crossing rate of the input signal x and
considers zero as positive.
Data Types: logical

Output Arguments
rate — Zero-crossing rate
row vector | matrix

Zero-crossing rate, returned as a row vector or a matrix. When 'WindowLength' is equal to the
signal length, rate is a row vector whose number of elements is equal to the number of channels in x
or TT. When 'WindowLength' is smaller than the signal length, the function returns rate as a
matrix where the i-th row contains the crossing rate for the i-th window and the j-th column
corresponds to the j-th input channel.

count — Number of crossings
N-by-M matrix

Number of crossings, returned as an N-by-M matrix where N is the number of windows and M is the
number of input channels. The i-th row corresponds to the crossing count for the i-th window and the
j-th column corresponds to the crossing count for the j-th channel.

indices — Logical indices
N-by-WindowLength-by-M array

Logical indices at the signal locations where crossings occur, returned as an N-by-'WindowLength'-
by-M array where N is the number of windows and M is the number of input channels.

Note Indices might not represent exact signal crossing locations. The zerocrossrate function
returns an index at the next sample following a crossing.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 zerocrossrate

1-2809

• Code generation does not support disabling dynamic memory allocation when the window length
is specified and the input is more than one channel.

See Also
Functions
midcross

Introduced in R2021b

1 Functions

1-2810

zerophase
Zero-phase response of digital filter

Syntax
[Hr,w] = zerophase(b,a)
[Hr,w] = zerophase(sos)
[Hr,w] = zerophase(d)
[Hr,w] = zerophase(...,nfft)
[Hr,w] = zerophase(...,nfft,'whole')
[Hr,w] = zerophase(...,w)
[Hr,f] = zerophase(...,f,fs)
[Hr,w,phi] = zerophase(...)
zerophase(...)

Description
[Hr,w] = zerophase(b,a) returns the zero-phase response Hr, and the frequency vector w (in
radians/sample) at which Hr is computed, given a filter defined by numerator b and denominator a.
For FIR filters where a=1, you can omit the value a from the command. The zero-phase response is
evaluated at 512 equally spaced points on the upper half of the unit circle.

The zero-phase response, Hr(ω), is related to the frequency response, H(ejω), by

H(e jω) = Hr(ω)e jφ(ω),

where φ(ω) is the continuous phase.

Note The zero-phase response is always real, but it is not the equivalent of the magnitude response.
The former can be negative while the latter cannot be negative.

[Hr,w] = zerophase(sos) returns the zero-phase response for the second order sections matrix,
sos. sos is a K-by-6 matrix, where the number of sections, K, must be greater than or equal to 2. If
the number of sections is less than 2, zerophase considers the input to be the numerator vector, b.
Each row of sos corresponds to the coefficients of a second order (biquad) filter. The ith row of the
sos matrix corresponds to [bi(1) bi(2) bi(3) ai(1) ai(2) ai(3)].

[Hr,w] = zerophase(d) returns the zero-phase response for the digital filter, d. Use designfilt
to generate d based on frequency-response specifications.

[Hr,w] = zerophase(...,nfft) returns the zero-phase response Hr and frequency vector w
(radians/sample), using nfft frequency points on the upper half of the unit circle. For best results,
set nfft to a value greater than the filter order.

[Hr,w] = zerophase(...,nfft,'whole') returns the zero-phase response Hr and frequency
vector w (radians/sample), using nfft frequency points around the whole unit circle.

[Hr,w] = zerophase(...,w) returns the zero-phase response Hr and frequency vector w
(radians/sample) at frequencies in vector w. The vector w must have at least two elements.

 zerophase

1-2811

[Hr,f] = zerophase(...,f,fs) returns the zero-phase response Hr and frequency vector f
(Hz), using the sampling frequency fs (in Hz), to determine the frequency vector f (in Hz) at which
Hr is computed. The vector f must have at least two elements.

[Hr,w,phi] = zerophase(...) returns the zero-phase response Hr, frequency vector w (rad/
sample), and the continuous phase component, phi. (Note that this quantity is not equivalent to the
phase response of the filter when the zero-phase response is negative.)

zerophase(...) plots the zero-phase response versus frequency. If you input the filter coefficients
or second order sections matrix, the current figure window is used. If you input a digitalFilter,
the step response is displayed in FVTool.

Note If the input to zerophase is single precision, the zero-phase response is calculated using
single-precision arithmetic. The output, Hr, is single precision.

Examples

Zero-Phase Response of FIR filter

Use designfilt to design a 54th-order FIR filter with a normalized cutoff frequency of 0.3π rad/
sample, a passband ripple of 0.7 dB, and a stopband attenuation of 42 dB. Use the method of
constrained least squares. Display the zero-phase response.

Nf = 54;
Fc = 0.3;
Ap = 0.7;
As = 42;

d = designfilt('lowpassfir','FilterOrder',Nf,'CutoffFrequency',Fc, ...
 'PassbandRipple',Ap,'StopbandAttenuation',As,'DesignMethod','cls');
zerophase(d)

1 Functions

1-2812

Design the same filter using fircls1, which uses linear units to measure the ripple and attenuation.
Display the zero-phase response.

pAp = 10^(Ap/40);
Apl = (pAp-1)/(pAp+1);
pAs = 10^(As/20);
Asl = 1/pAs;

b = fircls1(Nf,Fc,Apl,Asl);
zerophase(b)

 zerophase

1-2813

Zero-Phase Response of Elliptic Filter

Design a 10th-order elliptic lowpass IIR filter with a normalized passband frequency of 0.4π rad/
sample, a passband ripple of 0.5 dB, and a stopband attenuation of 20 dB. Display the zero-phase
response of the filter on 512 frequency points around the whole unit circle.

d = designfilt('lowpassiir','FilterOrder',10,'PassbandFrequency',0.4, ...
 'PassbandRipple',0.5,'StopbandAttenuation',20,'DesignMethod','ellip');
zerophase(d,512,'whole')

1 Functions

1-2814

Create the same filter using ellip. Plot its zero-phase response.

[b,a] = ellip(10,0.5,20,0.4);
zerophase(b,a,512,'whole')

 zerophase

1-2815

References
[1] Antoniou, Andreas. Digital Filters. New York: McGraw-Hill, Inc., 1993.

See Also
designfilt | digitalFilter | freqs | freqz | FVTool | grpdelay | invfreqz | phasedelay |
phasez

Introduced before R2006a

1 Functions

1-2816

zp2sos
Convert zero-pole-gain filter parameters to second-order sections form

Syntax
[sos,g] = zp2sos(z,p,k)
[sos,g] = zp2sos(z,p,k,order)
[sos,g] = zp2sos(z,p,k,order,scale)
[sos,g] = zp2sos(z,p,k,order,scale,zeroflag)
sos = zp2sos(___)

Description
[sos,g] = zp2sos(z,p,k) finds a second-order section matrix sos with gain g that is equivalent
to the transfer function H(z) whose n zeros, m poles, and scalar gain are specified in z, p, and k:

H(z) = k
(z − z1)(z − z2)⋯(z − zn)
(z − p1)(z − p2)⋯(z − pm) .

[sos,g] = zp2sos(z,p,k,order) specifies the order of the rows in sos.

[sos,g] = zp2sos(z,p,k,order,scale) specifies the scaling of the gain and numerator
coefficients of all second-order sections.

[sos,g] = zp2sos(z,p,k,order,scale,zeroflag) specifies the handling of real zeros that are
negatives of each other.

sos = zp2sos(___) embeds the overall system gain in the first section.

Examples

Second-Order Sections from Zero-Pole-Gain Parameters

Design a 5th-order Butterworth lowpass filter using the function butter with output expressed in
zero-pole-gain form. Specify the cutoff frequency to be one-fifth of the Nyquist frequency. Convert the
result to second-order sections. Visualize the magnitude response.

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k)

sos = 3×6

 0.0013 0.0013 0 1.0000 -0.5095 0
 1.0000 2.0000 1.0000 1.0000 -1.0966 0.3554
 1.0000 2.0000 1.0000 1.0000 -1.3693 0.6926

fvtool(sos)

 zp2sos

1-2817

Input Arguments
z — Zeros
vector

Zeros of the system, specified as a vector. The zeros must be real or come in complex conjugate pairs.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: double

p — Poles
vector

Poles of the system, specified as a vector. The poles must be real or come in complex conjugate pairs.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: double

k — Scalar gain
scalar

Scalar gain of the system, specified as a scalar.
Data Types: double

1 Functions

1-2818

order — Row order
'up' (default) | 'down'

Row order, specified as one of the following:

• 'up' — Order the sections so the first row of sos contains the poles farthest from the unit circle.
• 'down' — Order the sections so the first row of sos contains the poles closest to the unit circle.

Data Types: char

scale — Scaling of gain and numerator coefficients
'none' (default) | 'inf' | 'two'

Scaling of gain and numerator coefficients, specified as one of the following:

• 'none' — Apply no scaling.
• 'inf' — Apply infinity-norm scaling.
• 'two' — Apply 2-norm scaling.

Using infinity-norm scaling with 'up'-ordering minimizes the probability of overflow in the
realization. Using 2-norm scaling with 'down'-ordering minimizes the peak round-off noise.

Note Infinity-norm and 2-norm scaling are appropriate only for direct-form II implementations.

Data Types: char

zeroflag — Ordering of real zeros
false (default) | true

Ordering of real zeros that are negatives of each other, specified as a logical scalar.

• If you specify zeroflag as false, the function orders those zeros according to proximity to
poles.

• If you specify zeroflag as true, the function keeps those zeros together. This option results in a
numerator with a middle coefficient equal to zero.

Data Types: logical

Output Arguments
sos — Second-order section representation
matrix

Second-order section representation, returned as a matrix. sos is an L-by-6 matrix

sos =

b01 b11 b21 1 a11 a21
b02 b12 b22 1 a12 a22

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b0L b1L b2L 1 a1L a2L

 zp2sos

1-2819

whose rows contain the numerator and denominator coefficients bik and aik of the second-order
sections of H(z):

H(z) = g ∏
k = 1

L
Hk(z) = g ∏

k = 1

L b0k + b1kz−1 + b2kz−2

1 + a1kz−1 + a2kz−2 .

If the transfer function has n zeros and m poles, then L is the closest integer greater than or equal to
max(n/2,m/2).

g — Overall system gain
real scalar

Overall system gain, returned as a real scalar.

If you call zp2sos with one output argument, the function embeds the overall system gain in the first
section, H1(z), so that

H(z) = ∏
k = 1

L
Hk(z) .

Note Embedding the gain in the first section when scaling a direct-form II structure is not
recommended and can result in erratic scaling. To avoid embedding the gain, use zp2sos with two
outputs.

Algorithms
zp2sos uses a four-step algorithm to determine the second-order section representation for an input
zero-pole-gain system:

1 It groups the zeros and poles into complex conjugate pairs using the cplxpair function.
2 It forms the second-order section by matching the pole and zero pairs according to the following

rules:

a Match the poles closest to the unit circle with the zeros closest to those poles.
b Match the poles next closest to the unit circle with the zeros closest to those poles.
c Continue until all of the poles and zeros are matched.

zp2sos groups real poles into sections with the real poles closest to them in absolute value. The
same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit circle. zp2sos
normally orders the sections with poles closest to the unit circle last in the cascade. You can tell
zp2sos to order the sections in the reverse order using the order argument.

4 zp2sos scales the sections by the norm specified in scale. For arbitrary H(ω), the scaling is
defined by

H p = 1
2π ∫

0

2π
H(ω) pdω

1/p

1 Functions

1-2820

where p can be either infinity or 2. This scaling is an attempt to minimize overflow or peak
round-off noise in fixed-point filter implementations.

References
[1] Jackson, L. B. Digital Filters and Signal Processing. 3rd ed. Boston: Kluwer Academic Publishers,

1996.

[2] Mitra, Sanjit Kumar. Digital Signal Processing: A Computer-Based Approach. 3rd ed. New York:
McGraw-Hill Higher Education, 2006.

[3] Vaidyanathan, P. P. "Robust Digital Filter Structures." Handbook for Digital Signal Processing (S.
K. Mitra and J. F. Kaiser, eds.). New York: John Wiley & Sons, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Any character or string input must be a constant at compile time.

See Also
cplxpair | filternorm | sos2zp | ss2sos | tf2sos | zp2ss | zp2tf

Introduced before R2006a

 zp2sos

1-2821

zp2ss
Convert zero-pole-gain filter parameters to state-space form

Syntax
[A,B,C,D] = zp2ss(z,p,k)

Description
[A,B,C,D] = zp2ss(z,p,k) finds a state-space representation

ẋ = Ax + Bu
y = Cx + Du

such that it is equivalent to a system in factored transfer function form

H(s) = Z(s)
P(s) = k

(s− z1)(s− z2)⋯(s− zn)
(s− p1)(s− p2)⋯(s− pn)

Column vector p specifies the pole locations, and matrix z the zero locations with as many columns as
there are outputs. The gains for each numerator transfer function are in vector k. The A, B, C, and D
matrices are returned in controller canonical form.

Examples

State-Space Representation of Mass-Spring System

Generate the state-space representation of a damped mass-spring system that obeys the differential
equation

ẅ + 0 . 01ẇ + w = u(t) .

The measurable quantity is the acceleration, y = ẅ, and u(t) is the driving force. In Laplace space, the
system is represented by

Y(s) = s2 U(s)
s2 + 0 . 01s + 1

.

The system has unit gain, a double zero at s = 0, and two complex-conjugate poles.

z = [0 0];
p = roots([1 0.01 1])

p = 2×1 complex

 -0.0050 + 1.0000i
 -0.0050 - 1.0000i

k = 1;

1 Functions

1-2822

Use zp2ss to find the state-space matrices.

[A,B,C,D] = zp2ss(z,p,k)

A = 2×2

 -0.0100 -1.0000
 1.0000 0

B = 2×1

 1
 0

C = 1×2

 -0.0100 -1.0000

D = 1

Input Arguments
z — Zeros
vector

Zeros of the system, specified as a vector. The zeros must be real or come in complex conjugate pairs.

Inf values may be used as place holders in z if some columns have fewer zeros than others.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: double

p — Poles
vector

Poles of the system, specified as a vector. The poles must be real or come in complex conjugate pairs.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: double

k — Scalar gain
scalar

Scalar gain of the system, specified as a scalar.
Data Types: double

Output Arguments
A — State matrix
matrix

State matrix, returned as a matrix. If the system is described by n state variables, then A is n-by-n.

 zp2ss

1-2823

Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix, returned as a matrix. If the system is described by n state variables, then B is n-
by-1.
Data Types: single | double

C — State-to-output matrix
matrix

State-to-output matrix, returned as a matrix. If the system has q outputs and is described by n state
variables, then C is q-by-n.
Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix, returned as a matrix. If the system has q outputs, then D is q-by-1.
Data Types: single | double

Algorithms
zp2ss, for single-input systems, groups complex pairs together into two-by-two blocks down the
diagonal of the A matrix. This requires the zeros and poles to be real or complex conjugate pairs.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sos2ss | ss2zp | tf2ss | zp2sos | zp2tf

Introduced before R2006a

1 Functions

1-2824

zp2tf
Convert zero-pole-gain filter parameters to transfer function form

Syntax
[b,a] = zp2tf(z,p,k)

Description
[b,a] = zp2tf(z,p,k) converts a factored transfer function representation

H(s) = Z(s)
P(s) = k

(s− z1)(s− z2)⋯(s− zm)
(s− p1)(s− p2)⋯(s− pn)

of a single-input/multi-output (SIMO) system to a polynomial transfer function representation

B(s)
A(s) =

b1s(n− 1) +⋯+ b(n− 1)s + bn
a1s(m− 1) +⋯+ a(m− 1)s + am

.

Examples

Transfer Function of Mass-Spring System

Compute the transfer function of a damped mass-spring system that obeys the differential equation

ẅ + 0 . 01ẇ + w = u(t) .

The measurable quantity is the acceleration, y = ẅ, and u(t) is the driving force. In Laplace space, the
system is represented by

Y(s) = s2 U(s)
s2 + 0 . 01s + 1

.

The system has unit gain, a double zero at s = 0, and two complex-conjugate poles.

k = 1;
z = [0 0]';
p = roots([1 0.01 1])

p = 2×1 complex

 -0.0050 + 1.0000i
 -0.0050 - 1.0000i

Use zp2tf to find the transfer function.

[b,a] = zp2tf(z,p,k)

b = 1×3

 zp2tf

1-2825

 1 0 0

a = 1×3

 1.0000 0.0100 1.0000

Input Arguments
z — Zeros
column vector | matrix

Zeros of the system, specified as a column vector or a matrix. z has as many columns as there are
outputs. The zeros must be real or come in complex conjugate pairs. Use Inf values as placeholders
in z if some columns have fewer zeros than others.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: single | double

p — Poles
column vector

Poles of the system, specified as a column vector. The poles must be real or come in complex
conjugate pairs.
Example: [1 (1+1j)/2 (1-1j)/2]'
Data Types: single | double

k — Gains
column vector

Gains of the system, specified as a column vector.
Example: [1 2 3]'
Data Types: single | double

Output Arguments
b — Transfer function numerator coefficients
row vector | matrix

Transfer function numerator coefficients, returned as a row vector or a matrix. If b is a matrix, then it
has a number of rows equal to the number of columns of z.

a — Transfer function denominator coefficients
row vector

Transfer function denominator coefficients, returned as a row vector.

Algorithms
The system is converted to transfer function form using poly with p and the columns of z.

1 Functions

1-2826

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sos2tf | ss2tf | tf2zp | tf2zpk | zp2sos | zp2ss

Introduced before R2006a

 zp2tf

1-2827

zpk
Convert digital filter to zero-pole-gain representation

Syntax
[z,p,k] = zpk(d)

Description
[z,p,k] = zpk(d) returns the zeros, poles, and gain corresponding to the digital filter, d, in
vectors z and p, and scalar k, respectively.

Examples

Highpass Filter in Zero-Pole-Gain Form

Design a highpass FIR filter of order 8 with passband frequency 75 kHz and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Find the zeros, poles, and gain of the filter.

hpFilt = designfilt('highpassiir','FilterOrder',8, ...
 'PassbandFrequency',75e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
[z,p,k] = zpk(hpFilt)

z = 8×1

 1
 1
 1
 1
 1
 1
 1
 1

p = 8×1 complex

 -0.6707 + 0.6896i
 -0.6707 - 0.6896i
 -0.6873 + 0.5670i
 -0.6873 - 0.5670i
 -0.7399 + 0.3792i
 -0.7399 - 0.3792i
 -0.7839 + 0.1344i
 -0.7839 - 0.1344i

k = 1.2797e-05

1 Functions

1-2828

Input Arguments
d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3 dB frequency 0.5π rad/sample.

Output Arguments
z — Zeros
column vector

Zeros of the filter, returned as a column vector.
Data Types: double

p — Poles
column vector

Poles of the filter, returned as a column vector.
Data Types: double

k — Gain
real scalar

Gain of the filter, returned as a real scalar.
Data Types: double

See Also
designfilt | digitalFilter | ss | tf

Introduced in R2014a

 zpk

1-2829

zplane
Zero-pole plot for discrete-time systems

Syntax
zplane(z,p)
zplane(b,a)
[hz,hp,ht] = zplane(___)

zplane(d)
[vz,vp,vk] = zplane(d)

Description
zplane(z,p) plots the zeros specified in column vector z and the poles specified in column vector p
in the current figure window. The symbol 'o' represents a zero and the symbol 'x' represents a
pole. The plot includes the unit circle for reference.

If z and p are matrices, then zplane plots the poles and zeros in the columns of z and p in different
colors.

zplane(b,a), where b and a are row vectors, first uses roots to find the zeros and poles of the
transfer function represented by the numerator coefficients b and the denominator coefficients a.

[hz,hp,ht] = zplane(___) returns vectors of handles to the zero lines, hz, and the pole lines,
hp. ht is a vector of handles to the axes/unit circle line and to text objects, which are present when
there are multiple zeros or poles.

zplane(d) finds the zeros and poles of the transfer function represented by the digital filter, d. Use
designfilt to generate d based on frequency-response specifications. The pole-zero plot is
displayed in FVTool.

[vz,vp,vk] = zplane(d) returns the zeros (vector vz), poles (vector vp), and gain (scalar vk)
corresponding to the digital filter d.

Examples

Poles and Zeros of Elliptic Lowpass Filter

For data sampled at 1000 Hz, plot the poles and zeros of a 4th-order elliptic lowpass digital filter with
cutoff frequency 200 Hz, 3 dB of ripple in the passband, and 30 dB of attenuation in the stopband.

[z,p,k] = ellip(4,3,30,200/500);
zplane(z,p)
grid
title('4th-Order Elliptic Lowpass Digital Filter')

1 Functions

1-2830

Create the same filter using designfilt. Use zplane to plot the poles and zeros. Note that this
syntax of zplane calls fvtool.

d = designfilt('lowpassiir','FilterOrder',4,'PassbandFrequency',200, ...
 'PassbandRipple',3,'StopbandAttenuation',30, ...
 'DesignMethod','ellip','SampleRate',1000);
zplane(d)

 zplane

1-2831

Zeros and Poles of Transfer Function

Design an 8th-order Chebyshev Type II bandpass filter with a stopband attenuation of 20 dB. Specify
the stopband edge frequencies as π/8 rad/sample and 5π/8 rad/sample.

[b,a] = cheby2(8/2,20,[1 5]/8);

Use zplane to plot the poles and zeros of the transfer function.

zplane(b,a)

1 Functions

1-2832

Visualize the zero-phase response of the filter. Overlay the unit circle and the pole and zero locations.

[hw,fw] = zerophase(b,a,1024,"whole");

z = roots(b);
p = roots(a);

plot3(cos(fw),sin(fw),hw)
hold on
plot3(cos(fw),sin(fw),zeros(size(fw)),'--')
plot3(real(z),imag(z),zeros(size(z)),'o')
plot3(real(p),imag(p),zeros(size(p)),'x')
hold off
xlabel("Real")
ylabel("Imaginary")
view(35,40)
grid

 zplane

1-2833

Input Arguments
z, p — Zeros and poles
column vectors | matrices

Zeros and poles, specified as column vectors or matrices. If z and p are matrices, then zplane plots
the poles and zeros in the columns of z and p in different colors.
Data Types: single | double
Complex Number Support: Yes

b, a — Transfer function coefficients
row vectors

Transfer function coefficients, specified as row vectors. The transfer function is defined in terms of z–
1:

H(z) = B(z)
A(z) = b(1) + b(2)z−1 +⋯+ b(n + 1)z−n

a(1) + a(2)z−1 +⋯+ a(m + 1)z−m

Example: b = [1 3 3 1]/6 and a = [3 0 1 0]/3 specify a third-order Butterworth filter with
normalized 3-dB frequency 0.5π rad/sample.
Data Types: single | double
Complex Number Support: Yes

1 Functions

1-2834

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object. Use designfilt to generate a digital filter
based on frequency-response specifications.
Example: d = designfilt('lowpassiir','FilterOrder',3,'HalfPowerFrequency',0.5)
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.5π rad/sample.

Output Arguments
hz, hp, ht — Vectors of handles
vectors

Vectors of handles to the zero lines, hz, and the pole lines, hp, of the pole-zero plot. ht is a vector of
handles to the axes/unit circle line and to text objects, which are present when there are multiple
zeros or poles. If there are no zeros or no poles, hz or hp is the empty matrix, [].

vz, vp, vk — Zeros, poles, and gain
column vectors and scalar

Zeros, poles, and gain of a digital filter, d, returned as column vectors and a scalar.

Tips
• You can override the automatic scaling of zplane using

axis([xmin xmax ymin ymax])

after calling zplane. This scaling is useful when one or more zeros or poles have such a large
magnitude that the others are grouped tightly around the origin and are hard to distinguish.

See Also
Apps
Filter Designer

Functions
designfilt | digitalFilter | freqz

Topics
“Speaker Crossover Filters”

Introduced before R2006a

 zplane

1-2835

	Functions
	ac2poly
	ac2rc
	alignsignals
	arburg
	arcov
	armcov
	aryule
	bandpass
	bandpower
	bandstop
	barthannwin
	bartlett
	besselap
	besself
	bilinear
	bitrevorder
	blackman
	blackmanharris
	bohmanwin
	buffer
	buttap
	butter
	buttord
	cceps
	cconv
	cell2sos
	cfirpm
	cheb1ap
	cheb1ord
	cheb2ap
	cheb2ord
	chebwin
	cheby1
	cheby2
	chirp
	convmtx
	corrmtx
	countlabels
	cpsd
	cusum
	czt
	db
	db2mag
	db2pow
	dct
	decimate
	demod
	designfilt
	Design Filter
	dfilt
	dfilt.cascade
	dfilt.delay
	dfilt.df1
	dfilt.df1sos
	dfilt.df1t
	dfilt.df1tsos
	dfilt.df2
	dfilt.df2sos
	dfilt.df2t
	dfilt.df2tsos
	dfilt.dfasymfir
	dfilt.dffir
	dfilt.dffirt
	dfilt.dfsymfir
	dfilt.fftfir
	dfilt.latticeallpass
	dfilt.latticear
	dfilt.latticearma
	dfilt.latticemamax
	dfilt.latticemamin
	dfilt.parallel
	dfilt.scalar
	dfilt.statespace
	dftmtx
	digitalFilter
	digitrevorder
	diric
	dlstft
	double
	downsample
	dpss
	dpssclear
	dpssdir
	dpssload
	dpsssave
	dspdata
	dspdata.msspectrum
	dspdata.psd
	dspdata.pseudospectrum
	dspfwiz
	dtw
	dutycycle
	edfinfo
	edfwrite
	addAnnotations
	addSignals
	deleteAnnotations
	deleteSignals
	modifyAnnotations
	modifyHeader
	modifySignals
	edfheader
	EDF File Analyzer
	edfread
	edr
	ellip
	ellipap
	ellipord
	emd
	enbw
	envelope
	envspectrum
	equiripple
	eqtflength
	falltime
	fftfilt
	fillgaps
	filterBuilder
	Filter Designer
	filternorm
	filtfilt
	filtic
	filtord
	filtstates
	filtstates.dfiir
	filt2block
	findchangepts
	finddelay
	findpeaks
	findsignal
	fir1
	fir2
	fircls
	fircls1
	firls
	firpm
	firpmord
	firtype
	flattopwin
	folders2labels
	freqs
	freqsamp
	freqz
	fsst
	FVTool
	fwht
	gauspuls
	gaussdesign
	gausswin
	gmonopuls
	goertzel
	grpdelay
	hamming
	hampel
	hann
	hht
	highpass
	hilbert
	icceps
	idct
	ifsst
	ifwht
	impinvar
	impz
	impzlength
	info
	instbw
	instfreq
	interp
	intfilt
	invfreqs
	invfreqz
	isallpass
	iscola
	isdouble
	isfir
	islinphase
	isminphase
	ismaxphase
	issingle
	isstable
	is2rc
	istft
	kaiser
	kaiserord
	kaiserwin
	kurtogram
	labelDefinitionsHierarchy
	labelDefinitionsSummary
	labeledSignalSet
	addLabelDefinitions
	addMembers
	concatenate
	countLabelValues
	createDatastores
	editLabelDefinition
	getLabelDefinitions
	getLabeledSignal
	getLabelNames
	getLabelValues
	getMemberNames
	getSignal
	head
	merge
	removeLabelDefinition
	removeMembers
	removePointValue
	removeRegionValue
	resetLabelValues
	setLabelValue
	setMemberNames
	subset
	lar2rc
	latc2tf
	latcfilt
	levinson
	lowpass
	lp2bp
	lp2bs
	lp2hp
	lp2lp
	lpc
	lsf2poly
	mag2db
	marcumq
	maxflat
	meanfreq
	medfilt1
	medfreq
	midcross
	modalfit
	modalfrf
	modalsd
	modulate
	mscohere
	nuttallwin
	obw
	orderspectrum
	ordertrack
	orderwaveform
	overshoot
	parzenwin
	pburg
	pcov
	peak2peak
	peak2rms
	peig
	pentropy
	periodogram
	phasedelay
	phasez
	pkurtosis
	plomb
	pmcov
	pmtm
	pmusic
	poctave
	poly2ac
	poly2lsf
	poly2rc
	polyscale
	polystab
	pow2db
	powerbw
	prony
	pspectrum
	pulseperiod
	pulsesep
	pulsewidth
	pulstran
	pwelch
	pyulear
	rainflow
	realizemdl
	rc2ac
	rc2is
	rc2lar
	rc2poly
	rceps
	rcosdesign
	rectpuls
	rectwin
	resample
	residuez
	risetime
	rlevinson
	rms
	rooteig
	rootmusic
	rpmfreqmap
	rpmordermap
	rpmtrack
	rssq
	sawtooth
	schurrc
	settlingtime
	seqperiod
	sfdr
	sgolay
	sgolayfilt
	shiftdata
	Signal Analyzer
	signalLabelDefinition
	Signal Labeler
	signalDatastore
	combine
	hasdata
	read
	reset
	readall
	numpartitions
	preview
	partition
	progress
	shuffle
	subset
	transform
	writeall
	signalMask
	binmask
	binmask2sigroi
	catmask
	extendsigroi
	extractsigroi
	extractsigroi
	mergesigroi
	plotsigroi
	removesigroi
	roimask
	shortensigroi
	sigroi2binmask
	signalFrequencyFeatureExtractor
	signalTimeFeatureExtractor
	extract
	generateMATLABFunction
	getExtractorParameters
	setExtractorParameters
	sigwin
	sigwin.barthannwin
	sigwin.barthannwin.generate
	sigwin.barthannwin.info
	sigwin.barthannwin.winwrite
	sigwin.bartlett
	sigwin.bartlett.generate
	sigwin.bartlett.info
	sigwin.bartlett.winwrite
	sigwin.blackman
	sigwin.blackman.generate
	sigwin.blackman.info
	sigwin.blackman.winwrite
	sigwin.blackmanharris
	sigwin.blackmanharris.generate
	sigwin.blackmanharris.info
	sigwin.blackmanharris.winwrite
	sigwin.bohmanwin
	sigwin.bohmanwin.generate
	sigwin.bohmanwin.info
	sigwin.bohmanwin.winwrite
	sigwin.chebwin
	sigwin.chebwin.generate
	sigwin.chebwin.info
	sigwin.chebwin.winwrite
	sigwin.flattopwin
	sigwin.flattopwin.generate
	sigwin.flattopwin.info
	sigwin.flattopwin.winwrite
	sigwin.gausswin
	sigwin.gausswin.generate
	sigwin.gausswin.info
	sigwin.gausswin.winwrite
	sigwin.hamming
	sigwin.hamming.generate
	sigwin.hamming.info
	sigwin.hamming.winwrite
	sigwin.hann
	sigwin.hann.generate
	sigwin.hann.info
	sigwin.hann.winwrite
	sigwin.kaiser
	sigwin.kaiser.generate
	sigwin.kaiser.info
	sigwin.kaiser.winwrite
	sigwin.nuttallwin
	sigwin.nuttallwin.generate
	sigwin.nuttallwin.info
	sigwin.nuttallwin.winwrite
	sigwin.parzenwin
	sigwin.parzenwin.generate
	sigwin.parzenwin.info
	sigwin.parzenwin.winwrite
	sigwin.rectwin
	sigwin.rectwin.generate
	sigwin.rectwin.info
	sigwin.rectwin.winwrite
	sigwin.taylorwin
	sigwin.taylorwin.generate
	sigwin.taylorwin.info
	sigwin.taylorwin.winwrite
	sigwin.triang
	sigwin.triang.generate
	sigwin.triang.info
	sigwin.triang.winwrite
	sigwin.tukeywin
	sigwin.tukeywin.generate
	sigwin.tukeywin.info
	sigwin.tukeywin.winwrite
	Simulation Data Inspector
	Simulink.sdi.compareRuns
	sinad
	sinc
	single
	slewrate
	snr
	sos2cell
	sos2ss
	sos2tf
	sos2zp
	sosfilt
	spectrogram
	spectrum
	spectrum.burg
	spectrum.cov
	spectrum.eigenvector
	spectrum.mcov
	spectrum.mtm
	spectrum.music
	spectrum.periodogram
	spectrum.welch
	spectrum.yulear
	splitlabels
	sptool
	square
	ss
	ss2sos
	ss2zp
	statelevels
	stepz
	stft
	stftLayer
	stftmag2sig
	stmcb
	strips
	taylorwin
	tachorpm
	tf
	tf2latc
	tf2sos
	tf2ss
	tf2zp
	tf2zpk
	tfestimate
	tfridge
	thd
	toi
	triang
	tripuls
	tsa
	tukeywin
	udecode
	uencode
	unshiftdata
	upfirdn
	upsample
	undershoot
	vco
	vmd
	window
	window (filter design method)
	Window Designer
	wvd
	WVTool
	xcorr2
	xspectrogram
	xwvd
	yulewalk
	zerocrossrate
	zerophase
	zp2sos
	zp2ss
	zp2tf
	zpk
	zplane

